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Abstract
Purpose – Experiments are the backbone of the development process of data-driven predictive models for scientific applications. The quality of the
experiments directly impacts the model performance. Uncertainty inherently affects experiment measurements and is often missing in the available
data sets due to its estimation cost. For similar reasons, experiments are very few compared to other data sources. Discarding experiments based on
the missing uncertainty values would preclude the development of predictive models. Data profiling techniques are fundamental to assess data
quality, but some data quality dimensions are challenging to evaluate without knowing the uncertainty. In this context, this paper aims to predict
the missing uncertainty of the experiments.
Design/methodology/approach – This work presents a methodology to forecast the experiments’ missing uncertainty, given a data set and its
ontological description. The approach is based on knowledge graph embeddings and leverages the task of link prediction over a knowledge graph
representation of the experiments database. The validity of the methodology is first tested in multiple conditions using synthetic data and then
applied to a large data set of experiments in the chemical kinetic domain as a case study.
Findings – The analysis results of different test case scenarios suggest that knowledge graph embedding can be used to predict the missing uncertainty of the
experiments when there is a hidden relationship between the experiment metadata and the uncertainty values. The link prediction task is also resilient to
random noise in the relationship. The knowledge graph embedding outperforms the baseline results if the uncertainty depends upon multiple metadata.
Originality/value – The employment of knowledge graph embedding to predict the missing experimental uncertainty is a novel alternative to the
current and more costly techniques in the literature. Such contribution permits a better data quality profiling of scientific repositories and improves
the development process of data-driven models based on scientific experiments.

Keywords Uncertainty prediction, Data uncertainty, Data quality, Data quality management, Data uncertainty management,
Experimental data, Experimental measurement, Uncertainty prediction

Paper type Research paper

1. Introduction

Experimental data (also experiments in the following) are
fundamental to generate chemical–physical predictive models.
Such models predict complex systems leveraging chemical–
physical equations that describe the domain phenomena.
However, some of them are still challenging to explain with
theory (i.e. chemical–physical equations), and the experiments,
with their observations, can provide phenomenological
evidence about a domain setting. This information can be used
to refine and validate a model. During model validation, the
model’s predictions are compared against the experimental
data, estimating the predictive model performance. For these
reasons, chemical–physical predictive models often are data-
driven models (Pelucchi et al., 2019). Experiments, unlikely
other types of data such as social media, are rare and expensive
in terms of time and cost to collect. An experiment measures
physical properties in a given domain setting. They are a
particular kind of data because they record physical
measurements inherently affected by experimental uncertainty,

also known as experimental error (Ramalli et al., 2021b). This is
usually obtained by repeating the experiment under the same
conditions. Multiple sources of the same fact are hence used to
build a ground truth, which is compared with the experimental
data to compute the difference and thus estimate the
uncertainty (Moffat, 1985). Unfortunately, many experiments
lack to report experimental uncertainty due to the cost of
replicating them (Dai et al., 2019). Similarly, old experiments
are more likely to be imprecise, hence with bigger uncertainties,
due to the use of old instruments to perform the measurements.
However, it is unlikely that the community will invest in
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repeating an experiment even if it is not so reliable. Often
experiments are one of a kind. In both cases, experiments with
or without, with more or less uncertainty, are still valuable
sources of information for the predictive model development.
Conversely, tasks such as model validation can not be
appropriately performed if uncertainty is unavailable. Figure 1
shows an example from chemical engineering where the
experimental uncertainty represented by the error bars is a
discriminating factor (H2O plot) to establish if the model
predictions are reasonable or not, i.e. the model predictions are
inside the experimental error bars. Without them (H2 plot), it is
difficult to guide the model development, thus determining if
“model 1” is better than “model 2.” Other approaches rely on
multiple experiments in similar conditions to estimate the
uncertainty (Dai et al., 2019). However, in most of the
applications, it is challenging to properly define a similarity
between experiments in highly multidimensional and not linear
domains. Moreover, these methodologies still rely on multiple
experiments to predict the missing uncertainties. Most of the
time, the amount of experiments is limited, and most are
without uncertainty. This work proposes a new methodology to
estimate the missing experimental uncertainty using knowledge
graph embedding and the available data. Knowledge graphs, in
fact, can represent a data set of experiments given an ontology,
and they are easily extensible to include different facts. The
proposed methodology leverages three facts: first, predictive
models, even if they are affected by epistemic uncertainty (Der
Kiureghian and Ditlevsen, 2009), represent more or less
faithfully the domain; thus, they can be used to build a ground
truth. Second, experiments in similar conditions should report
similar values. Learning an embedded representation of the
knowledge graph leverages this fact and unties the constraint of
defining a distance or similarity between the experiments.

Finally, experiments come together with metadata that
describes additional details, such as the authorship or the
instruments used. It is reasonable to think that sometimes the
aleatoric uncertainty (Der Kiureghian and Ditlevsen, 2009) can
have a systematic part due to, e.g. a wrong calibration of the
instruments of a specific laboratory. In summary, knowledge
graph embedding learns hidden, systematic and complex
relationships (facts) between the metadata of the experiments
and the present uncertainties to predict themissing ones.
Fortunately, in the past decades, there has been an increasing

tendency to share data among the scientific community in many
scientific sectors. Consequently, many data ecosystems have been
created to collect, store and analyze data. These systems are even
more critical when dealing with experiments. Data ecosystems play
a central role in managing data, de-facto establishing what can be
discovered from them (Allan et al., 2012). Data ecosystems offer
many functionalities. One of them is related to the data quality
evaluation of the repository to provide reliable data to create
accurate predictive models. This work briefly discusses which data
quality dimensions should be considered and how they should be
addressed in the case of a repository for scientific data. In particular,
it combines automatic with human-in-the-loop approaches to
ensure a certain data quality level. Predicting the missing
uncertainty is fundamental to conduct a data profiling of the
experimental repository properly. This work validates and studies
the new proposed methodology using multiple scenarios using
synthetic data. Finally, the procedure is applied to a real-case
scenario of chemical kinetics data that are highly affected bymissing
uncertainties. This proof of concept demonstrates that with enough
structured information about the experiments and their uncertainty,
it is possible to infer the missing experimental uncertainty.
Researchers can find this methodology to predict the missing
uncertainties of a scientific repository fundamental. It allows amore
effective and straightforward data quality profiling and predictive
model development process inmany scientific applications.
The structure of this paper is the following. We discuss

related work and open problems in Section 2. Section 3 shows
how much the experimental uncertainty is fundamental for the
data quality profiling of a scientific repository. Then, it presents
the proposed methodology. Section 4 shows how the
methodology could be effective with a number of scenarios and
a real-world case study. Finally, Section 5 summarizes the
conclusions and presents future work.

2. Literature review

Uncertainty is a widely used word to describe, in general, a lack
of knowledge about the comprehension and description of
phenomena (Council, 1990). In the domain of automatically
generated models with machine learning techniques, aleatoric
and epistemic are two macro typologies of uncertainty (Der
Kiureghian and Ditlevsen, 2009). Aleatoric uncertainty is
related to the intrinsic randomness of the observed phenomena,
e.g. the measurement error in the experiments or fuzziness in
an image. Epistemic uncertainty can be associated with the use
of a reduced number of variables to represent a complex
domain in a predictive model. The predictive model
simplifications lead to uncertainty in the predicted values (Der
Kiureghian and Ditlevsen, 2009). It is possible to classify
uncertainty in more specific categories (Bell, 2001). For

Figure 1 The relationship between experimental data (in orange),
simulated data (in blue or red) and experimental uncertainty (error
bars). Experimental data without uncertainty (H2 plot) do not allow to
establish if the predictions of Model 1 are better than Model 2. Instead,
in the case of H2O, it is possible to verify whether model predictions are
correct immediately. The data are collected from the scientific repository
of SciExpeM (Ramalli et al., 2021b)
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example, the data uncertainty due to the finite precision of
instruments leads to random errors or does not account for
other factors, such as the instrument drifts that, instead, lead to
systematic errors, as well as sampling errors (Aggarwal and
Philip, 2008). Uncertainty, when provided, should be
adequately processed with uncertain data management
methods (Agrawal et al., 2006) and algorithms (Qin et al.,
2009; Cormode andMcGregor, 2008). In these cases, there are
two main ways to represent the data uncertainty (Xu et al.,
2014). First, uncertainty can be modeled as a probability
distribution of the data rather than deterministic facts. The
second is to provide data together with statistical information,
such as the average and standard deviation.
Data uncertainty has a central role in the development

process of a data-driven predictive model based on
experimental data. To mitigate the garbage in, garbage out
(GIGO) effects (Kim et al., 2016; Lidwell et al., 2010),
experimental uncertainty is fundamental to understand if the
data is reliable enough to guide the model development, but
often it is not reported (Dai et al., 2019). The lack of discussion
about the uncertainty of the data in the experimental sector is
mainly due to two factors: either the impossibility of replicating
the experiment in the same conditions or the high production
cost (Dai et al., 2019).
To guide the model development process through the data, it is

necessary to estimate the experimental uncertainty (Hills, 2006).
As reported in Peters (2001), there are mainly two methodologies
to quantify the uncertainty of the measurements. If it is possible to
replicate the measurements inexpensively, the experimental
uncertainty can be quantified through experimental campaigns
(Moffat, 1985), where a sufficient number of measurements is
needed to estimate uncertainty accurately (Hsu et al., 2009). The
measurement average is the best estimate for the value to be
reported, and the standard deviation is its uncertainty (Peters,
2001). The second methodology instead leverages the Taylor
series expansion, and it is mainly used when it is not possible to
measure a quantity directly (Wilson and Smith, 2013). When it is
not possible to replicate an experiment, a novel approach to
estimating data uncertainty leverages the idea that the dependent
variable changes smoothly when each independent variable
change a little while others are kept constant. This assumption
allows representing the relationship between the dependent and
independent variables with regression models, and their residuals
can be used to estimate the uncertainty of the dependent variable
(Dai et al., 2019). The challenges of such an approach are related
to the limited availability of data in similar conditions (i.e.
independent variables) and the generality of the assumption that
even a slight change in the dependent variables corresponds to a
little change in the independent one. Finally, a naive approach is to
use default domain values (Olm et al., 2014) to complete the
missing experimental uncertainty. However, the uncertainty could
be much higher than the suggested default value (Ramalli et al.,
2021b).
Data ecosystems collect and manage many data types from

different sources to produce new knowledge (Cui et al., 2020;
Ramalli et al., 2023). In the past years, scientific repositories
and data ecosystems have been increasing in different fields
(Blaiszik et al., 2019; Nach�azel et al., 2021; Ramalli et al.,
2021b). Their data management capabilities and services
define what can be discovered (Allan et al., 2012). These

repositories, if, on the one hand, incentivize the reuse and
proliferation of data, on the other hand open new challenges
related to data management (Cui et al., 2020), such as data
quality (Oliveira and L’oscio, 2018), diversity (Ramalli and
Pernici, 2021), integration (Brodie, 2010) and transparency
(Geisler et al., 2021). Having all data in a centralized system, if
the data are not adequately managed, can lead to a fast
propagation of errors within the system and to the data
applications (Fan andGeerts, 2012).
Metadata is known to be used to model the data quality

(Rodríguez and Servigne, 2013), and uncertainty can be seen as
another metadata of the experiments. This relationship makes
it possible to link uncertainty to the data quality (Comber et al.,
2006). In the general case, the relationship between data, data
quality and uncertainty is linked by data profiling (Naumann,
2014): current data quality reports are imprecise because they
lack a complete description of data uncertainty (Comber et al.,
2006). Moreover, data quality indicators, independently from
the sophistication needed to account for the data uncertainty,
do not account for the adequacy of the data for a given goal
(Coulon et al., 1997). Metadata can be used to derive an
ontology of the data (Chen and Plale, 2012; Schuurman and
Leszczynski, 2006), and knowledge graphs (Ehrlinger and
Wöß, 2016) can represent ontologies for scientific data (Farazi
et al., 2019). The ontology helps in profiling the data and
measuring the data quality effectively (Khokhlov and Reznik,
2020).
Knowledge graph embedding is a branch of machine

learning that studies how to learn an embedded representation
of a knowledge graph. With such representation, this paper
shows how it is possible to apply machine learning tasks, such
as “link prediction,” to infer new knowledge about two entities
in the graph (Dai et al., 2020; Wang et al., 2017), focusing on
experiments and their uncertainty value.

3. Methodology

This section presents the overall methodology for predicting
the missing experimental uncertainties using knowledge graph
embedding according to the following steps, also depicted in
Figure 2. The methodology is general, and every practitioner
who wishes to apply in their domain has to follow the following
steps. To start, the researcher needs a scientific repository of
experiments with missing uncertainty values and an ontology
that describes the experiments. Uncertainty is assumed to be a
property of the experiment ontology. The experiments are
profiled mainly for two purposes. First, to assess the data
quality, thus ensuring the highest data quality possible for the
forthcoming knowledge graph generation. Second, to quantify
the diversity of the uncertainty values. Generally, the
knowledge graph embedding models can not predict
continuous values. Therefore, it is necessary to select a limited
but representative and exhaustive set of possible uncertainty
values (or buckets) according to the application domain and
transform the input data set uncertainties using bucketization.
With bucketization, similar (close) values are associated with
the same bucket. After separating the experiments with
uncertainty from the ones without uncertainty, according to the
provided ontology, it is created a knowledge graph of the input
experimental data set (Ehrlinger and Wöß, 2016), and
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randomly generated a training, validation and test set in the
measure of 80, 10 and 10% of the original data set, respectively.
In the end, an embedded representation of the knowledge
graph is learned and then validated. If the validation results are
satisfactory, the embedded model is used to predict the missing
uncertainties with the task of link prediction.
Section 2 presentsmethodologies to predict the experimental

uncertainty based on the assumption that multiple experiments
exist in similar or in the same conditions to carry out a robust
statistical analysis. However, as already said previously, it is rare
to have multiple data in similar conditions, and therefore these,
methodologies are not applicable.
It is necessary to rely only on the already available

information. With the link prediction task, knowledge graph
embedding learns and predicts the missing uncertainties based
on the hidden evidence in a given data set. If there is a
systematic relationship between the experiment metadata, i.e.
the experiment ontology properties, and the experimental

uncertainty, the embedded representation of the knowledge
graph leverages this fact to predict the missing uncertainty
values. The validation result of the embedding model over the
task of predicting the missing uncertainties confirms if such
hidden relation exists. Let us consider, e.g. the case of a
systematic instrument drifting in the equipment of a particular
laboratory. The equipment type, the laboratory and the
uncertainty are properties of the experiment ontology that have
been transformed into knowledge graph entities during the
knowledge graph creation. Moreover, knowledge graph
embedding can be seen as an extension of the previous
methodologies: if multiple experiments exist in the same or
similar condition, their embedding will be similar, and
therefore, the uncertainty predicted by the embedding model
will take advantage of this fact. Finally, the ontology and, thus,
the knowledge graph, can be easily extended to include
additional facts that can be leveraged to predict the missing
uncertainty.
The following Section 3.1 describes in more detail the data

quality dimensions of interest in a repository for scientific data,
which is the procedure to account for them, and how
uncertainty is linked to data quality profiling. Section 3.2
presents the ontology of experimental data using a knowledge
graph that has been used to validate the proposed methodology.
In the end, Section 3.3 introduces how embeddings are
computed and used to estimate the missing uncertainties,
together with themetrics to assess the embedding quality.

3.1 Data and qualitymanagement
The predictive model development process is a complex
procedure. It is necessary to analyze many data of different
kinds to build it accurately. In particular, there are four types of
data: experiments, simulations, models and analysis results.
These data, due to their volume and complexity, need to be
stored and managed in a data ecosystem that also incentivizes
the collaboration and sharing of information among different
research institutions.
The data ecosystem manages these four types of data, which

are linked together as follows. Models describes real
phenomena and are founded on chemical–physical equations,
but with the increasing amount of data, the models are more
and more data-driven. For this reason, the models are
becoming increasingly data-dependent because experimental
data are used to measure the goodness of the model prediction.
At the same time, using the models, it is possible to generate,
neglecting the computational cost, as much simulated data (or
simulations) as necessary. These data are model predictions
about the behavior of a system in a particular condition. The
experimental data are compared with the corresponding
simulations to assess the model’s prediction quality, generating
performance analysis data. Moreover, as the model represents
reality more or less precisely, they can be used to validate an
experiment. An experiment that is far away from the model
prediction suggests that it is a possible outlier that needs to be
investigated. In addition, multiple models developed
independently from each other can be used to generate
simulated data and estimate the uncertainty of the experimental
data, constructing a reasonable ground truth, even if they are
affected by (epistemic) uncertainty. Finally, analysis data can
be used to guide the model development improvement or the

Figure 2 Steps of the proposed methodology to predict the missing
uncertainties of experimental data
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experiment design, i.e. to discover which portions of the domain
are not covered by experimental data.
Therefore, as the four types of data are connected with each

other, it is more critical that the data stored inside the
repository retain certain data quality. Otherwise, spreading
wrong information could negatively and rapidly impact the data
ecosystem.
This work focuses on the data quality dimensions related to

the experimental data, which are the most affected by errors
among the four data types. Experimental data are a
composition of measurements about a property together with a
collection of metadata that provides details about the
circumstances of an experiment, such as environmental
conditions, instruments, authorship and year of publication.
Experimental data, in terms of data quality, should be checked

a priori during the insertion in the data ecosystem, and if they are
not compliant with the predefined data quality rules for each
dimension, they should not be accepted in the system. In doing
so, immediate feedback is provided to the user inserting the data,
giving the possibility to correct errors. The procedure to assess
the data quality constraints relies on a combination of automatic
and human-in-the-loopmethodologies.
There are hundreds of data quality dimensions that measure

different aspects of the quality of data. When dealing with
experimental data, regardless of the application domain,
completeness, consistency and accuracy are always of interest
according to the fitness for use concept (Wang and Strong, 1996).
Unlike many other applications, timeliness as a data quality
dimension is often not of interest. It is sporadic that two
experiments are performed in the exact experimental condition to
update the old value. This is related to the infeasibility of repeating
an experiment. First, because it is practically challenging to
replicate environmental conditions exactly; second, experiments
are expensive, and it is unlikely that other researchers invest in an
experiment that has already been investigated.
Completeness. In a domain, it is possible to know which

metadata (or ontology properties) that describe the experiment
are mandatory and in which conditions. For example, in every
experiment is common that the unit of measurement is
mandatory. Therefore, it is sufficient to specify a collection of
rules that check the completeness of the experiment’s metadata.
Consistency. As in the case of completeness, in each domain,

there are implicit rules that need to be made explicit and
implemented automatically. A typical example is the
concordance between the type of the measured property and
the unit of measurement. Just subsets of all existing units of
measurement are possible for a type of property.
Accuracy. Accuracy is by far the most challenging data quality

dimension to evaluate. In the case of experiments, because there
is no ground truth and uncertainty is always present in the
measurements, it is hard to verify whether the measurements
are correct or inaccurate. To overcome this limitation, instead
of carrying out a single experiment, a campaign of experiments
is performed, where the measurements are repeated several
times, but it comes with the infeasibility of replicating
experiments. The average of the measurements is the value, and
the standard deviation is how much confident we are about that
value, or in other words, its uncertainty. The best approach to
measure the accuracy of an experiment is to run the
corresponding simulation automatically and check if the

simulated data are not too far from the experimental ones. In
cases in which there is a significant difference, the intervention
of a human expert is needed because it is hard to disambiguate
automatically whether the data or the model are wrong.
Otherwise, checking a priori all the experiments manually would
be unsustainable for the number of human resources needed.
Uncertainty connects all three data quality dimensions. In

the scientific domain, uncertainty is a fundamental element
that permits to profile their data quality. For experimental data,
uncertainty is another metadata of the experiment; therefore, if
available, the repository is” more complete.” Instead, if two
experiments are in the same conditions (but with different
authorship) and without uncertainty, either they report the
same observation or both or one of them is wrong. Therefore,
uncertainty matters in terms of consistency between
experiments and similarly for accuracy. In other words,
uncertainty gives a margin of error that allows a more correct
assessment of whether an experiment is similar to simulated
data with some margin and thus is not just an in-and-out
punctual value comparison.

3.2 Knowledge graph
Experiments are a collection of metadata and reported
observations about a measured property. An ontology can be
used to transform a set of experiments into a knowledge graph.
The ontology classes and properties become entities, and the
relationships between the classes become the knowledge graph
predicates.
Definition 3.1 (knowledge graph). A knowledge graph (KG) is

defined as G = {E, R, F}, where E, R and F are collections of
entities, relations and facts, respectively. A fact is denoted as a triple
(h, r, t) [ F where h stands for ‘Head’ (or subject), r stands for
‘Relation’ (or predicate) and t for ‘Tail’ (or object). In other words,
a KG is a list of facts, each representing a truth that connects two
entities with a specific relationship. The representation format of the
triples is known as resource description framework (RDF) (Lassila
et al., 1999).
It is necessary to carry out several tests to validate the

proposed methodology’s applicability and understand its
strengths and limitations. This work, starting from existing
scientific ontologies in the literature (Varga et al., 2015; Farazi
et al., 2019), define a metamodel to describe an experiment and
hence to create a knowledge graph as shown in Definition 3.1.
This ontology accounts for the most popular and general
metadata that describe an experiment. The machine learning
algorithm will leverage the hidden patterns between these
metadata to predict the missing uncertainties, as explained in
the following sections. It is plausible that not all the
discriminant elements to determine the experiment uncertainty
are included in the knowledge graph, but themodel embedding
validation will notify this limitation. On the other hand, if
properties or classes that do not concur with the experiment
uncertainty are missing from the ontology, the embedding
accuracy will negligibly affect the link prediction of the
uncertainty itself (Ramalli et al., 2021a).
In particular, the ontology used in this work (Figure 3)

accounts for:
� Experiment. It is the ID that identifies an experiment.
� Author. It is the first author or the research lab that

publishes the experiment. This metadata could be
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expanded in other metadata with other bibliography
information such as journal, list of authors and affiliations.

� Performance. It represents how much the experimental
measurements are distant from the predicted one by a
model that is taken as a reference. This performance index
is computed by using functional analyses. The values
range from 0 to 1, where 1 is the perfect similarity. For this
work, the possible values are discretized equally in ten
parts from 0 to1.

� Year. It is the publication year of the experiment.
� Target. It is the object of the experimental investigation. In

the general case, multiple properties could be the object of
the observation in the same experiment. It is possible to
model such a case by adding a new (experiment) entry for
each object to the knowledge graph where all the other
properties (metadata) are unchanged except for the
performance and the uncertainty.

� Type. It is the typology of experimental investigation.
� Instrument. It represents the instrument used to carry out

the experiment. Usually, for each type of experiment, only
a subset of the existing instruments is possible.

� Uncertainty. It is the (relative) uncertainty of the data, if it
is provided. As in the case of the performance index, for
this work, the possible uncertainty values are discretized
from 0 to 1 with step 0.1. 0 means that it is not possible to
determine the experiment uncertainty.

3.3 Knowledge graph embedding
Embedding is the process of representing a complex entity in a
lower dimensional space such that entities with similar
semantic meanings have close embeddings. Therefore,
knowledge graph embedding is the task of creating a knowledge
graph representation in a low-dimensional space of size k.
Different types of knowledge graph embeddings differ in the
representation space, scoring function, encoding models and
any other additional information that can be integrated into the
embeddings (Rossi et al., 2021; Wang et al., 2021). These
characteristics together are known as an embeddingmodel.
The most commonly used family of embedding models uses

Euclidean spaces to learn the vector representation of the

entities and relationships. To this family of embedding models
belongs TransE (Wang et al., 2014), and the more recent
RotatE (Sun et al., 2019).
TransE learns the embedding of the entities and the

relationships by interpreting them as a translation on the
Euclidian space of dimension equal to the embedding size.
Equation (1) reports the scoring function, where h; r ; t 2 Rk

are the embeddings of the head h, relation r and tail t of a triple
(h, r, t).
Therefore, the score function of a triple measures the error of

the embedding model in representing the mathematical
relation between the entities (embedding) and the relationship
(embedding) of a triple. In the case of TransE, it measures how
much the vector representing the tail t of a triple is distant from
the vector of the head h plus (vector sum) the vector of the
relation r .
Therefore, the purpose of TransE, but in general of every

embedding model, is to minimize the loss over a training set of
triplesT as in equation (2) within a number of given epochs.
Figure 4 shows a visual representation of a possible embedding

for two entities and a relation in the case of TransE.Given a triple
such as (Milan, is in, Italy), TransE learns the embedding for
each element of the triple, such as the loss isminimized:

f h;r;tð Þ ¼ h1 r � t (1)

Loss ¼
X

8 h;r;tð Þ2T
f h;r;tð Þ (2)

This paper uses RotatE because it is one of the best trade-offs
between computational complexity and accuracy of the
representation while keeping relational properties, unlikely
TransE, such as symmetry (e.g. marriage), inversion (e.g. child
and parent) and composition (e.g. my parents’ parents are my
grandparents). The idea of RotatE is very similar to TransE. It
projects the entities and relations into a complex space where
the tail entity is reachable from the head entity by a rotation
defined by their relationship. In mathematical terms, given a
triplet (h, r, t), RotatE learns the embedding h; r ; t 2 Ck such
that it satisfies the mathematical relation t ¼ h � r , where °
denotes theHadamard product.

3.3.1 Link prediction.
With the embedded representation of a knowledge graph, it is
possible to use the embedding of the entities and relationships for
prediction tasks. Themost common are clustering and knowledge
completion. The latter is also known as link prediction, i.e. the task
of inferring the missing links between entities in the knowledge
graph. For the purposes of this work, given the embedding of an
experiment and the relationship “has_uncertainty,” it is possible to
derive which is the most probable embedding associated with an
entity representing an uncertainty value, i.e. estimating the
uncertainty of an experiment.
Simplifying, the procedure is as follows: given the embedding

and the score function of an embeddingmodel, with knowledge
completion, it is completed a triple where it is missing one at a
time, the head, the relation or the tail. So, given two elements of
a triple, it is possible to infer the third one. For example, if the
tail in the triple is missing, first, it is necessary to collect the

Figure 3 Representation of the metamodel of a typical experiment
using a knowledge graph
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embedding of the head and the relation. Then, the embedding
of all the possible existing (and logically meaningful) tails in the
knowledge graph are retrieved. For each possible combination
of the head, relation and tail, the link prediction task computes,
using the score function of the embedding model, the score and
ranks the triples based on the lowest score, i.e. the minimal
distance or error. The triple with the lowest score is the best
candidate to complete the triple. For this reason, in the
proposed procedure, it is necessary to profile the diversity of the
uncertainty values. A knowledge graph embedding model can
only complete a triple with entities already present during the
model’s training. Figure 5 shows an example of link prediction
using TransE as an embedding model. In this case, we need to
complete the triple (Florence, is_in,?), where the tail is missing.
After the training of the embedding model, the embedding of
the entity Florence and the relationship is_in are available. Then
the link prediction task computes the score of each triple that is
generated by substituting the “?” in the (Florence, is_in,?) triple,
with all the other logically meaningful entities in the knowledge
graph that can complete the triple. Each triple is ranked based
on the lowest score, and the first ranked suggests the missing
element of the triple.

3.3.2 Evaluation metric
Link prediction is used as a benchmark to assess the accuracy of
the embedding over a test set of triplesQ. In this work, it is used

to evaluate the embedding model’s predictive capabilities to
forecast the missing uncertainties correctly. Therefore,
different performancemetrics can be defined for this prediction
task; one isHits@N (Definition 3.2).
Definition 3.2 (Hits@N). Hits@N (or H@N) is the proportion

of correctly predicted triples within the top N predictions of the
embedding model following equation (3):

Hits@N ¼ 1
jQj

XjQj

i¼1

1 if rank h;r;tð Þi � N
0 Otherwise

2 0; 1½ �
�

(3)

Hits@Nhas a value between 0 and 1, where higher is better.
Definition 3.3 (Diff). Diff quantifies the average error in the

misprediction of the uncertainty. It is the average of difference
between the uncertainty value predicted as first top prediction of the
embedding model and the real one:

Diff ¼
X

8t2V jM1 tð Þ � R tð Þj
k

(4)

More precisely, given a set of triples V (jV j = k) where the
embedding model mispredicts the first top prediction, Diff
measures in average, for each triple f = (h, r, t) [ V, which is the
difference between the value of the first top prediction of the
model M1(f) against the actual value R(f). In such a way, it is
possible to understand whether the embedding model is

Figure 4 Two steps of embedding procedure of a KG. Figure 4(a) shows a possible embedding of a triple in the case of TransE. Figure 4(b) depicts how
the embedding is computed for multiple triples, minimizing the loss
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learning the hidden and complex relationship between
experiment metadata and uncertainty. For instance, for a given
triple f, if the correct uncertainty is R(f ) = 0.5 for a given
experiment, and the first top prediction of the embedding
model is M1(f ) = 0.4, this is a wrong first top prediction, but
the semantic that the embedding model predicts is not so
different from the real value. Hence, the embedding model is
learning to predict the uncertainty almost correctly.

4. Results and discussion

This section presents the scenarios conducted to study and
verify the validity of the new methodology and technologies
presented in Section 3. The knowledge graph and the
embedding models of the scenarios, together with the source
code are available on GitHub [1]. The purposes of the
scenarios are the following:
� Set a baseline against which to compare the performance

of the other scenarios (Section 4.1).
� (RQ1) Determine whether it is possible to learn how to

predict missing uncertainty values when it systematically
depends on another experiment metadata (Section 4.2).

� (RQ2) Evaluate the knowledge graph embedding model’s
predictive capabilities (of the missing uncertainties) when
the depency relationship between uncertainty and
experiment metadata is increasingly complex (Section 4.3).

Each scenario uses the ontology in Section 3.2 as a reference for
constructing the knowledge graph together with the properties
under investigation of the scenario itself. The scenarios are
therefore built with synthetic data and are very suitable for
performing parametric analyses. In addition, it is possible to
easily test the proposed methodology with different sizes of the
knowledge graph in terms of the number of experiments, thus
of triples paying attention to the increasing training cost.
The scenarios are tested using 1,000 experiments that

generate 7,000 random triples but without violating semantic
domain constraints between the entities. Table 1 reports in
details the number of distinct values for each entity type in the
knowledge graph.
Each experiment is randomly (with uniform probability

distribution) associated with each type of entity present in the
ontology with the proper relationship and feasible entity value. For
example, in our application scenario, not all instrument types can
be used for every experiment type. It is randomly (due to
the computational cost) tested in some scenarios to verify the
independence of themethodology from the number of triples if the
prediction performances change when are used 50,000
experiments that generate 350,000 triples with a proportional
number of entities for each typology. The results suggest that the
methodology is independent of the number of triples. The number
of possible values for type entities is reported in Section 4.

The training of the knowledge graph embedding model is
repeated five times for each scenario. The numerical results, in
terms of prediction performance hereafter, are an arithmetic
average of five test cases. The list of triples that describe the
scenario knowledge graph is randomly divided into three data
sets, training, validation and test, respectively, with 80, 10 and
10% of the total triples. The settings for the embedding model
are kept constant along all the test cases. In particular, the
embedding model is RotatE, with an embedding dimension
equal to 64. More details for this setting are in Appendix with
Figures A1 and A2. The maximum number of epochs is set to
15,000, with an early stopping on the H@3 score over the
validation data set computed every 500 epoch with the patience
of three steps and delta 5E�03.
The scenarios are evaluated in two ways: H@N (equation (3))

assesses the prediction capabilities only on the link prediction task
for the relationship that connects the experiments to the
uncertainty entities. Diff (equation (4)) evaluates the average
error in themispredictions.

4.1 Baseline
In the baseline scenario, the knowledge graph is generated
following the ontology in Section 3.2. During the generation,
consistency rules are kept, such as that experiments belonging to
the same author have a plausible publication year from the
author’s range of activity years. In this case, the uncertainty of the
experiment is randomly chosen between 0 and 1. According to
this, Figure 6, through the correlation heatmap, shows no
correlation between the ontology properties. The embedding
result of this configuration of the knowledge graph is in line with
expectations. The model predicts the uncertainty of the
experiments choosing among 11 possible values. Table 2
illustrates the predictive performance of the embedding model.
The predictive performances are not meaningfully above the
theoretical limit. For example, H@5 indicates the percentage of
times the correct uncertainty value to be predicted is in the top
five top predictions of the embedding model. Because 11 values
are possible, the probability that the correct value is among
the top five is about 0.454, which is similar to the value ofH@5 in
the model. Similar considerations about the result of Diff. These
results support the intuition that if there is no pattern between the
uncertainty and the metadata of an experiment, it is not possible
to learn how to predict the missing experimental uncertainties.
Hence, the uncertainty depends on other, or more complex facts
not represented in the knowledge graph. Therefore, even if this
methodology depends on the ontology definition of a domain,
this preliminary analysis highlights whether all the discriminatory
elements to predict the missing uncertainties are included in the
ontology, hence in the knowledge graph.

4.2 Research question 1
The baseline scenario demonstrates that if the uncertainty is not
linked to any experiment metadata (or ontology property), the
best that the embedding model can do is randomly guess the
missing uncertainty values. Instead, this scenario verifies if it is
possible to learn to predict the uncertainty when there is a
systematic relationship between an experiment metadata and the
uncertainty. For this purpose, the experiment uncertainty is
selected according to the value of another experiment’smetadata.
More formally, given X1 an experiment metadata and X1 =

Table 1 Number of distinct values for each entity type. “Exp.” stands for
experiment, “inst.” for instrument, “uncert.” for uncertainty, and “perf.”
for performance

Exp. Author Year Type Inst. Target Uncert. Perf.

1,000 50 81 6 5 12 11 11
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{X11,. . ., X1n}, the possible n value that X1 can assume in a
domain. Given U = {U1,. . ., Uk} where Uj [ [0,1], the k
uncertainty values present in the knowledge graph. It is need to
specify the relationship VX1i [X1! Uj [U. In this scenario, the
relationships are a priori randomly chosen from an uniform
distribution and kept fixed for the entire knowledge graph
generation. Therefore, each possible value of X1i is always
associated with the same uncertainty Ui. Because, in a real case,
this association is unlikely to be perfectly strict, it is performed a
parametric analysis that increase both the cardinality of U while
adding a run-time (i.e. during the knowledge graph generation)
random (with uniform distribution) but bounded positive or
negative deviation (as a random noise) to the relationship
between X1 and U, such as X1i ! Uj becomes X1i ! Uj 6 s,
wheres [ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.
The parametric analysis results (Figure 7) are shown in

Figure 7(a) in terms ofH@5 score and in Figure 7(b) regarding
the Diff measure. The knowledge graph embedding model
performs well regardless of the number of uncertainty values
when the absolute deviation is more strictly bounded. Hence, it
is possible to learn a systematic pattern between the experiment
metadata and the uncertainty. On the other side, when the
absolute deviation is 0.5, it corresponds to the baseline
scenario. In fact, because the uncertainty values are bounded

Uj [ [0,1], and on average, a deviation of 0.5 from the mean
uncertainty value of 0.5 allows all possible values to be
associated with the same metadata; hence, there is no
relationship between themetadata and the uncertainty.

4.3 Research question 2
The previous scenario shows that knowledge graph embedding
can predict the uncertainty of an experiment when there is
systematicity between an experiment metadata and the
uncertainty itself, even in the face of randomness. This scenario
aims to determine whether this methodology can be used when
uncertainty depends on an increasing number of metadata.
Therefore, how complex the relationship between experiment
metadata and uncertainty values can be. A parametric analysis
is performed where both the cardinality ofU and the number of
metadata dependencies increase. In the previous scenario, the
relationship between the experiment metadata values and the
uncertainties values were expressed with the relation X1i ! Uj.
In this case, instead, the general relation became (X1i,. . ..,
X4m)! Uj. Hence, the parametric analysis over the number of
dependencies stands for the uncertainty values depending on 0,
1,. . .,4 experimentmetadata value.
The parametric analysis results (Figure 8) are shown in

Figure 8(a) in terms ofH@5 score and in Figure 8(b) regarding
the Diff measure. As before, when there is no dependency
between experiment metadata and uncertainty values, the
performance results are similar to the baseline case. When it
depends only on one metadata value, it resembles the previous
scenario. Instead, if the number of metadata dependencies
increase, the embedding performance gets worst but is still
quite above the baseline results. This trend is true
independently of the number of possible uncertainty values.
These results suggest that the knowledge graph embedding
model improves the baseline scenario but not as significantly as
in other simpler cases.

Figure 6 Metadata correlation (Heatmap matrix) in the “Baseline” scenario

Table 2 Embedding model performance in the “baseline” scenario

Measure H@5 H@3 H@2 H@1 Diff

Mean 0.465 0.170 0.142 0.087 0.38
Median 0.479 0.167 0.142 0.073 0.38
Max 0.490 0.177 0.142 0.115 0.39
Min 0.427 0.219 0.167 0.073 0.37
SD 0.033 0.021 0.005 0.024 0.01
Var. 0.001 0.001 0.001 0.001 0.00
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4.4 Real-world scenario
In this scenario, the same methodology is applied to a data set
of chemical kinetics data available in the SciExpeM data
ecosystem [2]. A subset of 440 experimental data providedwith
uncertainty has been collected. The corresponding knowledge
graph contains 11,000 triples, where there are six different
values of uncertainty. Other information related to the number
of possible values for each entity is reported in Table 3.
Also in this case, according to the results in Table 4, the

embedding model is able to predict the missing uncertainties
even if the task was more manageable. Now, the number of
different uncertainties is six instead of 11 as in the general
setting of the ontology for these scenarios, which makes
unreasonable to measure performance indexes higher than
H@3. Therefore, the embedding model should guess from a

reduced set of possible values. In any case, the results are still
exciting and promising.
In the general case, a knowledge graph can be generated in

any application in which an ontology can be defined. The more
complex the relationship between the knowledge graph entities,
the more the learning potentialities of the knowledge graph
embedding are leveraged. The above methodology can be used
to discover whether there is a dependency between the ontology
properties and the uncertainty. In such cases, the embedding
model can assess whether it is possible to predict the
uncertainty and with which value.

Figure 7 H@5 (Figure 7(a)) and Diff (Figure 7(b)) result of the parametric analysis over the number of possible uncertainty in the knowledge graph and
the magnitude of the random deviation in the relationship between an experiment metadata and its uncertainty

(a) (b)

Figure 8 H@5 (Figure 8(a)) and Diff (Figure 8(b)) show the results of the parametric analysis over the number of possible uncertainty in the knowledge
graph and the number of dependencies of the experiment metadata and the uncertainty values of an experiment

(a) (b)

Table 3 Number of different values for each entity. “exp.” stands for
experiment, “inst.” for instrument, “uncert.” for uncertainty, and “perf.”
for performance

Exp. Author Year Type Inst. Target Uncert. Perf.

440 37 40 5 5 58 6 9

Table 4 Embedding model performance in the “real case study” scenario
regarding the estimation of missing uncertainties of the experimental data
in the domain of combustion kinetics

Measure H@3 H@2 H@1 Diff

Mean 0.93 0.88 0.62 0.17
Median 0.93 0.85 0.61 0.16
Max 0.95 0.89 0.62 0.19
Min 0.91 0.87 0.60 0.15
SD 0.02 0.02 0.02 0.01
Var. 0.001 0.001 0.001 0.00
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5. Conclusion

Experimental uncertainty is fundamental for the data quality
profiling of scientific data, as well as for other predictive model
development tasks in which the experiments drive the model
development. However, due to the high reporting cost,
uncertainty is often missing. In the current state, other
methodologies are centered on modeling the available
uncertainty or statistically estimating it by relying upon
multiple observations in the same domain condition. Because
having multiple observations is rare in practice, this work
proposes a newmethodology to predict the missing uncertainty
of experimental data. It leverages the available information and
extracts hidden patterns between the experiment metadata and
the available uncertainty values. The methodology plans to
categorize the existing uncertainties values in n different classes.
To predict the missing uncertainties the methodology uses a
machine-learning link prediction task. After providing an
ontology that describes the experiments, the methodology
learns an embedded representation of the knowledge graph that
correspond to the provided experimental repository. This
methodology is mainly studied with two parametric analyses
focused on understanding whether the knowledge graph
embedding can learn hidden relationships and how complex
they can be to predict the uncertainty values. The results
suggest that the embedding model can predict the uncertainty
values when there is a relationship between experiment
metadata and uncertainty values, even if with random noise. If
the relationship is more complex, the embedding model still
outperforms the random baseline scenario. The methodology
follows the generality principles and can be applied in every
scientific domain where it is necessary to predict the missing
experimental uncertainty values.
In the future, we plan to study how different predictive

models and algorithms perform when compared to knowledge
graph embedding. Moreover, we want to investigate how the
knowledge graph topology influences the prediction task and,
thus, how to leverage better the knowledge graph as it can host
multiple ontologies and relationships between entities. We
furthermore intend to test a broader set of embedding models
to identify which is the most suitable for this specific task.
Finally, because knowledge graph embedding has been
successfully used for data quality-related activities, we plan to
use it for data cleaning and outlier detection tasks.

Notes

1 https://github.com/edoardoramalli/KGE_Exp_Uncertainty

2 https://sciexpem.polimi.it
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Appendix. Model parameters
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Figure A1 Training loss for each embedding dimension

Figure A2 Validation loss for each embedding dimension
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