To read this content please select one of the options below:

Modeling of chloride penetration in concrete structures under freeze-thaw cycles

H’mida Hamidane (Laboratory of Applied Civil Engineering LGCA, Université Larbi Tebessi, Tebessa, Algeria) (Department of Civil Engineering, Jordan University of Science and Technology, Irbid, Jordan)
Ayman Ababneh (Department of Civil Engineering, Jordan University of Science and Technology, Irbid, Jordan)
Ali Messabhia (Laboratory of Applied Civil Engineering LGCA, Université Larbi Tebessi, Tebessa, Algeria)
Yunping Xi (Department of Civil Engineering, University of Colorado Boulder, Boulder, Colorado, USA)

International Journal of Building Pathology and Adaptation

ISSN: 2398-4708

Article publication date: 7 August 2019

Issue publication date: 20 January 2020

212

Abstract

Purpose

The purpose of this paper is to develop a method for predicting the chloride ingress into concrete structures, with an emphasis on the low temperature range where freeze-thaw cycles may cause damage.

Design/methodology/approach

The different phenomena that contribute to the rate and amount of transported chlorides into concrete, i.e., heat transfer, moisture transport and chloride diffusion are modeled using a two-dimensional nonlinear time dependent finite element method. In modeling the chloride transport, a modified version of Fick’s second law is used, in which processes of diffusion and convection due to water movement are taken into account. Besides, the effect of freeze-thaw cycles is directly incorporated in the governing equation and linked to temperature variation using a coupling term that is determined in this study. The proposed finite element model and its associated program are capable of handling pertinent material nonlinearities and variable boundary conditions that simulate real exposure situations.

Findings

The numerical performance of the model was examined through few examples to investigate its ability to simulate chloride penetration under freeze-thaw cycles and its sensitivity to factors controlling freeze-thaw damage. It was also proved that yearly temperature variation models to be used in service life assessment should take into account its cyclic nature to obtain realistic predictions.

Originality/value

The model proved promising and suitable for chloride penetration in cold climates.

Keywords

Citation

Hamidane, H., Ababneh, A., Messabhia, A. and Xi, Y. (2020), "Modeling of chloride penetration in concrete structures under freeze-thaw cycles", International Journal of Building Pathology and Adaptation, Vol. 38 No. 1, pp. 127-147. https://doi.org/10.1108/IJBPA-04-2019-0040

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles