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Abstract
Purpose – Current methods for flow field reconstruction mainly rely on data-driven algorithms which
require an immense amount of experimental or field-measured data. Physics-informed neural network (PINN),
which was proposed to encode physical laws into neural networks, is a less data-demanding approach for
flow field reconstruction. However, when the fluid physics is complex, it is tricky to obtain accurate solutions
under the PINN framework. This study aims to propose a physics-based data-driven approach for time-
averaged flow field reconstruction which can overcome the hurdles of the above methods.

Design/methodology/approach – A multifidelity strategy leveraging PINN and a nonlinear information
fusion (NIF) algorithm is proposed. Plentiful low-fidelity data are generated from the predictions of a PINNwhich
is constructed purely using Reynold-averaged Navier–Stokes equations, while sparse high-fidelity data are
obtained by field or experimental measurements. The NIF algorithm is performed to elicit a multifidelity model,
which blends the nonlinear cross-correlation information between low- and high-fidelity data.

Findings – Two experimental cases are used to verify the capability and efficacy of the proposed strategy
through comparison with other widely used strategies. It is revealed that the missing flow information within
the whole computational domain can be favorably recovered by the proposed multifidelity strategy with use
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of sparse measurement/experimental data. The elicited multifidelity model inherits the underlying physics
inherent in low-fidelity PINN predictions and rectifies the low-fidelity predictions over the whole
computational domain. The proposed strategy is much superior to other contrastive strategies in terms of the
accuracy of reconstruction.

Originality/value – In this study, a physics-informed data-driven strategy for time-averaged flow field
reconstruction is proposed which extends the applicability of the PINN framework. In addition, embedding
physical laws when training the multifidelity model leads to less data demand for model development
compared to purely data-driven methods for flow field reconstruction.

Keywords Flow field, Reconstruction, Physics-informed neural network, Multifidelity model,
Nonlinear information fusion

Paper type Research paper

1. Introduction
Investigating the flow field around structures has become a major task in wind engineering
nowadays, as it directly affects the pressure distribution on structure surfaces (Li et al., 2019;
Gao et al., 2021; Liu et al., 2022) and the thermal environment in their surroundings (Tian
et al., 2020; Nugroho et al., 2022). Relevant studies have been carried out on investigating the
flow fields around civil structures such as buildings (Flaga et al., 2018; Kim et al., 2021),
bridges (Chen et al., 2016; Zhou et al., 2018; He et al., 2019) and high-speed rail tunnels (Chen
et al., 2017a; Chen et al., 2017b; Li et al., 2022). Numerical simulations based on
computational fluid dynamics (CFD) techniques were widely used in previous works to
obtain the flow field (Liu et al., 2018; Ntinas et al., 2018; Chen et al., 2022). However, as a side
effect of the high-accuracy requirements, the CFD modeling is highly time-consuming and
expensive to implement (Ding et al., 2019; Wakes et al., 2021). Also, additional computational
resources are needed for parametric analysis and model optimization (Penwarden et al.,
2022) during the numerical simulations. Thus, an important issue in constructing flow fields
is to seek a balance between accuracy and cost.

To achieve this compromise, numerous investigations have been conducted on
reconstructing the flow field within the entire computational domain using a small sampling
of high-fidelity data. For example, Abrahamson and Lonnes (1995) adopted the least-squares
method to reconstruct the vorticity fields based on direct numerical simulation (DNS) data.
Although the result of the least-squares method is close to the averaged field, it ignores
details of local flow features, and, therefore, is not conducive to local characteristic analysis
of the flow field. In addition, this method requires thousands of high-fidelity data points to
reconstruct a flow field (Kim andMoon, 2022), which remains a heavy burden in engineering
practice.

Flow field reconstruction can also be achieved by incorporating machine learning
algorithms such as various neural network paradigms (Kong et al., 2021; Pruvost et al., 2001)
rebuilt the complex flow features and mean velocity components in the flow field based on a
radial basis function neural network using sparse experimental data. Nevertheless, as the
structure and flow field become more complex, the reconstruction of flow characteristics
also requires a huge cost to acquire sufficient amounts of data (Liu et al., 2011; Ladický et al.,
2015; Löhner et al., 2021). In addition, as is well known, the internal flowwithin the flow field
is controlled by the Navier–Stokes (NS) equations, which means the flow characteristics are
restrained by the underlying physical rules (Sun et al., 2018; Ershkov et al., 2021). However, a
purely data-driven approach for flow field reconstruction may yield results that are even
contrary to some basic physical principles (Lu et al., 2021).

Machine learning, especially deep learning, has been rapidly evolving over the last
couple of decades and has begun to play a predominant role across a variety of scientific
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disciplines (Hu et al., 2020; Eivazi et al., 2022; Jahromi et al., 2022). Due to its groundbreaking
approximation capabilities in solving partial differential equations (PDEs) (Xiang et al.,
2022), deep learning has become increasingly popular in the field of fluid dynamics. One of
the deep learning methods which enables flow field reconstruction is the physics-informed
neural network (PINN) proposed by Raissi et al. (2019). PINN recognizes the laws of physics
when solving PDEs, which breaks the current deadlock of conventional machine learning
methods that are confined to data-driven modeling (Lu et al., 2021; Sun et al., 2021). In other
words, PINN frees machine learning methods from their dependence on a large demand for
experimental or field-measured data (Rao et al., 2020), thus, offering a promising alternative
to solving real-world problems (Rui et al., 2023; Hasanuzzaman et al., 2023). In addition, as
aforementioned, extrapolation or observation bias may lead to poor generalization
performance for purely data-driven models, and as a result, predictions by such models may
not be physically consistent. PINN, on the other hand, uses the residuals of the physical
governing equations to form a loss function for neural network training, which serves as a
penalty to restrict the space of feasible solutions. PINN can also combine traditional physical
models with sparse high-fidelity measurements to reconstruct flow fields (Karpatne et al.,
2017; Eivazi and Vinuesa, 2022), which has been a research hotspot and attracted
tremendous attention in recent years (Wang et al., 2021; Wang et al., 2022). For instance,
Arzani et al. (2021) applied the PINN strategy to near-wall blood flow reconstruction, which
incorporated the fluid governing functions and sparse internal data into the loss function.
The numerical results demonstrated the consistency of PINN predictions with the results
from conventional CFD methods. Jin et al. (2021) established PINN models to reconstruct
laminar and turbulent flows based on NS equations and sparse velocity data on domain
boundaries. These PINN-related investigations demonstrate its ability in flow field
reconstruction, as well as its generalization capability with fewer training data while
remaining accurate. Nevertheless, the limitations of this approach also result in an
impediment to the development of its engineering applications, including computational
cost and difficulty in dealing with complex problems (Goswami et al., 2020).

To overcome the disadvantages of the above methods, a multifidelity physics-informed
data-driven strategy for time-averaged flow field reconstruction is proposed in this article.
First, an approximate low-fidelity flow field is obtained from the PINN prediction, which
uses Reynold-averaged NS (RANS) equation as the governing function. The RANS equation
is the time-averaged form of the NS equation. Central to it is Reynolds decomposition, which
separates a transient flow quantity into a time-averaged component and a fluctuating
component. It transforms the unsteady turbulent problem into a steady problem, which
greatly reduces the computational cost. In engineering practice, the RANS equation has
already become the most commonly used fluid governing equation. Second, sparse field or
experimental measurements are used as high-fidelity observations. The nonlinear
information fusion (NIF) algorithm proposed by Perdikaris et al. (2017) is then adopted to
establish a multifidelity Gaussian process (GP) model for flow field reconstruction. The
nonlinear cross-correlations between low-fidelity approximations and high-fidelity
observations are extracted to train the multifidelity GP model and make high-fidelity
predictions using the NIF algorithm. Two case studies regarding time-averaged flow field
reconstruction are presented to verify the feasibility of the proposed method, including a
flow past a hill and a flow past a square cylinder. We also compare the performance of the
proposed strategy with other commonly used methods. The results demonstrate that the
multifidelity model has superior accuracy in approximating measurement data in the two
cases.
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The proposed strategy greatly extends the applicability of the physics-based PINN
framework, where the PINNmodel is only used for low-fidelity modeling which requires less
accuracy. Furthermore, the embedded physical laws provide essential guidance in
multifidelity modeling which results in less data demand in flow field reconstruction
compared with purely data-driven methods. The remainder of this article is organized as
follows. Section 2 presents the PINN methodology for solving RANS equations and the NIF
algorithm for multifidelity modeling. In Section 3, we demonstrate the performance of our
proposed strategy for flow field reconstruction in two two-dimensional (2 D) turbulent flow
cases. Main conclusions are drawn in Section 4.

2. Methodology
2.1 Physics-informed neural network for solving Reynold-averaged Navier–Stokes equations
In this study, PINN is constructed to yield approximate solutions to the 2D RANS equations.
The RANS equations for simulating turbulent flows are expressed as:

@r

@t
þ @

@x
ruið Þ ¼ 0 (1)

@
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ruið Þ þ @

@xj
ruiujð Þ ¼ � @p
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þ @
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þ @uj
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� �� �
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�ru0
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0
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� �
(2)

where r is the density of the fluid, m is the laminar viscosity, ui is the time-averaged velocity
component in the xi direction, p is the time-averaged pressure and �ru0

iu
0
j is the Reynolds

stress.
PINN is a kind of deep neural network that takes the residual of physical constraints as

the loss function. During the calculation, there will be thousands of collocation points
scattered inside or on the boundaries of the computational domain of the governing
equations, which are used to compute the residuals of the governing equations and
boundary conditions. These residuals are further embedded in the loss function of the neural
network, and they tend to converge toward zero during the training process with the aid of
an optimizer. The schematic diagram of PINN that we construct for flow field reconstruction
is depicted in Figure 1. The left part of the PINN is a fully connected neural network that

Figure 1.
PINN framework for
flow field
reconstruction
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maps the relationship between spatial coordinates (x, y) and the characteristics of the flow
field (w, p), here w represents the stream function which contains the velocity information,
while p represents the pressure.

It is noteworthy that here we adopt stream function instead of velocity to force the fluid
continuity equation as a hard constraint. The relationship between the stream function and
fluid velocity components is described as:

u ¼ @w

@y
(3)

v ¼ � @w

@x
(4)

where u and v are the velocity components in the x- and y-directions, respectively. Using the
stream function as the output of a PINN in 2D scenarios can make the fluid continuity
equation a hard constraint that is compelled to satisfy in flow simulations. In the middle part
of the PINN framework, automatic differentiation (AD) is applied to calculate the gradients
of the outputs with respect to the inputs, which plays a significant role in the neural network
training process (Baydin et al., 2018). The right part of the PINN framework is the loss
function, which is calculated as:

L ¼ wfLf þ wbLb (5)

where:

Lf ¼ 1
Nf

XNf

n¼1

X2
i¼1

jf ni j2 (6)

Lb ¼ 1
Nnb

XNnb

i¼1

jrinbj2 þ
1
Ndb

XNdb

i¼1

jridbj2 (7)

In the above expressions, Lf and Lb denote the loss components corresponding to the
residuals of the governing equations and boundary conditions, respectively; wf and wb

denote the weighting coefficients of the corresponding loss terms; f ni is the residual of the ith
governing equation as shown in Figure 1; rinb and ridb are the residuals for the Neumann
boundary and Dirichlet boundary, respectively; Nf is the number of collocation points used
to calculate the residuals of the governing equations, while Nnb and Ndb are the numbers of
collocation points used to calculate the residuals for the Neumann boundary and Dirichlet
boundary, respectively. It is worth mentioning that training the PINNmodel requires neither
labeled data nor numerical solution to the RANS equations.

2.2 Nonlinear information fusion algorithm for multifidelity modeling
The NIF algorithm proposed by Perdikaris et al. (2017) enables us to combine low-fidelity
models with small amounts of high-fidelity observations for multifidelity modeling, which
mainly relies on the principled framework of GP regression. Here we define fh and fl as the
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GPs that model the data on the high and low-fidelity levels, respectively. In the NIF
algorithm, fh is expressed in the following form:

fh xð Þ ¼ gh x; f�l xð Þ� 	
(8)

where gh �GP f hj0; kh x; f*l xð Þ� 	
; x0; f*l x0ð Þ� 	

; uh

� �� �
; f*l(x) is the GP posterior from the

low-fidelity level; and uh is the hyperparameter. The kernel kh is a covariance kernel which
can be decomposed as:

kh ¼ khr x;x
0
; uhr

� �
� khf f*l xð Þ; f*l x 0ð Þ; uhf

� �
þ khd x;x

0
; uhd

� 	
(9)

Here, khr , khf and khd are covariance functions which take the squared exponential form with
automatic relevance determination weights (Rasmussen, 2004). uhr , uhf and uhd are
hyperparameters. We can observe that the NIF algorithm generates the high-fidelity model
as a function of the input coordinates x and the output of the low-fidelity model f*l(x). In
other words, it jointly relates the input space and the posterior prediction of the low-fidelity
model to the output of the high-fidelity model. Also, the covariance kernel in equation (9)
blends the contributions of both x and f*l(x), which helps to capture the nonlinear
nonfunctional space-dependent cross-correlations between the low-fidelity and high-fidelity
models.

The hyperparameters are optimized by minimizing the negative log marginal likelihood
(NLML) of the GPmodel, which is described as:

NLML ¼ 1
2
logjK j þ 1

2
yTK�1yþ n

2
log2p (10)

whereK is the kernel function, y is the training target and n is the dimension of input space.
After the hyperparameters are elicited, the posterior prediction of the high-fidelity model at
a test point (x*, f*l)(x*) is given by:

p f�h x�ð Þ� 	 ¼ ð
p fh x�; f�l x�ð Þ� 	jyh;xh;x*
� 	

p f*l x�ð Þ� 	
dx� (11)

Notice that Monte Carlo simulation is used here to obtain the posterior distribution of the
high-fidelity model. This is because only the low-fidelity model is a standard GP regression
with parametric input data points, and its posterior prediction follows a Gaussian
distribution. Whereas the high-fidelity model is a GP regression model with the input of the
posterior prediction from the low-fidelity model. As a result, the posterior distribution of the
high-fidelity model is no longer Gaussian. In view of this, Monte Carlo integration is pursued
on equation (11) to calculate the posterior mean and variance of the high-fidelity model.

2.3 Workflow of the proposed strategy
The workflow of the proposed multifidelity flow field reconstruction method is summarized
as follows:

Step 1: A PINN is trained using the RANS equations. The residuals of the governing
equations and boundary conditions at sampled collocation points are embedded in the loss
function to train the PINNmodel.
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Step 2: An immense amount of labeled data, needed for low-fidelity GP modeling, is
generated from the PINNmodel within the computational domain. The hyperparameters in the
low-fidelity GP model are optimized by minimizing the NLML of equation (10). At last, the
posterior mean and variance of the low-fidelity standard GP regressionmodel are calculated.

Step 3: The high-fidelity GP regression model in equation (8) is established based on the
posterior prediction of the low-fidelity model and small amounts of high-fidelity
observations. The hyperparameters of the high-fidelity GP model are optimized by
minimizing the NLML of equation (10), which uses the kernel function of equation (9).

Step 4: The posterior mean and variance of the high-fidelity GP model are evaluated by
Monte Carlo integration on equation (11), which uses the posterior mean and variance of the
low-fidelity standard GP regressionmodel obtained in Step 2.

3. Results and discussions
3.1 Case 1: flow past a hill (Reynolds number: 6� 104)
The data used in the first case study, which are open to all fluid dynamicists around the
world, were obtained by Almeida et al. (1993) in an experimental study. In the experiment, a
fully developed channel flow passed through a single hill at the location of 6m along the
flow direction from the tunnel inlet. Meanwhile, the time-averaged flow velocities in both
horizontal and vertical directions around the hill were measured, which will serve as a test
database to verify the feasibility of our proposed multifidelity flow field reconstruction
method. In this case study, we aim to reconstruct the mainstream velocity of the channel
flow by using the low-fidelity PINN predictions and the high-fidelity experimental
measurements under themultifidelity modeling strategy.

Making use of the RANS equations and boundary conditions, we first formulate a PINNwhich
can offer solution to the two-dimensional (2D) time-averaged flow field around the hill. It can be
seen in equation (2) that the introduction of the Reynolds stress terms makes the RANS equations
no longer a closed-form system of equations. To close the RANS equations, Chen’s model (Chen
andXu, 1998) is adoptedwhich assumes the Reynolds stress terms can be expressed as:

�ru0
iu

0
j ¼ mt

@ui
@xj

þ @uj
@xi

� �
¼ 0:03874rvl

@ui
@xj

þ @uj
@xi

� �
(12)

where v is the local velocity and l is the distance from the nearest wall. Then, PINN is
formulated to solve the Chen’s model-based RANS equations. We adopt the same
computational domain configurations recommended by Casey and Wintergerste (2000)
except that the downstream boundary is defined as a zero-pressure outlet. More details
about the computational domain for PINN formulation are shown in Figure 2. A deep neural
network containing 6 hidden layers and 40 neurons per layer is adopted to map the
relationship between spatial coordinates (x and y) and flow characteristics (w and p). Tanh
andAdam with a learning rate of 3� 10�4 are used as the activation function and optimizer
in training the neural network. One hundred equally spaced collocation points inside the
domain are sampled along the x-axis and y-axis, respectively. A lattice of collocation points
with a 100� 100 size is, thus, generated. Among these points, 254 points are located inside
the 2D hill and, hence, they are excluded, thus, resulting in the number of collocation points
being 9,766 inside the domain. Meanwhile, there are four distinct boundaries in this case,
which are an inlet boundary, an outlet boundary, a symmetry boundary and a wall
boundary (2D hill surface and the ground). On each boundary, 500 equally spaced
collocation points are sampled (on the wall boundary, the projections of the distances
between collocation points along the x-axis, instead of the distances themselves, are equal).
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Thus, there are 2,000 collocation points on the domain boundaries to calculate the residuals
of boundary conditions.

More specifically, the residuals of the Chen’s model-based RANS equations calculated at the
9,766 domain collocation points form the loss term Lf defined in equation (6), and the residuals of
the boundary conditions calculated at the 2,000 boundary collocation points form the loss term Lb
defined in equation (7). Byminimizing these physical constraints, the configured PINN realizes its
function of offering approximate solutions to this flow problem. The PINN predictions of the
velocity component u after 1� 105 training iterations are shown in Figure 3(a), which are
depicted as an orange-curved surface, compared with the red dots which represent the

Figure 3.
Prediction of u using
the low-fidelity model
in Case 1: (a) general
view; and (b) the
velocity contour
compared with the
experimental
counterpart (absolute
error¼ prediction�
experimental result)

Figure 2.
Computational
domain of the flow
past a 2D hill
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experiment measurements. Figure 3(b) depicts the contour of the velocity component u based on
the PINN prediction, which is also compared with the reference data from the experiment. As can
be seen in Figure 3, there exists a significant difference between the PINN predictions and the
experimental results.

We can easily draw a conclusion from Figure 3 that, without incorporatingmeasurement data
to train the PINN, its solution can only be viewed as low-fidelity approximation. To establish the
proposed multifidelity model for predicting flow field around the 2D hill, we then select 900
uniformly distributed low-fidelity sampling points (labeled data) generated by the PINN
prediction. Meanwhile, among the total 325 experimental measurement points scattered in the
computational domain, we pick up 35 points and consider the measured mainstream velocities at
these points as high-fidelity training data. The spatial coordinates of the 35 high-fidelity training
points are shown in Table 1. In selecting the training points, we abide by the principle of
distributing the training points over thewhole computational domain as evenly as possible.

Then, the NIF algorithm is implemented to establish the multifidelity model. We first train a
GP regression model by using the low-fidelity data to acquire the Gaussian predictive posterior
distribution of the mainstream velocity component u on the low-fidelity level. Wemaximize the
marginal log-likelihood to seek optimal hyperparameters by using L-BFGS optimizer with the
randomized restart strategy. Once acquiring the Gaussian posterior distribution on the low-
fidelity level, we proceed to formulating the high-fidelity GP regression model according to
equation (8). The negative marginal log-likelihood defined in equation (10) on the high-fidelity
level is maximized to optimize the hyperparameters. After the model is fully trained, we get the
posterior distribution of the mainstream velocity component u on the high-fidelity level using
Monte Carlo integration. The prediction results of the velocity component u using the proposed
multifidelity model are first shown in Figure 4(a). In this figure, the green-curved surface
represents the prediction of the mainstream velocity component u obtained by the multifidelity
model. The yellow curved surface denotes the low-fidelity data generated by the PINN
prediction. The red dots are the experimental results of themainstream velocity component u at
all measurement points. In general, the low-fidelity data (PINN predictions) and the predictions
by the multifidelity model show a similar trend within the whole computational domain;
however, the latter is much closer to the experimental results. This is because the NIF
algorithm can precisely capture the nonlinear nonfunctional space-dependent cross-correlations
between the low-fidelity and high-fidelity data. As a result, the multifidelity model can learn
from the trend of the low-fidelity PINN predictions to fit the scattered data points on the high-
fidelity level. In other words, scattered (sparse) data points on the high-fidelity level are used to
correct the low-fidelity prediction surface, while the trend of the low-fidelity surface stemming
from the physical law is preserved to the greatest extent. The velocity contours of u from the
multifidelity model predictions and from the experimental results are compared in Figure 4(b).

Table 1.
Spatial coordinates of

the high-fidelity
points used to
formulate the

multifidelity model

x Coordinate (m) �0.050 0.050 0.150 0.300 0.500

y Coordinate (m) 0.006 0.002 0.001 0.001 0.001
0.015 0.015 0.015 0.016 0.016
0.030 0.030 0.030 0.030 0.030
0.070 0.070 0.070 0.070 0.070
0.100 0.100 0.100 0.100 0.100
0.130 0.130 0.130 0.130 0.130
0.160 0.165 0.165 0.165 0.165

Source: Table by authors
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The absolute error is much lower than that of the low-fidelity model which is illustrated in
Figure 3(b).

Figure 5 provides a more detailed comparison of the results between the multifidelity model
predictions and the high/low-fidelity data on 12 vertical lines within the computational domain.
We can easily discover that the multifidelity model predictions show good consistency with the
experimental measurements in the whole computational domain. Compared with other lines,
better results are achieved on the lines x ¼ �0.050m, x ¼ 0.050 m, x ¼ 0.150 m, x ¼ 0.300 m
and x ¼ 0.500 m because the 35 high-fidelity training data points are positioned there. On the
other lines, the multifidelity model yet demonstrates competitive results, especially when being
comparedwith the PINN predictions.We further quantitatively evaluate the performance of the
proposed multifidelity model in Table 2, through comparison with other two widely used
strategies for flow field reconstruction, i.e. data-driven PINN and conventional perceptron
neural network (PNN). In the data-driven PINN strategy, we not only embed the physical
governing equations and boundary conditions into the total loss but also concurrently embed
the 35 high-fidelity training data (Table 1) into the PINN training process. For consistency, the
configuration of the data-driven PINN is the same as that of the PINN we used to train the low-
fidelity model. In the PNN paradigm, we simply conduct a regression task using only 35 high-
fidelity training data points. A PNN configuration with only one hidden layer which contains
10 neurons is adopted, while the L-BFGS optimizer with a learning rate of 5� 10�4 is adopted
to train the neural network. As shown in Table 2, we use the ‘2 error to quantify the prediction
accuracy, which is defined as:

l2 error ¼ kU i � ~U ik2
kU ik2

� 100% (13)

Figure 4.
Prediction of u using
the multifidelity
model in Case 1: (a)
general view; and (b)
the velocity contour
compared with the
experimental
counterpart (absolute
error¼ prediction�
experimental result)
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where k·k2 denotes the ‘2-norm, Ui denotes a vector of the reference data and ~Ui denotes a
vector of the predictions. From Table 2, we can see that our proposed multifidelity flow field
reconstruction model offers the minimum ‘2 error among the three strategies, which is only
9.8%. In comparison, the results obtained from the data-driven PINN strategy are much

Figure 5.
Comparison of the
results between the
multifidelity model
predictions and the

high/low-fidelity data
on 12 vertical lines in

Case 1

Table 2.
Performance of

different flow field
reconstruction

strategies

Multifidelity model Data-driven PINN PNN

‘2 Error 9.8% 24.6% 55.3%
Computing time (s) 2.3� 104 2.3� 104 4.1� 101

Source: Table by authors
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worse, which leads to an ‘2 error of 24.6%. Using a PNN to reconstruct the flow field is the
fastest strategy in terms of computing time, the relative error is unbearable when comparing
its predictions with the experimental measurements. With a computing time of 41 s, the ‘2
error reaches up to 55.3% when the PNN strategy is adopted to reconstruct the flow field
using the 35 high-fidelity training data points. We have to admit that the computational cost
of the PINN-related strategy may become a stumbling block to its wide application.
Considering a PINN with 6 hidden layers, each with 40 neurons, it usually takes around
2.3� 104 s for its training process with 1� 105 iterations when using the Adam optimizer,
which would be a heavy burden in engineering applications. For the multifidelity model, it
takes additional 53 s for multifidelity modeling in considering that the low-fidelity PINN
model can be fully trained off-line because no measurement data is needed in this process.
Based on the above comparisons, it can be concluded that our proposed multifidelity model
demonstrates the most competitive performance for reconstructing the flow field around the
2D single hill without considering computing resources. It is worth noting that the
experimental data of v are unevenly distributed and insufficient to support multifidelity
modeling in this case, so we did not address the velocity component in y-direction.

3.2 Case 2: flow past a square cylinder (Reynolds number: 2� 104)
The data used in the second case study are from the experiment conducted by Lyn and Rodi
(1994), which describe a turbulent flow around a 2D square cylinder, as shown in Figure 6.
The computational domain is 0.44m in length and 0.32m in width, while a 0.04m� 0.04 m
square cylinder is located at the left center of the computational domain. Point A is the
bottom left corner of the square cylinder, whose spatial coordinate is (0.10, 0.14) as shown in
Figure 6. The left boundary of the computational domain is defined as an initial speed
boundary, where the fluid velocity stabilizes at 0.535m/s. The upper and lower boundaries
are defined as symmetry boundaries, while the right boundary of the computational domain
is assigned a zero-pressure outlet. The surfaces of the square cylinder are considered as wall
boundaries, where the fluid velocity equals zero. In the experiment, there were 517

Figure 6.
Computational
domain of the flow
passing a 2D square
cylinder
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measurement points that captured the time-averaged flow velocity components u and v
inside the flow field.

Case 2 differs from Case 1 in two aspects. First, the most intuitive aspect is the different
geometric appearances. Second, for comparison with Case 1, both the components v and u at
selected measurement points are used to formulate the multifidelity model in Case 2. Among
the 517 experimental measurement points, we pick up 36 points scattered on 9 individual
vertical lines to train the multifidelity model for time-averaged flow field reconstruction.
Their spatial coordinates are shown in Table 3. In selecting training points, we still abide by
the principle of distributing the training points over the whole computational domain as
evenly as possible.

The objective of Case 2 remains to apply all available physical restrictions and sparse
measurement information to reconstruct high-fidelity mainstream velocity u over the
entire computational domain. In Case 2, we compare the performances of five schemes to
achieve this objective. In the first three schemes, the NIF algorithm and sparse u
measurements are used in training the multifidelity model. The only difference between
these three schemes is the low-fidelity data source. A PINN without training data (purely
physics-based), a PINN with v embedded in its training process and CFD are used as the
low-fidelity data sources, respectively. The fourth scheme is a data-driven PINN where
both u and v are used to train the neural network, while the NIF algorithm is not engaged
in this scheme. The fifth scheme is a PNN like what was built in Case 1. The five schemes
are described in Table 4.

Considering the multiple sources of low-fidelity data in this case study, we delve further
into the details of the PINN and CFD frameworks separately. For the PINN framework, its
configuration remains the same as that in the previous case except that only 108 collocation
points inside the 2D square cylinder are excluded, which ultimately leads to a total of 9,892
collocation points inside the domain. In addition, there are 50 equally-spaced boundary
collocation points on the initial speed boundary, zero-pressure outlet, upper symmetry
boundary, lower symmetry boundary and each of the four side surfaces of the 2D square
cylinder, respectively. Thus, a total of 400 boundary collocation points are used to calculate
the physical residuals in this case. For the CFD framework, the simulation of the time-
averaged flow field is performed based on the commercial software Star CCMþ in this

Table 3.
Spatial coordinates of

the high-fidelity
points used to train

the multifidelity
model

x Coordinate (m) 0.000 0.100 0.155 0.200 0.250 0.300 0.350 0.392 0.400

y Coordinate (m) 0.200 0.200 0.160 0.160 0.160 0.160 0.160 0.160 0.160
0.240 0.240 0.180 0.200 0.200 0.200 0.200 0.200 0.200
0.280 0.280 0.200 0.240 0.240 0.240 0.240 0.240 0.240
0.320 0.320 0.220 – – 0.280 – 0.280 0.280
– – – – – 0.320 – 0.320 0.320

Source: Table by authors

Table 4.
Five schemes for

flow field
reconstruction in

Case 2

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

PINNþ NIF v-embedded PINNþ NIF CFDþ NIF u- and v-embedded PINN PNN

Source: Table by authors
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study, and the mesh inside the computational domain consists of more than 36,484 cells. For
both PINN and CFD frameworks, the standard k–« model is adopted in RANS turbulence
modeling. In the standard k–« model, the Reynolds stress is described as follows according
to the Boussinesq assumption in 2D cases:

�ru0
iu

0
j ¼ mt

@ui
@xj

þ @uj
@xi

� �
� kdij (14)

where dij is the Kronecker delta function. Apart from the continuity equation and the
momentum equation, the kinetic energy equation and the dissipation equation (i.e. k-
equation and «-equation) are additionally introduced in the standard k–« turbulence model
to simulate turbulent behaviors. The k-equation and the «-equation can be described as
follows (buoyancy is neglected):
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where k is the turbulence kinetic energy, and « is the turbulent dissipation rate. Also, k, «
andmt satisfy the following relationship:

mt ¼ rCm
k2

«
(17)

and the values of the coefficients in the standard k–«model are provided in Table 5.
The prediction results of the mainstream velocity u from different schemes are depicted

in Figure 7, which are also compared with the experiment results. These velocity contours
show that Scheme 2, notably in the upstream region of the square cylinder, reconstructs the
fluid features most accurately and efficiently. This may be due to the fusion of measured
fluid features from the upstream regions in low-fidelity modeling in this scheme. Again, ‘2
error is used to quantitatively evaluate the accuracy of predictions from different models. As
shown in Table 6, the ‘2 error of Scheme 2 is the lowest among all the schemes, which is only
8.8% compared with the experimental results. In particular, when v-embedded PINN,
instead of CFD, is used as the low-fidelity data source, the ‘2 error decreases by 6.6%. This
is because measurement information has been included; compared to CFD, the simulation
results from v-embedded PINN are more accurate. However, when field information is
unavailable, the precision of the PINN’s prediction drops dramatically. This results in the ‘2
error of Scheme 1 being 18.1%, which is the worst among the multifidelity models. We

Table 5.
The values of the
coefficients in the
standard k–«model

Coefficient Cm C1« C2« sk s«

Value 0.09 1.44 1.92 1.0 1.3

Source: Launder and Sharma (1974)
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observe the significance of physical information fusion in neural network modeling, which
results in an improved accuracy by 13.6% for Scheme 4 over Scheme 5. Meanwhile, it is
worth mentioning that the modeling process in all PINN-involved schemes (i.e. Schemes 1, 2
and 4) is time-consuming, compared to CFD, because of involving the training of PINN.
However, once the model has been fully trained, it can quickly predict wind velocity at any
point within the computational domain. In the multifidelity strategy, PINN-based low-
fidelity models can be fully trained off-line. Thus, its training cost is not a critical concern.
Once we obtain measurement data, the multifidelity modeling can be completed in just a few
seconds.

4. Conclusions
In this paper, we proposed a novel time-averaged flow field reconstruction strategy in the
framework of multifidelity modeling using PINN and the NIF algorithm. It can be viewed as
a two-step approach in which the low-fidelity data are generated by a PINN, while sparse
experimental or field measurement data are thought of as high-fidelity data which, in
conjunction with PINN-generated low-fidelity data, are used to formulate a multifidelity
model by means of the NIF algorithm. A flow past a hill and a flow past a square cylinder
were used to verify the capability of the proposed multifidelity strategy, and the results
demonstrated its efficacy for time-averaged flow field reconstruction. This study comes to
the following conclusions:

� Although only small amounts of measurement/experimental data are accessible for
reconstructing the time-averaged flow fields in both cases, the missing flow

Figure 7.
Prediction of u using
five schemes: (top)
prediction; (middle)
experimental result;

and (bottom) absolute
error

Table 6.
Performance of

different flow field
reconstruction

strategies

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

‘2 Error 18.1% 8.8% 15.4% 15.5% 29.1%
Computing time (s) 2.8� 104 2.8� 104 1.8� 103 2.8� 104 2.1� 101

Source: Table by authors
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information within the whole computational domain can be favorably recovered by
the multifidelity model.

� The predictions of PINN constructed purely using the RANS equations can only be
considered as low-fidelity data due to low prediction accuracy in both cases.
However, its trend (underlying physics) within the whole computational domain can
be inherited through PINN, while the high-fidelity yet sparse measurement data can
be used to rectify the low-fidelity prediction surface by implementing the NIF
algorithm. The multifidelity model elicited by the NIF algorithm can learn from the
trend of the low-fidelity PINN predictions to fit the scattered data points on the high-
fidelity level, thereby enabling the reconstruction of time-averaged flow fields with
high accuracy.

� Compared with other flow field reconstruction strategies, the proposed strategy
demonstrates the most competitive results. The relative errors of the mainstream
velocity component from the multifidelity prediction are less than 10% in both cases
relative to the experimental measurements. However, the modeling process in all
PINN-involved strategies is time-consuming because of involving the training of
PINN. Once the model has been trained, it can make predictions quickly.
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