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Abstract

Purpose – Radical changes in consumer habits induced by the coronavirus disease (COVID-19) pandemic
suggest that the usual demand forecasting techniques based on historical series are questionable. This is
particularly true for hospitality demand, which has been dramatically affected by the pandemic. Accordingly,
we investigate the suitability of tourists’ activity on Twitter as a predictor of hospitality demand in theWay of
Saint James – an important pilgrimage tourism destination.
Design/methodology/approach – This study compares the predictive performance of the seasonal
autoregressive integrated moving average (SARIMA) time-series model with that of the SARIMA with an
exogenous variables (SARIMAX) model to forecast hotel tourism demand. For this, 110,456 tweets posted on
Twitter between January 2018 and September 2022 are used as exogenous variables.
Findings – The results confirm that the predictions of traditional time-series models for tourist demand can be
significantly improved by including tourist activity on Twitter. Twitter data could be an effective tool for
improving the forecasting accuracy of tourism demand in real-time, which has relevant implications for tourism
management. This study also provides a better understanding of tourists’ digital footprints in pilgrimage tourism.
Originality/value – This study contributes to the scarce literature on the digitalisation of pilgrimage tourism and
forecasting hotel demand using a newmethodological framework based onTwitter user-generated content. This can
enable hospitality industry practitioners to convert social media data into relevant information for hospitality
management.
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Paper type Research paper

1. Introduction
Research on the use of social media and social networking sites in hospitality and tourism has
proliferated in recent years (Buhalis et al., 2017; Jamil et al., 2023; Kozak et al., 2018; Leung
et al., 2021; Sigala, 2015). Social media information enables the analysis of user behaviour
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(Bigne et al., 2016; K€uster Boluda et al., 2024; Nav�ıo-Marco et al., 2018; Payntar et al., 2021),
accelerates the knowledge transfer process, provides a direct link between users and
knowledge (Abdollahi et al., 2023; Rita et al., 2022) and helps analyse the relationship between
brand equity and social media intensity (Stojanovic et al., 2018).

Lately, it hasbeenused as adata source for estimating tourismdemand in avery incipientway.
Li et al. (2021), in their review of tourism and hospitality forecasting research using Internet data,
have identified only ten studies adopting social media data for forecasting. Since then, studies
using socialmedia data to improve predictions in the field of tourism have been increasing (e.g. Hu
et al., 2022; Li et al., 2022; Sulong et al., 2022). Regarding Twitter, Bign�e et al. (2019) have extracted
important relevant information from this application to determine how destination marketing
organisation (DMO) activities on Twitter affect hotel occupancy forecasting.

Assaf et al. (2022), in their investigation to establish an expert-informed agenda for future
research on tourism after COVID-19, have considered forecasting an area in which to progress,
including the use of scenario forecasts using judgemental and econometric methods based on
big data, tourismportals and socialmedia. Several scholars have observed that duringand after
the pandemic, tourist demand was seriously impacted and the traditional methods of
forecasting in these industries have become obsolete (Song and Li, 2021; Utkarsh and Sigala,
2021). Researchers have now begun to seek the best methods to predict the recovery of tourism
from the devastating effects of COVID-19 (Polyzos et al., 2020; Zhang et al., 2021).

The relationship between tourism and pilgrimages has been studied in a fragmentary
manner (Caber et al., 2021), despite the growing economic importance of this kind of tourism [1].
While motivations and experiences have been analysed (Terzidou et al., 2018), limited attention
has been paid to behaviour on online platforms and digital devices (de Ascaniis et al., 2019).

Accordingly, this study aims to fill the gap in the scarce literature on pilgrims’ use of social
networks and the suitability of user-generated data for accurately predicting hotel demand.
The contribution of this research is threefold. First, it evaluates Twitter as a tool for
predicting demand – in this case, for pilgrimage tourism to “theWay” – and provides insights
into the time lag between tweets and demand manifestation. Second, it sheds light on the
changes in hospitality demand and explores new forecasting approaches for estimating
tourism demand during tumultuous times. Additionally, it provides new data on the digital
footprint of pilgrimage tourism, an area where research is also very scarce.

As a research question, this study examines how hotel demand at a tourist destination can
be accurately predicted using Twitter data. Particularly, this study analyses an international
destination of special interest for pilgrimage tourism, namely, Santiago de Compostela, Spain.
Accordingly, we assess the predictive performance of the seasonal autoregressive integrated
moving average (SARIMA) time-series model with andwithout including the Twitter activity
of pilgrims, considering the lagged effect of Twitter data and external factors, such as the
Jubilee year in Santiago de Compostela. Accordingly, this study predicts tourism demand
from January 2018 to September 2022 (using 110,456 tweets posted).

The remainder of this study is structured as follows: Section 2 briefly reviews the
literature on techniques for forecasting tourism demand, use of social network data for
forecasting and digital footprint of pilgrimage tourism. Section 3 presents the empirical
analysis, including descriptions of the data and methodology. Section 4 presents and
discusses the results. Finally, Section 5 presents the conclusion, major theoretical and
managerial implications, study limitations and new avenues for future research.

2. Literature review
2.1 Tourism demand forecasting
Demand forecasting is essential for the hospitality and tourism sectors because of the
transient nature of tourism. Therefore, growing interest in tourism demand forecasting is
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reflected in the literature. Several studies have assessed the performance of different sources
of big data generated on the internet for forecasting tourism demand (Li et al., 2021; Mariani
and Baggio, 2022; Stylos et al., 2021).

Tourism demand forecasting studies have predominantly applied time-series and
econometric models. The most popular time-series analysis methods are autoregressive with
exogenous variables (ARX) (Choi and Varian, 2012; Li et al., 2017), autoregressive integrated
moving average (ARIMA) (Artola et al., 2015; Li et al., 2018), SARIMA (Qiu et al., 2021;
Wickramasinghe and Ratnasiri, 2021) and SARIMAX (Hu et al., 2022; Park et al., 2021)
models. Moreover, autoregressive distributed lag (ARDL) (Husein and Kara, 2020; Li et al.,
2020), time-varying parameter (TVP) (Smeral and Song, 2015) and dynamic factor (DFM)
(Camacho and Pacce, 2017) econometric models have also been widely employed in tourism
demand forecasting.

Time-series models have maintained increasing acceptance in the literature on tourism
demand forecasting studies (Huang and Zheng, 2023; Teixeira and Gunter, 2023; Wu et al.,
2023). This is mainly because of their ability to forecast future time series by identifying
historical patterns and capturing seasonality and trends in time series (Ma et al., 2023).
However, in recent literature, a trend has emerged to incorporate exogenous explanatory
variables into time-series models for predicting tourism demand (Hu et al., 2023; Jiao and
Chen, 2019; Li et al., 2023a). Thus, SARIMAX models have gained importance among
academics, especially after the COVID-19 pandemic. They improve the performance of pure
time-series forecasting models during turbulent periods and allow the incorporation of
exogenous variables with real-time information. For example, researchers have compared the
performance of SARIMAmodels with exogenous variables using information collected from
search engines (Li et al., 2023b;Wickramasinghe and Ratnasiri, 2021), online news (Park et al.,
2021) and online reviews (Hu et al., 2022; Li et al., 2023a, b). The results confirm that the
incorporation of this type of big data generated on the internet is useful for forecasting tourist
demand for destinations or companies.

2.2 Social media as a source of prediction data
Studies have demonstrated that social media data measures people’s attention and
sentiments and provides real-time insights to predict consumer demand in different
research areas, including economics and management. The main areas covered include the
following: (a) stock market performance accurately predicted based on investors’ opinions on
social media (Guan et al., 2022; Nofer and Hinz, 2015; Yang et al., 2020), (b) transport and
power demand predicted using real-time data from social media (Luna, Nunez-del-Prado,
Talavera andHolguin, 2017; Punel andErmagun, 2018; Roy et al., 2021) and (c) crude oil prices
predicted with social media data during periods of sharp fluctuations caused by conflicts or
political instability (Elshendy et al., 2017; Wu et al., 2021).

Regarding Internet-structured data in tourism, search engine data (Bangwayo-Skeete and
Skeete, 2015; Choi and Varian, 2012; Wu et al., 2022) and web traffic data (Gunter and €Onder,
2016) have been widely used to forecast tourism demand. Conversely, social media data are
unstructured and require crawler tools to collect and apply big data techniques for extracting
useful information from online textual data or images, thereby making them relatively less
popular (Li et al., 2021).

Focusing on Twitter, tourism studies have utilised this data source for sentiment analysis
to identify tourist preferences and opinions on tourist services (Nadeau et al., 2022; Philander
and Zhong, 2016), geographic information (Chua et al., 2016; Piramanayagam and Seal, 2022;
Xin and MacEachren, 2020), promotion of tourist attractions (Bokunewicz and Shulman,
2017; Meehan et al., 2016) and international trade show organisation (Geldres-Weiss et al.,
2023). However, only a few studies have analysed the usefulness of big data from Twitter to
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analyse tourism demand (e.g. Bign�e et al., 2019; Sulong et al., 2022; Yang et al., 2022) and define
management approaches and business responses to the COVID-19 pandemic in real-time
(Chen et al., 2023; Yang and Han, 2021).

Previous literature has recognised Twitter’s representativeness as a concern (Beninger
and Lepps, 2014), but some authors recognise its interest if a contextual interpretation is
made (Tromble, 2019). Twitter data differ in nature from data collected through traditional
quantitative methods, such as surveys or experiments (Chen et al., 2022). Survey data are
controlled and designed by researchers, while social media data can be considered organic
data (Groves, 2011). The concept of organic data refers to data that are not collected following
an explicit research design but documented using a technology that collects natural “digital
footprints” of human activities, such as data from sensor devices, mobile applications or
online social networks (Xu et al., 2020).

According to Xu et al. (2020), the advantages of these data coexist with challenges
regarding data quality that researchers must consider because of their organic nature. First,
data quality is more likely to be guaranteed in surveys and experiments because researchers
have more control over which participants are recruited and what questions to ask. However,
the emergent nature of social media discussions offers researchers opportunities to identify
new perspectives and frameworks not previously identified (Kla�snja et al., 2018). Although
researchers have more control over the data generation process in surveys and experiments,
it is expensive to collect surveys. Furthermore, organic data generated on social networks
allows information to be extracted in real-time. Traditionally, hotel demand forecasts have
been based solely on government statistical reports published annually or monthly (Huang
et al., 2017). Nevertheless, hospitality industry professionals need up-to-date information to
adjust to changes in tourism demand in real-time and achieve greater efficiency in the sector.

Newness is a strength of social media data, which is especially useful for studying
emerging topics. The novelty of the data brings with it a data quality challenge that requires
researchers to developmethods to indirectly assess user characteristics, such as user identity
and motivations. Similarly, numerous authors have indicated that the pandemic has called
into question traditional forecasting methods because data from official sources with
guaranteed representativeness are not available in real-time, which makes it even more
interesting to explore new data sources that are open and original, as done in this study.

2.3 Pilgrimage tourism’s digital footprint
Literature on the digital aspects of pilgrimage tourism is scarce, recent and focused on human
mobility (Barnett et al., 2016). De Ascaniis et al. (2019) have reviewed 13 academic papers and
identified the following four themes: the adoption of information and communication
technology (ICT) by religious travellers, usage and functionalities of mobile applications,
online travel reviews to understand visitors’ experiences at religious sites and online
transmission of religious mass events. Research interest in religious tourists’ behaviour on
digital platforms, such as social media and social networking sites, remains incipient. Caber
et al. (2021) have identified a few early works, such as Haq and Jackson (2009) investigating
the impact of ICTs on religious tourists’ perceptions and Park et al. (2015) surveying
American participants to gauge their interest in visiting pilgrimage destinations and
willingness to share their experiences on social networking sites.

“The Way” is a pilgrimage tourism destination that generates both religious and tourist
interest worldwide (L�opez et al., 2017). Vila et al. (2020) have indicated that religious or
spiritual motivation is present but interlinked with other motivations, such as heritage,
culture and experience. “The Way” is an international and multiconfessional space where
pilgrims and tourists interact to co-create the route’s postmodern identity and personality
(L�opez and Lois Gonz�alez, 2020). Pilgrims in “the Way” benefit from using mobile phones
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while walking (Antunes and Amaro, 2016; Nickerson et al., 2014). Fern�andez-Poyatos et al.
(2012) have studied the presence of “the Way” on regional tourism websites in Spain, while
V�azquez et al. (2020) have analysed the usage and effectiveness of Facebook fan pages of
institutions in Spanish regions through which the French Way of Saint James passes for
tourism promotion. No other research has been conducted on social media use pertaining to
this topic.

Pilgrimage tourism, gaining popularity since the COVID-19 outbreak, has demonstrated
great resilience during the pandemic (Lin andHsieh, 2022;Mittal and Sinha, 2021). As outdoor
activities, pilgrimage routes can provide a safe environment and improve tourist well-being,
offering an alternative to mass tourism (Lin et al., 2022). Therefore, tourist destinations have
used religious tourism as a key market segment to mitigate disruptions in tourism demand
caused by the COVID-19 pandemic (Mittal and Sinha, 2021). In fact, pilgrimage tourism is
positioned as a novel travel trend in tourism in the “new normal” (Campos et al., 2022). This
makes research that combines tourist demand, social media and pilgrimage tourism
particularly interesting.

3. Empirical analysis
3.1 Data
Pilgrimage tourism is in a state of rejuvenation and is gaining importance among various
tourism segments (Collins-Kreiner, 2020). This empirical analysis investigates the
relationship between the digital footprint of pilgrims on “the Way” and hotel tourism
demand for Santiago de Compostela. This is a major European pilgrimage itinerary
recognised as the first European Cultural Route by the Council of Europe. Figure 1 presents
the international dimensions of Santiago de Compostela as a tourist destination in 2019 (the
year before the COVID-19 pandemic). Graph A reveals that foreign tourism represents 45.5%
of the total hospitality demand, whereas Graph B reveals the distribution of international
tourism demand by country of origin. The USA, Italy, Germany, Portugal, France and the UK
generated 55.5% of international tourism demand.

Figure 2 depicts the framework used in this study to predict tourism demand in Santiago
de Compostela based on big data generated on Twitter by pilgrims to the Saint James Way.
It presents the data sources, data collection, model specifications and processes used in the
empirical analysis.
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As shown in Figure 2, the tourism demand for Santiago de Compostela is measured using the
total number of tourists staying in hotel accommodations (TOUR). Monthly tourist arrivals
are collected from the Hotel Occupancy Survey (HOS), published by the Spanish National
Statistics Institute (INE) since 1996. It provides disaggregated information on travellers by
country of origin and destination (regions, provinces and tourist sites). Thismeasure includes
the total number of travellers arriving by any means of transportation and staying in an
establishment that provides hotel accommodation services (hotels, aparthotels, motels,
hostels, B&Bs, pensions and guesthouses).

Figure 2 shows the digital footprint of tourists on Twitter as a secondary source of data.
A crawler created with the programming language Python is used to extract the digital
footprints of tourists onTwitter. Specifically, a script is designed to collate tweets postedwith
target hashtags using Twitter API V2. As Santiago de Compostela is an international
pilgrimage destination, the decision to use hashtags was supported by an exhaustive search
for hashtags related to tourism. Previous literature has supported the idea that the use of
hashtags onTwitter is a powerful and helpful source of data (Geldres-Weiss et al., 2023;Wang
et al., 2016). According to Carvache-Franco et al. (2023), using hashtags to gather information
is advantageous because it allows the concentration of users’ opinions on a specific topic.
Although the use of hashtags may exclude some data, it also helps avoid irrelevant data.

Model Specification
SARIMASARIMAX

Cleaning and monthly 

distribution of Tweets 

volume

Processing data and 

variable creation

International and domestic tourists’ 

arrivals to Santiago de Compostela

Data sources and 

collecting data
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Source(s): Figure by authors

Figure 2.
Framework for tourism
demand predictions
based on Twitter data
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Twitter is a massive platform with a large amount of noisy and irrelevant data. Using
hashtags helps categorise topics, making it easier to identify users who are talking about the
same topic (Bruns and Burgess, 2011). Using hashtags also allows us to filter this noise and
focus on the data most relevant to our study.

All hashtags included in tweets published during the study period that contained the key
search “Santiago de Compostela” were identified. By comparing the most repeated hashtags
related to tourism for this destination, the following categories were identified:

(1) “Saint James Way”,

(2) “Pilgrims” and “Pilgrimage” and

(3) “Xacobeo” and “Jacobeo”.

We excluded hashtags related to “Pilgrims” and “Pilgrimage” because they could include
tweets pertaining to other pilgrimage destinations. However, tweets pertaining to St. James
Way and Xacobeo were exclusive to tourism in Santiago de Compostela. Therefore, a
combination of the 20 most published hashtags related to categories (1) and (3) in Spanish,
English, German, French and Portuguese was selected (Table 1). These languages were
selected because countries with these languages as their native languages represented 75%
of hotel tourism demand in Santiago de Compostela in 2019.

After eliminating duplicate retweets, 110,456 tweets remained, based on which the
monthly number of tweets was used to derive the explanatory variable – Twitter Data (TD).
According to Guizzardi andMazzocchi (2010), factors that occur at a specific moment in time,
such as the Jubilee Year, can determine short- or long-term modifications in tourist flow.
Therefore, a temporary dummywas created to control the effect of an extraordinary increase
in tourism demand in 2021 and 2022, the Jubilee years in Santiago de Compostela (Compostela
Holy Year, Xacobeo Year or Jacobeo Year). This variable takes the value of one for 2021 and
2022 and zero otherwise.

Language Hashtag

Spanish #CAMINODESANTIAGO
#ELCAMINODESANTIAGO
#BUENCAMINO
#JACOBEO
#XACOBEO

English #WAYOFSTJAMES
#THEWAYOFSAINTJAMES
#WAYOFSAINTJAMES
#SAINTJAMESWAY
#SANTIAGOWAY
#WAYOFSANTIAGO
#WALKCAMINO

German #JAKOBSWEG
#DERJAKOBWEB
#DERWEGNACHSANTIAGO

French #CHEMINDESAINTJACQUES
#LECHEMINDESAINTJACQUES
#SAINTJACQUESCHEMIN

Portuguese #OCAMINHODESANTIAGO
#CAMINHODESANTIAGO

Source(s): Table by authors
Table 1.

Selected hashtags
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3.2 Methodology
In this study, we compare two ARIMA-based forecasting models (SARIMA and SARIMAX
models) to evaluate the appropriateness of using user-generated content on social media to
improve the predictive capacity of time-series models in turmoil stages. In this exploratory
case, we forecast monthly tourism demand for the internationally known destination of
Santiago de Compostela.

The comparison of the SARIMAmodels in our time-series prediction methodology aligns
with the goal of achieving accurate predictions, considering the specific characteristics of our
dataset. We aim to capture the effects of exogenous shocks as part of the SARIMAmodel. To
achieve this, we compare the predictive capacity of the SARIMA pure time-series forecasting
and SARIMA models with exogenous variables (SARIMAX).

The SARIMAmodel was selected because of its various statistical advantages, supported
by previous research on tourism demand forecasting (Qiu et al., 2021; Song et al., 2019).
According to Song et al. (2019), the SARIMA model is the most commonly used model in
tourism research because it considers the trends and/or seasonality components of a time
series. Additionally, the parsimonious structure of the SARIMAmodels balances complexity
and performance (Lama et al., 2022; Saz, 2011).

The SARIMA (p,d,q) (P,D,Q) model is as follows:

ΦðBmÞfðBÞð1� BmÞDð1� BÞd yt ¼ ΘðBmÞθðBÞ εt (1)

where yt expresses the tourism demand at time t; the autoregressive (AR) andmoving average
(MA) components are represented by f and θ of orders p and q, respectively; ΦðBmÞ and
ΘðBmÞ denote the seasonal AR(P) and seasonal MA(Q) components, respectively; ð1−BÞd
and ð1−BmÞD represent the difference and seasonal difference indicators, respectively; εt
expresses the white noise error term.

Using a linear regression, external variables can be added to the SARIMAmodel to create
a SARIMAX model. Eq. (2) indicates that SARIMAX is a regression model with SARIMA
errors where the regression is first conducted.

ΦðBmÞfðBÞð1� BmÞDð1� BÞd yt ¼ μþ
Xn

k¼1

βk∙Xk
t þ ΘðBmÞθðBÞ εt (2)

where Xk
t is the exogenous variable at time t and βk is the corresponding coefficient of the

exogenous variable added to the parameters of the aforementioned SARIMAmodel described.
To validate the models and assess their respective predictive capacities, we fit the models

with data from January 2018 to December 2021 and use those from January 2022 to
September 2022 to test the accuracy of the predictions. To evaluate the forecast accuracy of
the models, we use the following common evaluation measures from tourism and hospitality
forecasting research: the mean absolute error (MAE) and root mean square error (RMSE),
calculated using Eq. (3) and (4).

MAE ¼ 1

N

XN
t¼1

jbyt � ytj (3)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
t¼1

ðbyt � ytÞ2
vuut (4)

wherebyt and yt are the predicted and actual values representing tourism demand in Santiago
de Compostela, respectively.
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4. Results and discussion
An exploratory analysis during the fitting period reveals that the variable TD displays the
same trend as the variable TOUR, which denotes the volume of tourists staying in hotels in
Santiago de Compostela; however, the peaks of the former occur one month earlier than those
of the latter (see Figure 3). This indicates that tourists’ Twitter activity is a good predictor of
hotel demand.

Tourism demand has a high seasonal component, which is adjusted according to the
model specifications. The augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) unit root
tests confirm the presence of a unit root in the dependent and independent variables at the 1%
significance level. Therefore, the first differences of all the variables are considered to ensure
a stationary series. Correlograms and partial autocorrelation functions are examined to
determine the appropriate order of the AR and MA components.

To analyse Twitter data’s dynamic structure to forecast tourism demand, we use the
Akaike information criterion (AIC) and Schwartz Bayesian information criterion (SBIC) to
determine the monthly lagged distribution of the explanatory variable. The results indicate
that the optimal lag length for the independent variable is two months. Additionally, the
Granger causality test confirms a causal relationship between hotel demand and tourists’
Twitter activity.

Table 2 presents the forecast errors of the in-sample estimation and improvement
achieved in the final SARIMAX model compared to the SARIMA model [2]. The results
indicate that including exogenous variables improves the SARIMA model’s fit by 5.75 and
9.05% for the MAE and RMSE evaluation measures, respectively.
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Evaluation metrics SARIMA SARIMAX Improvement (%)

MAE 10466.18 9864.05 5.75
RMSE 13900.89 12642.22 9.05

Note(s): The values in italic indicate the model with the best evaluation metric
Source(s): Table by authors
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The performance of the out-of-sample prediction summarised in Table 3 confirms a
significant improvement in the SARIMAX model by 20.3 and 18.0% when using the MAE
and RMSE evaluation measures, respectively. The robustness of the analysis is tested by
modifying the fitting periods of the models and comparing their predictive performance after
including Twitter data. This analysis confirmed the goodness of fit of the results.

Consistent with Yang and Han (2021), this study provides novel perspectives for
practitioners to gain relevant hospitality business insights using social media data. Our
results’ alignment with those of previous studies verifies the utility of using Twitter to
improve hotel demand forecasts, as in Bign�e et al. (2019), and confirms a significant
improvement in prediction accuracy, even during the pandemic, with the inclusion of new
real-time data sources. Similarly, incorporating online review data improves the MAE
forecast models by 2.97 and 6.19% and the RMSE between �3.41 and 7.98%, following Hu
et al. (2022).

Moreover, our results confirm the importance of the lag structure of data sources in
forecasting research, allowing tourism companies and policymakers to accurately anticipate
future tourism demand. According to the results of our research, the Twitter activity of
pilgrims from the previous two months can help hospitality companies predict the tourism
demand for the Saint James Way.

Figures 4 and 5 illustrate the actual and predicted tourism demand for Santiago de
Compostela using the SARIMA and SARIMAX models, respectively. The evaluation
measures of the SARIMAmodel and prediction accuracy shown in Figure 4 confirm that pure
autoregressive models are inefficient in forecasting tourism demand during and after the
pandemic. Therefore, we propose that researchers and stakeholders use Twitter activity data
to accurately predict tourism demand (see Figure 5).

Evaluation metrics SARIMA SARIMAX Improvement

MAE 9165.62 7301.54 20.3%
RMSE 11535.76 9450.42 18.0%

Note(s): The values in italic indicate the model with the best evaluation metric
Source(s): Table by authors
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Our findings answer the research questions and confirm our initial assumptions. With an
improvement of between 18.0 and 20.3%, depending on the evaluation metric, pilgrim-
generated digital content on social media can be used to improve the predictive capacity of
time-series models. We agree with Zhang et al. (2021) in that hospitality companies’ business
planning, including budgeting, resource allocation and marketing, is based on demand
forecasts. Consistent with Li et al. (2022), we avoid inaccurate predictions that could result in a
supply-demand mismatch of tourism services, significantly affecting management,
efficiency, productivity and the tourism sector’s profitability. Therefore, this study makes
a timely contribution to model development in tourism demand forecasting by proposing
Twitter data as an exogenous variable to generate more accurate forecasts. Additionally, the
results verify the lag-time structure of Twitter data, enabling the anticipation of changes in
tourism demand during uncertain periods.

5. Conclusions
The pilgrim’s footprint when walking “the Way” becomes a digital footprint in the 21st
century. Our investigation contributes both to the scarce literature on digital pilgrimage
tourism and research on forecasting hotel demand by proposing a new methodological
framework based on user-generated content on Twitter for the case of the internationally
known pilgrimage destination “the Way of Saint James”.

This study demonstrates the importance of regularly refining forecasting methods using
new data sources available in the digital world for effective forecasting. Thus, some
theoretical implications are derived from this study. First, it improves our understanding of
the usefulness of social networks, particularly Twitter, in forecasting tourism models.
Second, it identifies the time lag between user information generated on Twitter and
consumer demand. Third, it connects the digitalisation of pilgrimage tourists with the use of
social networks and digital footprints.

We agree with Gunter and €Onder (2015), suggesting that an accurate prediction of the
number of tourists visiting a destination has implications for tourism management, such as
sustaining tourism demand and efficient planning to accommodate tourists. This study has
three primary managerial implications. First, the possibility of accurately predicting tourism
demand from publicly shared information by pilgrims can improve hotel management
efficiency at tourist destinations and prevent hotel oversupply or undersupply. Second, our
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findings indicate that content published on Twitter during the previous two months is
significant for forecasting hotel demand in Santiago de Compostela. Consistent with Huang
et al. (2017) and Liu et al. (2018), the lag time structure of the data enables a better prediction of
the demand and management of tourist destinations. This is because it allows the number of
visitors to a destination to be known before they arrive. Finally, the COVID-19 pandemic has
generated instability in tourism demand, induced by perceived health risks and government-
imposed mobility restrictions, forcing managers to modify demand predictions frequently.
Therefore, this study provides stakeholders with a methodological framework to accurately
forecast real-time tourism demand and anticipate changes during times of crisis and
instability.

In summary, Twitter offers two primary practical advantages for tourismmanagement in
Santiago de Compostela. First, it provides real-time information, which is particularly
important during periods of uncertainty and volatility, such as those caused by the COVID-19
pandemic. Second, it helps accurately predict tourism demand, which can improve the
tourism industry’s efficiency. Therefore, this study recommends that stakeholders and
decision-makers use Twitter as a new source of big data because it can serve as a leading
indicator of changes in tourism demand.

This study has some limitations, the main one being its exploratory nature because it is
limited to a single destination. One limitation of sampling our data using hashtags is that
tweets related to elections without a hashtagwould be ignored. However, the results obtained
make it advisable to replicate the study in other tourism environments to observe the
feasibility of using Twitter as a source for forecasting tourism demand, especially
considering some of the trends found in this study are promising.

Nevertheless, the exploratory nature of this study does not detract from the relevance of
its results, in which we are able to identify opportunities for Santiago de Compostela hotel
demand planning. Furthermore, this study is limited to the pilgrimage destination of the Saint
James Way and the results for other destinations should be cross-checked in future studies.
Thus, the application of the Twitter-based forecasting method to other destinations is a clear
avenue for future research.

In any case, we consider that our findings represent a step forward in the search for new
forecasting methods that work even in the event of strong demand shocks, such as those
caused by the COVID-19 pandemic and in understanding the relationship between social
media data and pilgrimage tourism demand.

Notes

1. The United Nations World Tourism Organization estimates that 330 m people travel for religious
reasons each year (https://www.unwto.org). Additionally, it is estimated that global income from
religious tourism will increase from a total of $15.1 bn in 2023 to approximately $41 bn in 2033,
according to themarket analysis firmFutureMarket Insights (https://www.futuremarketinsights.com).

2. The improvement achieved using Twitter data are measured as follows:
Improvement ¼ EvaluationMetric ðSARIMAÞ−EvaluationMetric ðSARIMAXÞ

EvaluationMetric ðSARIMAÞ
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