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Abstract

Purpose – Forecasts of commodity prices are vital issues to market participants and policy makers. Those of
corn are of no exception, considering its strategic importance. In the present study, the authors assess the
forecast problem for the weekly wholesale price index of yellow corn in China during January 1, 2010–January
10, 2020 period.
Design/methodology/approach – The authors employ the nonlinear auto-regressive neural network as the
forecast tool and evaluate forecast performance of different model settings over algorithms, delays, hidden
neurons and data splitting ratios in arriving at the final model.
Findings – The final model is relatively simple and leads to accurate and stable results. Particularly, it
generates relative root mean square errors of 1.05%, 1.08% and 1.03% for training, validation and testing,
respectively.
Originality/value – Through the analysis, the study shows usefulness of the neural network technique for
commodity price forecasts. The results might serve as technical forecasts on a standalone basis or be combined
with other fundamental forecasts for perspectives of price trends and corresponding policy analysis.
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1. Introduction
Forecasting agricultural commodity prices has always been a significant task for policy
makers and different agricultural market participants (Ouyang, Hu, Yang, Yao, & Lin, 2022;
Wang, Wang, Li, & Zhou, 2022; Xu, 2017, Xu, 2018). This could be particularly the case when
one considers the fact that agricultural commodities generally carry with them natural
importance from a strategic perspective to a country or region (Xu and Zhang, 2022).
Importance of forecasting corn prices is of no exception when one takes into consideration
strategic importance of corn, which could include its close relationship with the energy
economic sector (Alola, 2022; Forhad & Alam, 2022; Liu & Wang, 2022; Wu, Weersink, &
Maynard, 2022), deep financialization of trading (Abuselidze, Alekseieva, Kovtun, Kostiuk, &
Karpenko, 2022; Penone, Giampietri, & Trestini, 2022; Wang, Zhang, Wang, & Meng, 2022;
Xu and Zhang, 2022; Xu, Li, Wang, & Li, 2022), and the role of serving as an important food
source across the globe (Li et al., 2022; Lu et al., 2022; Niu et al., 2022; Yu, Yue, &Wang, 2022).
Price forecasts are required by different forecast users in agricultural markets. For example,
they offer useful insights into setting future sales prices to agricultural commodity
processors, provide necessary information for reaching contractual requirements to trading
partners, shed light on potential opportunities for seeking profits in spot and futures markets
and suggest possible gaps in risk management and policy assessments to policy makers. As
price volatilities tend to be rather irregular (Marfatia, Ji, & Luo, 2022; Xu, 2017, Xu, 2020;
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Yang, Du, Lu, & Tejeda, 2022, Yang, Ge, & Li, 2022), different price levels have immense
impacts on business and policy decisions (Ricome & Reynaud, 2022; Wang et al., 2022;
Warren-Vega, Aguilar-Hern�andez, Z�arate-Guzm�an, Campos-Rodr�ıguez, & Romero-Cano,
2022; Xu, 2014; Xu & Thurman, 2015), and ultimately on allocations of resources and social
welfare (Liu, Fang, Zhang, Zhong, & Chen, 2022; Ma, Zhang, Song, & Yu, 2022; Xu, 2019, Xu,
2019); price forecasting’s significance to the agricultural economic sector should not call for
too much motivation.

One direction that has been pursued in the applied econometrics literature is utilizing time-
series models for the purpose of building accurate and stable forecast results of commodity
prices (Awokuse & Yang, 2003; Babula, Bessler, Reeder, & Somwaru, 2004; Bessler, 1982,
Bessler, 1990; Bessler & Babula, 1987; Bessler & Brandt, 1981, Bessler & Brandt, 1992;
Bessler & Chamberlain, 1988; Bessler & Hopkins, 1986; Bessler & Kling, 1986; Bessler, Yang,
& Wongcharupan, 2003; Brandt & Bessler, 1981, Brandt & Bessler, 1982; Brandt & Bessler,
1983, Brandt & Bessler, 1984; Chen & Bessler, 1987, Chen & Bessler, 1990; Kling & Bessler,
1985; McIntosh & Bessler, 1988; Wang & Bessler, 2004; Xu, 2014, Xu, 2015; Xu & Thurman,
2015; Yang &Awokuse, 2003; Yang, Haigh, & Leatham, 2001; Yang & Leatham, 1998; Yang,
Li, & Wang, 2021; Yang, Zhang, & Leatham, 2003). Some typical models sought in previous
studies include the ARIMA model, VAR model and VECM model. Over the past decade,
computational power has becoming much more affordable, and the interest among
researchers in building machine learning models aiming at offering good forecasts in
economics and finance has been well documented (Ge, Jiang, He, Zhu, & Zhang, 2020; Yang&
Wang, 2019), including, of course, forecasts of commodity prices for the agricultural market
(Abreham, 2019; Ali, Deo, Downs, & Maraseni, 2018; Antwi, Gyamfi, Kyei, Gill, & Adam,
2022; Ayankoya, Calitz, & Greyling, 2016; Bayona-Or�e, Cerna, & Hinojoza, 2021; Degife &
Sinamo, 2019; Deina et al., 2021; Dias & Rocha, 2019; Fang, Guan, Wu, & Heravi, 2020; Filippi
et al., 2019; G�omez, Salvador, Sanz, & Casanova, 2021; Handoyo & Chen, 2020; Harris, 2017;
Huy, Thac, Thu, Nhat, & Ngoc, 2019; Jiang, He, & Zeng, 2019; Khamis & Abdullah, 2014;
Kohzadi, Boyd, Kermanshahi, &Kaastra, 1996; Kouadio et al., 2018; Li, Chen, Li,Wang, &Xu,
2020, Li, Li, Liu, Zhu, &Wei, 2020; Lopes, 2018;Mayabi, 2019; deMelo, J�unior, &Milioni, 2004;
Melo, Milioni, & Nascimento J�unior, 2007; Moreno et al., 2018; Naveena et al., 2017; Rasheed,
Younis, Ahmad, Qadir, & Kashif, 2021; dos Reis Filho, Correa, Freire, & Rezende, 2020;
Ribeiro & Oliveira, 2011; Ribeiro, Ribeiro, Reynoso-Meza, & dos Santos Coelho, 2019; Ribeiro
& dos Santos Coelho, 2020; RL & Mishra, 2021; Shahhosseini, Hu, & Archontoulis, 2020,
Shahhosseini, Hu, Huber, & Archontoulis, 2021; Silalahi et al., 2013; Silva, Siqueira, Okida,
Stevan, & Siqueira, 2019; Storm, Baylis, & Heckelei, 2020; Surjandari, Naffisah, &
Prawiradinata, 2015; Wan & Zhou, 2021; Wen et al., 2021; Xu & Zhang, 2022, Xu & Zhang,
2022; Yoosefzadeh-Najafabadi, Earl, Tulpan, Sulik, & Eskandari, 2021; Yuan, San, & Leong,
2020; Zelingher, Makowski, & Brunelle, 2020, Zelingher, Makowski, & Brunelle, 2021; Zhang,
Meng, Wei, Chen, & Qin, 2021; Zhao, 2021; Zou, Xia, Yang, & Wang, 2007), such as corn
(Antwi et al., 2022; Ayankoya et al., 2016; Mayabi, 2019; Moreno et al., 2018; dos Reis Filho
et al., 2020; Ribeiro et al., 2019; Shahhosseini et al., 2020, 2021; Surjandari et al., 2015; Wan &
Zhou, 2021; Xu& Zhang, 2021; Zelingher et al., 2020, 2021), soybean oil (Li et al., 2020; Silalahi
et al., 2013; Xu & Zhang, 2022), coffee (Abreham, 2019; Degife & Sinamo, 2019; Deina et al.,
2021; Huy et al., 2019; Kouadio et al., 2018; Lopes, 2018; Naveena et al., 2017), peanut oil
(Mishra & Singh, 2013; Quan-Yin, Yong-Hu, Yun-Yang, & Tian-Feng, 2014; Singh &Mishra,
2015; Yin & Zhu, 2012; Zhu, Yin, Zhu, & Zhou, 2014; Zong & Zhu, 2012, Zong & Zhu, 2012),
palm oil (Kanchymalay, Salim, Sukprasert, Krishnan, &Hashim, 2017), wheat (Dias &Rocha,
2019; Fang et al., 2020; G�omez et al., 2021; Khamis & Abdullah, 2014; Kohzadi et al., 1996;
Rasheed et al., 2021; Ribeiro & dos Santos Coelho, 2020; Zou et al., 2007), oats (Harris, 2017),
soybeans (Handoyo & Chen, 2020; Jiang et al., 2019; Li et al., 2020; dos Reis Filho et al., 2020;
Ribeiro & dos Santos Coelho, 2020; Yoosefzadeh-Najafabadi et al., 2021; Zhao, 2021), canola
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(Filippi et al., 2019; Shahwan & Odening, 2007; Wen et al., 2021), cotton (Ali et al., 2018; Fang
et al., 2020) and sugar (de Melo et al., 2004; Melo et al., 2007; Ribeiro & Oliveira, 2011; Silva
et al., 2019; Surjandari et al., 2015; Zhang et al., 2021). The machine learning forecasting tools
often observed in the literature include deep learning (RL & Mishra, 2021), random forest
(Dias & Rocha, 2019; Filippi et al., 2019; G�omez et al., 2021; Kouadio et al., 2018; Li et al., 2020;
Lopes, 2018; Ribeiro & dos Santos Coelho, 2020; Shahhosseini et al., 2020, 2021; Wen et al.,
2021; Yoosefzadeh-Najafabadi et al., 2021; Zelingher et al., 2020, 2021), K-nearest neighbor
(Abreham, 2019; G�omez et al., 2021; Lopes, 2018), genetic programming Ali et al. (2018),
support vector regression (Abreham, 2019; Dias &Rocha, 2019; Fang et al., 2020; G�omez et al.,
2021; Harris, 2017; Kanchymalay et al., 2017; Li et al., 2020, 2020; Lopes, 2018; dos Reis Filho
et al., 2020; Ribeiro&dos Santos Coelho, 2020; Surjandari et al., 2015; Yoosefzadeh-Najafabadi
et al., 2021; Zhang et al., 2021; Zhao, 2021), decision tree (Abreham, 2019; Degife & Sinamo,
2019; Dias & Rocha, 2019; Harris, 2017; Lopes, 2018; Surjandari et al., 2015; Zelingher et al.,
2020, 2021), extreme learning (Deina et al., 2021; Jiang et al., 2019; Kouadio et al., 2018; Silva
et al., 2019), neural network (Abreham, 2019; Antwi et al., 2022; Ayankoya et al., 2016; Deina
et al., 2021; Fang et al., 2020; Harris, 2017; Huy et al., 2019; Khamis &Abdullah, 2014; Kohzadi
et al., 1996; Li et al., 2020, 2020; Mayabi, 2019; de Melo et al., 2004; Melo et al., 2007; Mishra &
Singh, 2013;Moreno et al., 2018; Naveena et al., 2017; Quan-Yin et al., 2014; Rasheed et al., 2021;
Ribeiro & Oliveira, 2011; Ribeiro & dos Santos Coelho, 2020; Shahwan & Odening, 2007;
Silalahi et al., 2013; Silva et al., 2019; Singh &Mishra, 2015; Wan & Zhou, 2021; Xu & Zhang,
2021, 2022; Yin & Zhu, 2012; Yoosefzadeh-Najafabadi et al., 2021; Yuan et al., 2020; Zhang
et al., 2021; Zhu et al., 2014; Zong & Zhu, 2012, Zong & Zhu, 2012; Zou et al., 2007), boosting
(G�omez et al., 2021; Lopes, 2018; Ribeiro & dos Santos Coelho, 2020; Shahhosseini et al., 2020,
2021; Zelingher et al., 2020, 2021), multivariate adaptive regression splines (Dias & Rocha,
2019) and ensemble (Fang et al., 2020; Ribeiro et al., 2019; Ribeiro & dos Santos Coelho, 2020;
Shahhosseini et al., 2020, 2021). With these reviews, although not exhaustive, it appears that
the neural network model is one of the most useful techniques in terms of constructing price
forecasts for agricultural commodities (Bayona-Or�e, Cerna, & Tirado Hinojoza, 2021). More
specifically, a wide variety of time-series variables that are chaotic and noised could be well
forecasted through the neural networkmodel (Karasu, Altan, Bekiros, &Ahmad, 2020;Wang
&Yang, 2010;Wegener, von Spreckelsen, Basse, & vonMettenheim, 2016; Xu, 2015, Xu, 2018,
Xu, 2018, Xu, 2018; Yang, Cabrera, &Wang, 2010, Yang, Su, & Kolari, 2008), including many
different types of economic and financial time series (Xu&Zhang, 2022). This fact could stem
from the good capability of the neural network model for self-learning (Karasu, Altan, Saraç,
& Hacio�glu, 2017, Karasu, Altan, Saraç, & Hacio�glu, 2017) and characterizing nonlinear
features (Altan, Karasu, & Zio, 2021; Karasu et al., 2020; Xu & Zhang, 2022, Xu & Zhang,
2022) in various time series (Xu, 2018; Xu & Zhang, 2021, Xu & Zhang, 2021). Here, we adopt
the neural network for the forecasting exercise of the price of yellow corn.

To conduct our analysis, the forecast problem in a data set of weeklywholesale price indices
of yellow corn in China from January 1, 2010 to January 10, 2020 is examined via the nonlinear
auto-regressive neural network technique. We assess performance of forecasts stemming from
different settings of models, which include considerations of training algorithms, hidden
neurons, delays and how the data are segmented.With the analysis, a relatively simplemodel is
constructed, and it produces performance that is rather accurate and stable. The present work
serves as the first one in addressing the price forecast problem for wholesale yellow corn in the
Chinese market. Forecast results here could be utilized as part of technical analysis and/or
combined with other fundamental forecasts as part of policy analysis.

2. Literature review
For price forecasting tasks in the agricultural sector, the literature has witnessed a great
amount of studies that explore the use of econometric methods with the goal of producing
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stable and accurate forecasts. For example, the ARIMAmodel has been a great success in this
field. It is univariate and generally relies on past values of a variable to be forecasted.
Previous work has found it helpful for forecasting prices of wheat (Bessler & Babula, 1987)
and cattle and hog (Bessler, 1990; Bessler & Brandt, 1981; Brandt & Bessler, 1981, 1982, 1983,
1984; Kling&Bessler, 1985). Instead of utilizing a single source of information for forecasting,
the VAR, as another popular econometric forecasting tool, is built upon investigated
economic variables’ relations (Awokuse & Yang, 2003; Bessler & Brandt, 1992; Bessler &
Chamberlain, 1988; Bessler&Hopkins, 1986; Chen&Bessler, 1987;McIntosh&Bessler, 1988;
Rezitis, 2015). Previous studies have demonstrated that it has good potential for forecasting
prices of cotton (Chen&Bessler, 1990), wheat (Yang, Zhang, & Leatham, 2003), and soybeans
(Babula et al., 2004). As compared to the VAR, the VECM is built upon the concept of
cointegration, which is used to further incorporate long-run relationships among investigated
economic variables (Xu, 2019, Xu, 2019; Xu & Zhang, 2023; Yang & Awokuse, 2003; Yang &
Leatham, 1998; Yang et al., 2021). The VECM is usually found to be particularly useful for
long-term price forecasting tasks (Bessler et al., 2003; Wang & Bessler, 2004).

The good potential of the econometric techniques mentioned above has been found as well
among various forecasting research regarding prices of corn. For example, Zhou (2021) used
the ARIMA for modelingmonthly corn prices in China during April 2019–February 2021 and
forecasting the price in March 2021, and obtained good accuracy. Crespo Cuaresma,
Hlouskova and Obersteiner (2021) studied auto-regressive models, VARs, VECMs and their
variations and combinations for forecasts of different agricultural commodity prices that
include those of corn. They found that market fundamentals and macroeconomic
developments contribute systematic predictive information for the forecast purpose.
Albuquerquemello, Medeiros, Jesus and Oliveira (2021) assessed ARIMAs, VARs and their
variations, particularly the consideration of transition regime models, for monthly U.S. corn
price forecasts and pointed out the importance of incorporating nonlinear patterns in the
model.Wan and Zhou (2021) examined corn futures price forecasts based on theARIMAwith
data fromChinaDalian Commodity Exchange during 2018–2021 and concluded that a deeper
consideration of parameter selection might improve model performance. Antwi, Gyamfi,
Kyei, Gill and Adam (2022) investigated the ARIMA for corn futures price forecasts from
Bloomberg during 2016–2021 and found that data decomposition techniques could help
improve model accuracy, Jaiswal, Jha, Kumar and Choudhary (2021) researched the ARIMA
for forecasts of monthly corn prices from World Bank Commodity Price Data during 1980–
2020 and found that it achieved decent accuracy, although not optimal as compared to some
machine learning models they considered. Silva, Barreira and Cugnasca (2021) evaluated the
ARIMA for corn price forecasts in Brazil and found that it consistently underperforms as
compared to machine learning models.

Advancements of machine learning techniques have been discovered in a diverse variety
of forecasting work. For prices of corn investigated here, there does not exist an exception.
For example, Wan and Zhou (2021) examined the comparison between the long short-term
memory neural network and the ARIMA for corn futures price forecasts from China Dalian
Commodity Exchange during 2018–2021 and found that the former leads to consistent better
performance than the latter. Antwi et al. (2022) investigated the back propagation neural
network for corn futures price forecasts from Bloomberg during 2016–2021 and determined
that data decomposition techniques contribute to improved performance in terms of
accuracy. Jaiswal et al. (2021) developed a deep long short-term memory neural network for
forecasts of monthly corn prices fromWorld Bank Commodity Price Data during 1980–2020
and concluded that it beats both the ARIMA and conventional time-delay neural network.
Silva et al. (2021) studied the corn price forecast problem in Brazil by considering different
machine learning models and found that the performance rank from the best to worst is: the
support vector regression, the ensemble of the support vector regression and long short-term
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memory neural network, the ensemble of the AdaBoost and support vector regression, and
the ensemble of the AdaBoost and long short-term memory neural network.

3. Data
We analyze weekly wholesale price indices of corn in the Chinese market from January 1,
2010, to January 10, 2020. In Figure 1, we plot the price series in the top left panel, the first
differences of prices in the top right panel, the histogram of forty bins and the corresponding
kernel estimates of price in the bottom left panel and the histogram of forty bins and the
corresponding kernel estimates of the first differences of prices in the bottom right panel. We
note that averageweekly price of June 1994 serves as the price of the base period, and its value
is set to 100, which indicates fifty-kilogram’s price of wholesale yellow corn. Table 1 presents
the usual summary statistics of the prices, where we could see that they do not follow normal
distributions like most of financial time series (Xu, 2017, Xu, 2019; Xu & Zhang, 2022, Xu &
Zhang, 2022). Finally, we note that the price index is missing on February 19, 2010, and we
apply the cubic spline interpolation technique for an approximated value of 122.839, which is
rather close to 122.85 on February 12, 2010, and 122.53 on February 26, 2010.

4. Method
The nonlinear auto-regressive neural network model is adopted here for weekly price
forecasts of wholesale yellow corn. It can be represented as yt5 f(yt�1, . . ., yt�d), where y is the
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Figure 1.
Top panel: The weekly
price index of yellow
corn (left) and first
differences of prices
(right); bottom panel:
histograms of forty
bins and kernel
estimates for the
weekly price index and
its first differences
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price series of corn that will be forecasted, t is used to index time, d is used to denote the
number of delays and f is used to represent the function. We note that f will need to be

estimated as yt ¼ α0 þ
Pk

j¼1αjf
Pd

i¼1βijyt−i þ β0j

� �
þ εt, where k is used to denote the

number of hidden layers whose transfer function is represented by f, βij is used to denote the
parameter that corresponds to the weight associated with the connection between the i� th
input unit and j � th hidden unit, αj is used to denote the weight associated with the
connection between the j� th hidden unit and output unit, β0j is used to denote the constant
that corresponds to the j� th hidden unit, α0 is used to denote the constant that corresponds
to the output unit and « is used to denote the error. The current work concentrates on
forecasts that are one-week ahead.

Themodel with the structure of a two-layer feed-forward network is applied here. It uses a
sigmoid transfer function among the hidden layers and a linear transfer function for the
output layer. More specifically, the logistic function of fðzÞ ¼ 1

1þe−z
serves as the sigmoid

transfer function. yt, the output, would be fed back through the delays back to the network’s
input, and for the purpose of efficiency, the model training would adopt the form of an open
loop, in which the real output is employed instead of the output that is estimated. The
adoption of the open loop would ensure that the network’s inputs are more accurate, and as a
result, the network would be purely feedforward.

For model training algorithm, we explore two options. One is the LM (Levenberg–
Marquardt) algorithm (Levenberg, 1944; Marquardt, 1963) and the other is the SCG (scaled
conjugate gradient) algorithm (Møller, 1993). These two algorithms have witnessed wide
successful applications for forecasting purposes fromdifferent research areas (Doan&Liong,
2004; Kayri, 2016; Khan, Alam, Shahid, & Mazliham, 2019; Selvamuthu, Kumar, & Mishra,
2019; Xu & Zhang, 2021, Xu & Zhang, 2021, Xu & Zhang, 2022, Xu & Zhang, 2022, Xu &
Zhang, 2022, Xu & Zhang, 2022). Their comparisons have been illustrated in previous
research (Al Bataineh &Kaur, 2018; Baghirli, 2015; Xu& Zhang, 2022, Xu& Zhang, 2022, Xu
& Zhang, 2022). Basically, the LM algorithm could robustly handle the problem of slow
convergence (Hagan & Menhaj, 1994) by approximating the Hessian matrix (Paluszek &
Thomas, 2020), and the SCG algorithm generally executes even faster as it does not involve
line searches. Figure 2 shows the architecture of the final neural network model built in
this work.

LM algorithm. In this algorithm, using a system whose weights are denoted as w1 and w2

as an example, the approximation of the Hessian matrix, H, is made as H ≈ JTJ, where

J ¼ vE
vw1

vE
vw2

h i
for a nonlinear function E($) that contains the information of the sum square

error whoseH ¼

v2E

vw2
1

v2E

vw1vw2

v2E

vw2vw1

v2E

vw2
2

2
66664

3
77775
. The gradient could be expressed as g5 JTe, where e

Commodity Series Minimum Mean Median Std Maximum Skewness Kurtosis
Jarque-
Bera

Yellow
corn

Price 108.1800 139.2282 134.0200 16.6369 177.4100 0.0683 1.7032 <0.001

First
difference

�8.6300 �0.0044 0.0400 1.5583 6.2000 �0.8492 6.4195 <0.001

Source(s): Elaborated by the authors

Table 1.
Summary statistics of
the weekly price index
and its first differences

of yellow corn
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denotes an error vector. For updating weights and biases, the rule of wkþ1 ¼ wk −

JTJ þ μI
� �−1

JTe is adopted, where w denotes the weight vector, k denotes the index of the
iteration during model training, I denotes the identity matrix and μ denotes the combination
coefficient that is always positive. When μ5 0, the LM algorithm will be similar to Newton’s
method. If μ is large, it would turn to be gradient descent with small step sizes. μ would be
decreased after successful steps due to less need for faster gradient descent.

SCG algorithm. Weight adjustments in backpropagation algorithms are in the steepest
descent because, in that direction, the performance function would decrease rapidly. However,
this does not guarantee fastest convergence. As compared to the steepest descent, searches are
conducted along conjugate directions in conjugate gradient algorithms for determining step
sizes to reduce the performance function in iterations and convergence is generally faster. In
addition, to avoid line searches in conjugate gradient algorithms, which could be time
consuming, the SCG algorithm is adopted here as a fully automated supervised algorithm.

During the arrivals of our final model, different settings over delays, hidden neurons and
data spitting ratios, in addition to algorithms, are tested. Specifically, delays of 2, 3, 4, 5 and 6,
hidden neurons of 2, 3, 5 and 10, and data spitting ratios of 60%–20%–20%, 70%– 15%–15%
and 80%–10%–10% for training–validation–testing are evaluated. Only training and
validation part of the data are involved in selecting model parameters. Put in another way,
only training and validation part of the data have been “seen” by a model. The testing part of
the data has not been involved in selecting model parameters, and this part is only for testing
a constructed model using the training and validation part of the data. For terminating the
process of model training, we consider two options: the gradient’s magnitude and
the validation check number. When model training has reached a performance minimum,
the gradient would turn to be pretty small. Model training would be terminated if the
gradient’s magnitude is smaller than 10�5. The validation check number refers to successive
iterations whose performance based upon the validation part of the data no longer decreases.
We adopt six as the validation check number, andmodel trainingwould be terminated once it
reaches six validation checks. Further, the maximal training iteration number is one
thousand, and model training would be terminated once it reaches this iteration number.
Other settings for the LM algorithm are as follows. μ’s initial value is set to 0.001, μ’s
decreasing factor is set to 0.1, μ’s increasing factor is set to 10 and μ’s maximal value is set to
1010. Other settings for the SCG algorithm are as follows. The Marquardt adjustment
parameter is set to 0.005, the weight change determinant is set to 53 10�5 for approximating
second derivatives and the parameter for regulating the Hessian’s indefiniteness is set to 53
10�7. Table 2 contains all evaluated model settings, where the #67 is applied for building our
final model for the price index of yellow corn. It is using 5 delays and 5 hidden neurons and
trained with the LM algorithm and the training–validation–testing ratio of 60%–20%–20%.

5. Result
We evaluate each model setting contained in Table 2 for weekly prices of wholesale yellow
corn. We adopt the relative root mean square error (RRMSE) for measuring forecast

Figure 2.
The block diagram of
the neural network
model of the two-layer
feedforward structure
with a logistic sigmoid
transfer function for
the hidden layer and a
linear transfer function
for the output layer
based on 5 delays and 5
hidden neurons
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performance and calculate RRMSEs generated from each model setting across the training
phase, validation phase and testing phase. Figure 3 reports the results of all RRMSEs. During
the process of determining the final model setting for the price series, we take into
consideration the need to balance forecast accuracy and forecast stabilities across the three
phases, and select the setting #67 (5 delays and 5 hidden neurons). This setting is applying
the LM algorithm and the data segmentation ratio of 60%–20%–20% for training–
validation–testing, thus reserving the largest amount of the data for model testing
purposes among three different data segmentation rations examined. We can observe from
Figure 3, where the setting #67 is indicated via a dark arrow, that for the selected setting, the
diamond for the training phase, the square for the validation phase and the triangular for the
testing phase are rather close to each other. As compared to the selected setting, there exist
others that generate a lower RRMSE for a specific subsample butwith higher RRMSEs for the
remaining subsamples, suggesting lower stabilities. For example, the setting #71 generates a
lower RRMSE than the setting #67 for the training phase but higher RRMSEs for the
validation and testing phases. By selecting the model setting with relatively stable
performance across the training phase, validation phase and testing phase, we try to avoid
potential problems of model overfitting or underfitting.

With the selected setting determined for prices of yellow corn, we turn to assess
sensitivities of performance to different settings through switching one model setting
each time. Figure 4 shows the results of assessments of performance sensitivities, where
RRMSEs corresponding to the training phase, validation phase and testing phase are

Model setting

Algorithm LM 1 þ 2i (i 5 0,1,. . .,59)
SCG 2 þ 2i(i 5 0,1,. . .,59)

Delay 2 1 þ 10j–2 þ 10j (j 5 0,1,. . .,11)
3 3 þ 10j–4 þ 10j (j 5 0,1,. . .,11)
4 5 þ 10j–6 þ 10j (j 5 0,1,. . .,11)
5 7 þ 10j–8 þ 10j (j 5 0,1,. . .,11)
6 9 þ 10j–10 þ 10j (j 5 0,1,. . .,11)

Hidden neuron 2 1 þ 40k–10 þ 40k (k 5 0,1,2)
3 11 þ 40k–20 þ 40k (k 5 0,1,2)
5 21 þ 40k–30 þ 40k (k 5 0,1,2)
10 31 þ 40k–40 þ 40k (k 5 0,1,2)

Training vs validation vs testing ratio 70% vs 15% vs 15% 1–40
60% vs 20% vs 20% 41–80
80% vs 10% vs 10% 81–120

Source(s): Elaborated by the authors

0.60%

1.00%

1.40%

1.80%

2.20%

2.60%

3.00%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

RR
MS

E

Setting

Training Validation Testing

Chosen setting #67

Source(s): Elaborated by the authors

Table 2.
Explored model

settings for the weekly
price index of
yellow corn

Figure 3.
RRMSEs across all

model settings for the
weekly price index of

yellow corn

Forecasts of
commodity

prices

51



reported. The performance comparison between the model setting #67 and the model
setting #68 aims at evaluating the sensitivity to training algorithm as the former is based
upon the LM algorithm while the latter is based upon the SCG algorithm. Performance
comparisons between the model setting #67 and model settings #61, #63, #65 and
#69 aim at evaluating sensitivities to delays as the former is based upon 5 delays
while the latter four are based upon 2, 3, 4 and 6 delays, respectively. Performance
comparisons between the model setting #67 and model settings #47, #57 and #77 aim at
evaluating sensitivities to hidden neurons as the former is based upon 5 hidden neurons
while the latter three are based upon 2, 3 and 10 hidden neurons, respectively.
Performance comparisons between the model setting #67 and model settings #27 and
#107 aim at evaluating sensitivities to how the price series is segmented into the
training phase, validation phase and testing phase as the former is based upon the ratio of
60%–20%–20% while the latter two are based upon ratios of 70%–15%–15% and
80%–10%–10%, respectively. With these performance comparisons, the model setting
#67 is selected for the price series of yellow corn. Based upon the model setting #67,
RRMSEs are 1.05%, 1.08% and 1.03%, respectively, corresponding to the training phase,
validation phase and testing phase, and the overall RRMSE is 1.05%. From Figure 4, we
can observe that the LM algorithm leads to lower RRMSEs than the SCG algorithm.
Specifically, this is evidenced through the performance comparison between the model
setting #67 and the model setting #68. The achievement of higher accuracy via the LM
algorithm for neural networks based upon the multilayer perceptron structure and two
hidden layers as compared to the SCG algorithm tends to be consistent with the finding in
previous work (Batra, 2014; Xu & Zhang, 2022). Overall performance is slightly better
based on the model settings #27 and #107 than the model setting #67 because the model
setting #67 reserves fewer data for training and validation phases than the model settings
#27 and #107. But the minor performance differences between the model setting #67
and model settings #27 and #107 suggest that the results are generally robust to data
segmentation ratios.

We present plots of detailed forecasted results based upon the selectedmodel setting in the
top panel of Figure 5 and corresponding detailed forecast errors in the bottom panel of
Figure 5 across the training phase, validation phase and testing phase. Overall, the selected
model setting for the price series of yellow corn generates good forecast performance results
that are also stable across different phases. In addition, as can be seen from Figure 5, the
selected model setting does not lead to the issue of consistent overprediction or
underprediction across the phases. To assess the adequacy of the selected model setting,
analysis of auto-correlations of errors has been conducted (results are omitted here for brevity
but are available upon request) for up to 20 lags, and it is found that they generally do not

#67
(Chosen) #68 #61 #63 #65 #69 #47 #57 #77 #27 #107

Training 1.05% 1.43% 1.08% 0.90% 1.02% 0.99% 1.05% 0.96% 1.13% 1.03% 1.02%
Validation 1.08% 1.10% 1.34% 1.03% 1.00% 1.23% 1.04% 1.26% 1.30% 0.80% 0.90%
Testing 1.03% 1.26% 1.05% 1.52% 1.26% 0.98% 1.17% 1.07% 1.07% 1.07% 1.18%
Overall 1.05% 1.34% 1.13% 1.08% 1.07% 1.04% 1.08% 1.05% 1.15% 1.01% 1.03%
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breach the 95% confidence limits with the two exceptions of the 4-th and 18-th lags, for which
slight breaches are determined. These slight breaches would have been avoided with the use
of the 99% confidence limits. Thus, the analysis of auto-correlations of errors confirms the
adequacy of the selected model.

Inhabitancies of potential nonlinearities in the higher moments in financial or economic
time series have been widely reported in the literature (Karasu et al., 2020; Wang & Yang,
2010; Yang et al., 2010, 2008). Here, we use the BDS test (Brock, Scheinkman, Dechert, &
LeBaron, 1996; Dergiades, Martinopoulos, & Tsoulfidis, 2013; Fujihara &Mougou�e, 1997) on
weekly prices of yellow corn and determine that the corresponding p� values are all nearly
zero based upon different testing scenarios. Given this situation, neural network models are
suitable for modeling nonlinear features in the price series (Altan et al., 2021; Karasu et al.,
2020). There are other machine learning approaches that could be considered for modeling
nonlinearities. One advantage of neural network models is the use of combinations of
different nonlinear functions rather than the use of one particular nonlinear function for
approximations of the underlying price time series (Wang & Yang, 2010; Yang et al., 2010,
2008). With forecast results achieved here that are rather accurate and stable, our analysis
demonstrates the potential of neural network models for forecasting prices of wholesale
yellow corn.

6. Robustness analysis
Determining the number of layers needed for particular tasks has been an interesting topic for
both theoretical and empirical research on neural networks, and the theoretical literature has
not yet provided explicit guidelines in this regard (Gershenson, 2003; Jain, Mao,&Mohiuddin,
1996). From a practical standpoint, the implementation of the neural network generally does
not require too many layers because training time would grow exponentially following the
increase in the number of layers used (i.e. much more computation would be needed) and the
tendency of model overfitting would also be elevated (Gershenson, 2003). A two-layer
network could already form rather complex decision boundaries (Jain et al., 1996). For our
particular case without many predictors, a two-layer network seems sufficient. A seminal
study pointed out that a neural network generally does not need more than two hidden layers
to solve most problems (Lapedes & Farber, 1987). Thus, to assess sensitivities of model
performance to the number of layers used, we consider another neural network that has an
additional hidden layer than our selected setting#67 and compare the resultant RRMSEs.We
call this alternative neural network model “NN#67–MoreLayers,”which also uses 5 delays, 5
hidden neurons, the LM algorithm and the data splitting ratio of 60% vs 20% vs 20% for
training, validation and testing.
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When making comparisons of different models’ performance, we also adopt a modified
Diebold–-Mariano (Diebold & Mariano, 2002) test (Harvey, Leybourne, & Newbold, 1997).
This test of differences in performance of different models is based upon

dt ¼ errorM1
t

� �2

− errorM2
t

� �2

, where errorM1
t and error M2

t are used to denote two errors

associated with time t that stem from modelsM1 andM2, respectively. Here for our case, we
could let M1 denote NN#67–MoreLayers and M2 denote our selected setting #67. The test
statistic, which could be denoted as MDM , can be expressed as MDM ¼
Tþ1− 2hþT−1hðh− 1Þ

T

h i1=2
T−1 γ0 þ 2

Ph−1
k¼1γk

� �h i−1=2
�d, where T is used to denote the length of

the time period based on which comparisons of performance are carried out, h is used to
denote the time horizon (for our case, h 5 1), �d is used to denote dt’s sample mean,

γ0 ¼ T−1PT

t¼1 dt − �d
� �2

is used to denote dt’s variance and γk ¼ T−1PT

t¼kþ1 dt − �d
� �

dt−k − �d
� �

is used to denote dt’s kth auto-covariance for k 5 1, . . ., h � 1 and h ≥ 2. Under
the null that two particular models being compared produce equal MSEs (mean squared
errors), theMDM test would follow the t–distributionwithT� 1 degrees of freedom. Figure 6
shows comparisons of the setting#67 andNN#67–MoreLayers in terms of RRMSEs, where it
could be observed that the two models lead to close performance. Specifically, NN#67–
MoreLayers leads to slightly better performance for the training phase, and the setting #67
leads to slightly better performance for the validation and testing phases. The p� value of the
MDM test for the testing phase is 0.263, indicating that the two models do not lead to
performance differences that are statistically significant. As NN#67–MoreLayers is more
complicated than the setting #67 but does not lead to significant better performance, the
setting #67 appears to be a better choice for our case.

7. Benchmark analysis
Analysis so far has focused on the neural network. Here, we consider the following
benchmark models against our selected setting #67: the random walk (RW) model, the
autoregressive (AR) model, the autoregressive-generalized autoregressive conditional
heteroskedasticity (AR-GARCH) model, the support vector regression (SVR) model, the
regression tree (RT) model and the long short-term memory neural network (LSTM) model.

Training ValidaƟon TesƟng
#67 1.052% 1.084% 1.029%
NN#67-MoreLayers 1.049% 1.086% 1.034%
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Similar to robustness analysis aforementioned, when comparing model performance, we
consider both RRMSEs and MDM tests of differences in MSEs.

Details of the six benchmark models are as follows. The RWmodel uses the price of the
previous week as the forecast. The AR model uses the same number of lags as the setting
#67, which is 5. The AR-GARCH model also uses the same number of lags as the setting
#67 for the AR part and the GARCH(1,1) structure for the GARCH part. The linear
e-insensitive SVR model is adopted here, with the box constraint set to be the interquartile
range of the target variable divided by 1.349 and the half the width of the e-insensitive
band set to be the interquartile range of the target variable divided by 13.49, which uses
lagged one to lagged five price series as predictors. The RT model is based upon the
classification analysis and regression tree (CART) algorithm (Breiman, 2017), with the
minimum number of branch node observations set to 10 and the minimum number of leaf
node observations set to 4, which uses lagged one to lagged five price series as predictors.
The LSTM model uses the two-layer structure in the open loop form with the number of
time steps set to 5 and the number of LSTM units set to 10, which employs the Adam
optimizer for training.

Figure 7 presents performance comparisons of the setting #67 and the six benchmark
models based upon the RRMSE. Table 3 presents performance comparisons based upon the

gnitseTnoitadilaVgniniarT
#67 %920.1%480.1%250.1
RW %201.1%334.1%331.1
AR %911.91%099.72%062.6
AR-GARCH %079.81%603.72%251.6
SVR %203.1%154.1%373.1
RT %183.1%775.1%394.1
LSTM %910.1%080.1%640.1
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Comparison p � value of the MDM test

#67 vs RW 0.042
#67 vs AR <0.001
#67 vs AR-GARCH <0.001
#67 vs SVR 0.029
#67 vs RT 0.018
#67 vs LSTM 0.135

Source(s): Elaborated by the authors

Figure 7.
Performance

comparisons of the
setting #67 and six
benchmark models

Table 3.
MDM test results of
benchmark analysis

Forecasts of
commodity

prices

55



MDM test for the testing phase. From these results, we could observe that the RW model
leads to relatively close performance to the setting#67 based upon the RRMSE, but theMDM
test suggests that performance generated by the setting #67 is significantly better than that
by the RW model for the testing phase at the 5% level. While the AR-GARCH model helps
improve performance based upon the AR model, these two models do not lead to as accurate
performance as the setting #67, and the corresponding MDM tests both lead to p � values
well below 0.001. Although the SVR and RT models do not beat the setting #67, their
performance in terms of the RRMSE is not far from that based on the setting #67.MDM tests
suggest that performance generated by the setting #67 is significantly better than that by the
SVR and RT models at the 5% level. The LSTM model could further improve performance
based upon the setting #67 but the magnitude is rather limited in terms of the RRMSE, with
the MDM test suggesting an insignificant result either.

8. Conclusion
For diverse varieties of agricultural market participants, constructing price forecasts of
different types of agricultural commodities has always been an important task. In the present
work, we carry out the forecast exercise by focusing on weekly prices of wholesale yellow
corn in the Chinese market from January 1, 2010 to January 10, 2020. For this purpose, we
adopt the nonlinear auto-regressive neural network model to tackle this particular forecast
problem by taking into consideration differentmodel settings, which include fields of training
algorithms, hidden neurons, delays and how the data are segmented. With the analysis, a
relatively simple model is constructed which produces performance that is rather accurate
and stable. More specifically, the Levenberg–Marquardt algorithm (Levenberg, 1944;
Marquardt, 1963) is applied for constructing themodel following the ratio of 60%–20%–20%
for segmenting the price series into the training phase–validation phase–testing phase. The
model is based upon 5 delays and 5 hidden neurons. It leads to relative root mean square
errors of 1.05%, 1.08% and 1.03%, respectively, for the training phase, validation phase and
testing phase, and the relative root mean square error of 1.05% for the overall data. Forecast
results here could be utilized as part of technical analysis and/or combined with other
fundamental forecasts as part of policy analysis. The forecast framework utilized here should
be rather straightforward, which represents an essential consideration to policymakers and a
significant number of market participants (Brandt & Bessler, 1983). Such a forecast
framework could be applied to relevant forecast problems across many other commodity
price series from different economic segments. For future work, one potential interesting
avenue would bemaking forecasts of commodity prices by utilizing the combination of graph
theory and time series models (Bessler & Wang, 2012; Kano et al., 2003; Shimizu, Hoyer,
Hyv€arinen, Kerminen, & Jordan, 2006, 2011; Shimizu & Kano, 2008; Xu, 2014; Xu & Zhang,
2022). Another worthwhile path would be examining economic significance that stems from
price forecasts based upon different machine learning models (Wang & Yang, 2010; Yang
et al., 2010, 2008). For example, one study (Colino& Irwin, 2010) found that a rootmean square
error reduction of 1% would translate to $11,500 for a risk-averse hog producer, who utilizes
price forecast information as part of decision-making, in the agricultural sector with
production of 10,000 head per year.
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