To read this content please select one of the options below:

A classification model for prediction of clinical severity level using qSOFA medical score

Diana Olivia (Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India)
Ashalatha Nayak (Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India)
Mamatha Balachandra (Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India)
Jaison John (Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India)

Information Discovery and Delivery

ISSN: 2398-6247

Article publication date: 6 February 2020

Issue publication date: 19 February 2020

126

Abstract

Purpose

The purpose of this study is to develop an efficient prediction model using vital signs and standard medical score systems, which predicts the clinical severity level of the patient in advance based on the quick sequential organ failure assessment (qSOFA) medical score method.

Design/methodology/approach

To predict the clinical severity level of the patient in advance, the authors have formulated a training dataset that is constructed based on the qSOFA medical score method. Further, along with the multiple vital signs, different standard medical scores and their correlation features are used to build and improve the accuracy of the prediction model. It is made sure that the constructed training set is suitable for the severity level prediction because the formulated dataset has different clusters each corresponding to different severity levels according to qSOFA score.

Findings

From the experimental result, it is found that the inclusion of the standard medical scores and their correlation along with multiple vital signs improves the accuracy of the clinical severity level prediction model. In addition, the authors showed that the training dataset formulated from the temporal data (which includes vital signs and medical scores) based on the qSOFA medical scoring system has the clusters which correspond to each severity level in qSOFA score. Finally, it is found that RAndom k-labELsets multi-label classification performs better prediction of severity level compared to neural network-based multi-label classification.

Originality/value

This paper helps in identifying patient' clinical status.

Keywords

Citation

Olivia, D., Nayak, A., Balachandra, M. and John, J. (2020), "A classification model for prediction of clinical severity level using qSOFA medical score", Information Discovery and Delivery, Vol. 48 No. 1, pp. 41-77. https://doi.org/10.1108/IDD-02-2019-0013

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles