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Abstract
Purpose – Transfer relations represent analytical solutions of the linear theory of circular arches, relating
each one of the kinematic and static variables at an arbitrary cross-section to the kinematic and static
variables at the initial cross-section. The purpose of this paper is to demonstrate the significance of the
transfer relations for structural analysis by means of three examples taken from civil engineering.
Design/methodology/approach – The first example refers to an arch bridge, the second one to the vault
of a metro station and the third one to a real-scale test of a segmental tunnel ring.
Findings – The main conclusions drawn from these three examples are as follows: increasing the number of
hangers/columns of the investigated arch bridge entails a reduction of the maximum bending moment of the
arch, allowing it to approach, as much as possible, the desired thrust-line behavior; compared to
the conventional in situ cast method, a combined precast and in situ cast method results in a decrease of the
maximum bending moment of an element of the vault of the studied underground station by 46%; and the
local behavior of the joints governs both the structural convergences and the bearing capacity of the tested
segmental tunnel ring.
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Originality/value – The three examples underline that the transfer relations significantly facilitate
computer-aided engineering of circular arch structures, including arch bridges, vaults of metro stations and
segmental tunnel rings.

Keywords Arch bridges, Hybrid analysis, Segmental tunnel linings, Vaults of underground station

Paper type Research paper

1. Introduction
The curvature of arches renders their structural analysis more challenging and expensive
than that of straight beams. Transfer relations, representing analytical solutions of the
linear theory of slender circular arches, were developed by Zhang et al. (2017). They are
arranged, in a matrix-vector form, as follows: an 1� 7 vector on the left-hand side,
containing the kinematic and static variables at an arbitrary cross-section of the arch, is
obtained as the product of a 7� 7 matrix and an 1� 7 vector, containing the kinematic and
static variables at the initial cross-section of the arch. They serve as a powerful tool for
structural analysis of arch structures.

The present paper is focused on structural analysis of three exemplary arches, based on
the transfer relations.

Structural analysis of an arch bridge is the topic of the first example. In case of arches
with low degrees of static indeterminacy and specific types of external loads, bridge
designers may prefer analytical methods for structural analysis to numerical method.
Concerning analytical methods, Fox (2000) reviewed the one of consistent deformations for
pinned arches, which are statically indeterminate to the first degree. Melbourne (2008)
presented a method based on Castigliano’s second theorem. Dym and Williams (2011)
derived the governing differential equations of arches based on Sanders’ shell theory
(Sanders, 1961) and variational calculus (Dym and Shames, 1973). Solutions of these
equations for pinned or clamped arches, under radial and gravitational line loads, and for
shallow arches, subjected to a concentrated axial load, acting at the end of the arch, were
presented in Dym and Williams (2011) and Dym (2011). In most cases, arch bridges are
complex in terms of boundary conditions and types of external loads, necessitating the use
of numerical methods of structural analysis (Wei et al., 2019). However, significant pre-
processing efforts may be involved, particularly in case of sensitivity analysis of arch
bridges, frequently requiring several changes of the geometric dimensions of the arch and
the number and arrangement of the hangers or the columns (Hemp, 1974; Cheng, 2010). To
improve this situation, transfer relations are considered in this work. Sensitivity analysis of
the arch bridge “Zollamtssteg” in Vienna, with regard to the number of hangers, was carried
out.

Structural analysis of the vault element of an underground station is the topic of the
second example. The motivation for this example is the development of underground
space in large cities. It refers to both the increasing number of underground
infrastructures (Chen et al., 2018) and the increasing scale of underground space
(Sadaghiani and Dadizadeh, 2010). It has resulted in innovative underground structures
and corresponding construction techniques, see e.g. Kivi et al. (2012), who developed a
pre-supporting system consisting of arches and central columns, using it in the
construction of a metro station in Tehran, Fang et al. (2012) who proposed a method for
construction of metro stations by means of shallow tunneling, and Ding et al. (2019)
who reported on a prefabricated large-span metro station in Changchun. The
investigated underground station represents the first column-free metro station in
Shanghai (Zhang et al., 2019c). It consists of a large-span vault without columns. The
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vault was constructed by a combined precast and in situ cast method (Zhang et al.,
2020). It required subdivision of the vault into a number of identical elements. A typical
vault element consisted of a precast part and an in situ cast part. Compared to the
conventional in situ cast method, the period of construction, based on the combined
precast and in situ cast method, was shortened significantly, Structural analysis of the
vault element was carried out with the help of transfer relations. The discussion
focused on the advantage of the combined precast and in situ cast method over the in
situ cast method in the form of reducing the maximum bending moment of the vault
element.

Structural analysis of a real-scale test of a segmental tunnel ring is the topic of the
third example. Segmental tunnel rings typically consist of reinforced concrete segments
and the joints connecting the segments (Nini�c and Meschke, 2017). The structural
behavior of the individual segmental tunnel rings is governed by the local behavior of
the segment-to-segment joints (Zhang et al., 2019b). Modeling of the joints is a non-
trivial task, because their complex contact mechanical behavior depends on many
factors (Liu et al., 2017; Li et al., 2015; Zhang et al., 2019d). Among them are the
geometric layout of the joints, the potential use of prestressed connecting bolts, the
stresses acting in the contact zone and potential dislocations and relative rotation
angles (Majdi et al., 2016). To investigate the structural behavior of segmental tunnel
rings, many real-scale tests have been carried out, see e.g. Luttikholt (2007) for railway
tunnels, Liu et al. (2016) for metro tunnels, Qiu et al. (2019) for gas transmission tunnels
and Huang et al. (2019) for water conveyance tunnels. As regards the present work,
access to the recorded experimental data of the test by Liu et al. (2016) provided the
motivation to develop a hybrid method for structural analysis of segmental tunnel
rings. The measured displacement discontinuities at the joints were used, together with
prescribed external loads, as input for hybrid structural analysis. It was based on
transfer relations, allowing to consider these discontinuities in a straightforward
manner. This eliminates the interfacial nonlinearities that may result from:

� bending-induced partial segment-from-segment separation (Gladwell, 1980; Janßen,
1983);

� the material behavior, including crushing of concrete and yielding of the steel bolts
(Tvede-Jensen et al., 2017); and

� the time-dependent viscoelastic material behavior of concrete (Schlappal et al., 2017,
2019).

Thus, the developed method significantly simplifies structural analysis.
The three described applications from bridge and subsurface engineering were selected

to underline the versatility of the transfer relations. They allow for computing analytical
solutions of the theory of thin circular arches for highly statically indeterminate arch
bridges, for statically determined vaults representing three-hinged arches and for three-
times kinematic segmental tunnel rings.

The paper is organized as follows. The transfer relations are presented in Section 2.
Sections 3–5 are dedicated to the aforementioned three examples. Section 6 contains the
main conclusions drawn from the present study.

2. Transfer relations
The transfer relations read as (Zhang et al., 2017) follows:
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(2)

In equation (1), the vector on the left-hand side contains the kinematic and static variables at
an arbitrary cross-section, defined by the angular coordinate w . These variables are the
cross-sectional rotation u ; the radial and the tangential component of the displacement of
the axis of the arch, u and v; the normal force N; the shear force V; and the bending moment
M. The matrix on the right-hand side is the so-called transfer matrix. Its top-left six-by-six
submatrix refers to the solution for an unloaded part of the arch. The mathematical
expressions for some of the nonzero elements of this submatrix are given in equation (2),
where R, EA, and EI denote the radius, the extensional stiffness and the bending stiffness of
the arch, respectively. The first six elements in the last column of the transfer matrix in
equation (1) refer to the superposition of analytical solutions for dead load, interfacial
discontinuities of kinematic variables and point loads, given in Zhang et al. (2017), as well as
for a uniform temperature change, given in Zhang et al. (2018), ground pressure, given in
Zhang et al. (2019b) and the overload on the ground surface, given in Zhang et al. (2020). In
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equation (1), the vector on the right-hand side contains the kinematic and static variables at
the initial cross-section of the arch (index“i”), i.e. for w ¼ 0. ui, vi, u i, Mi, Ni, and Vi are
obtained from the boundary conditions (Zhang et al., 2017). Once they are known, the
kinematic and static variables at an arbitrary cross-section can be obtained in form of a
simple matrix-vector product, see equation (1). These relations serve as the vehicle for
structural analysis of the three previously mentioned arch structures. The algorithm which
steers structural analysis of arch structures is listed in Table 1.

The displacement field u is evaluated with the help of the computed radial and tangential
displacement components, u and v. u is given as follows:

u ¼ uer þ v� r � Rð Þ 1
R
du
dw

� v
R

� �� �
ew ; (3)

where er and ew represent base vectors in the radial and the tangential direction,
respectively, and r denotes the radial coordinate. The normal stresses s and the shear
stresses t are obtained from:

s ¼ N
A
þM

I
r � Rð Þ ; (4)

t ¼ �V
I
S
b
; (5)

where N and M stand for the normal force and the bending moment, respectively; I and S
denote the second and the first moment of area, respectively, and b stands for the width of
the cross-section.

3. Structural analysis of an arch bridge
The investigated arch bridge is the “Zollamtssteg” in Vienna [Figure 1(a)]. It consists of two
parallel circular arches, resting on clamped supports, the bridge deck and two pairs of
equally spaced vertical hangers/columns, connecting the deck and the arches [Figure 1(b)].
The number of each pair of hangers/columns is 21. The span L and the radius R of the
arches are equal to 30.40m and 16.73m, respectively. The boundary conditions read as
ui ¼ vi ¼ u i ¼ uf ¼ vf ¼ u f ¼ 0, where “f” represents the index of the final cross-section.
The arches are made of steel with Young’s modulus amounting to 210GPa. Their cross-
sections are of “I” shape. The thickness of the flange and the web is equal to 2.6mm and
4mm, respectively. Both the width and the height of the cross-section amount to 50mm. The

Table 1.
Flowchart

illustrating the use of
the transfer relations

for structural
analysis of arch

structures

Input Radius, extensional stiffness, and bending stiffness of the arch, R, EA and EI, and, if applicable,
the values and the acting positions of external loads, e.g. point loads, interfacial discontinuities of
kinematic variables, dead load, uniform temperature change, ground pressure, etc.

(i) Determine three of the integration constants (ui, vi, u i,Mi, Ni and Vi) from the boundary
conditions at the initial cross-section

(ii) Determine the remaining three integration constants from the boundary conditions at the final
cross-section

(iii) Evaluate the transfer relations (1) for any cross-sections of interest
Output Kinematic and static variables at any cross-section of interest
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extensional stiffness EA, the bending stiffness EI , and the dead load qa of the arches are
given as follows:

EA ¼ 9442MN; EI ¼ 416MNm2; qa ¼ 0:0035MN=m : (6)

Herein, one half of the bridge, consisting of one arch, one half of the bridge deck, and one
pair of hangers/columns, is investigated. The dead load, qd= 0.0070 MN/m, refers to one half
of the bridge deck. It is carried by the arch via the hangers, above the bridge deck, and the
columns, below the bridge deck.

The sensitivity of the load-carrying behavior of the arch with respect to the number of
equally spaced hangers/columns, n, was investigated, considering dead load of the arch and
the bridge deck. Dead load of the hangers/columns was not taken into account, because it is
much smaller than that of the arches and the bridge deck. The sensitivity analysis followed
an approach similar to the one described in Zhang et al. (2018). At first, classical structural
analysis of the deck, representing a continuous beam with n intermediate supports
(Figure 2), was carried out. The forces of the hangers/columns were equal to the support
forces. Finally, structural analysis of the arch, subjected to n point loads, was accomplished
by means of the transfer relations (1). n ranges from 1 to 30. Hence, altogether 30 analyses
were performed. The maximum bending moments of the arch, maxw jM w ; nð Þj, are
determined (Figure 3). As the number of the hangers/columns n increases from 1 to 10, the
maximum bending moment decreases by 60%. A further increase of n results in an
insignificant decrease of the maximum bending moment of the arch. Therefore, with regards
to the analyzed arch bridge, 10 equally spaced hangers/columns are sufficient for a good
distribution of the deck weight.

Knowledge of the internal forces allows for stress analysis. With the help of equations (4)
and (5), the vonMises stresses are obtained from:

Figure 2.
Sketch of the deck:
statically
indeterminate
continuous beam
with n intermediate
supports

Figure 1.
(a) Photo and (b)
geometric dimensions
of the investigated
arch bridge
“Zollamtssteg” in
Vienna, Austria
(length unit: mm)
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s von ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2 þ 3t 2

p
: (7)

Increasing the number of the hangers/columns from 1 to 5, and further to 10 and 21, results
in a decrease of the maximum von Mises stress from 36.98 MPa to 19.15 MPa, 18.23MPa
and 18.07 MPa (Figure 4). The maximum displacement decreases from 7.4 mm to 2.6 mm, as

Figure 4.
Distributions of the

vonMises stresses in
the deformed

configuration of the
investigated arches

with different
numbers of hangers/

columns

Figure 3.
Sensitivity of the

maximum bending
moment of the arch
with respect to the

number of hangers/
columns0 5 10 15 20 25 30

0

0.05

0.1

0.15

0.2

0.25

0.3
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the number of the hangers/columns increases from 1 to 5. A further increase of this number,
however, only results in an insignificant change of the maximum displacement.

The transfer relations are appealing to structural analysis of arch bridges, because of the
following reasons:

� Compared to mesh-based numerical simulation methods, the transfer relations
reduce the amount of preprocessing in the framework of sensitivity analysis of arch
bridges with respect to number of hangers/columns. The former typically require re-
meshing of the arch when either changing the number of hangers or the locations of
their connection to the arch, because each of such connections requires node-to-node
connectivity. However, the transfer relations allow to account for the forces and
locations of hangers/columns by means of load integrals, i.e. in a straightforward
manner. This advantage is non-trivial, because preprocessing (including mesh
generation) generally dominates the time needed for performing structural analysis.

� Compared to discretization-based numerical solutions, the transfer relations,
representing analytical solutions, do not suffer from discretization errors. Therefore,
there is no need for quantification of this error in form of a convergence study.

� Transfer relations are computationally inexpensive, because the solution of a given
problem only involves evaluations of the product of a 7 � 7 transfer matrix and a
7� 1 vector.

4. Structural analysis of a vault element of a metro station
The metro station considered is the Wuzhong Road Metro Station in Shanghai, see the
details described in Zhang et al. (2020). Its vault, which is part of the station, is a segment of
a cylindrical shell. It consists of 56 identical arch elements, arranged in a parallel fashion
along the axis of the vault. The width B, the span L and the radius R of the elements are
equal to 2.95m, 19.8m and 15.1m, respectively. The vault was constructed by a combined
precast and in situ cast method (Zhang et al., 2020). Thus, a vault element consists of a
precast part and an in situ cast part. The precast part serves as the permanent formwork of
the in situ cast concrete, see Figure 5 for part of the permanent formwork. Each vault
element consists of two precast arch segments. The shape of the cross-section of these
segments is an upside-down p [Figure 6(a)]. The thickness of the flange amounts to 100mm.
The width and the height of the ribs are equal to 25 mm and 50mm, respectively. The width
B and the height H of the rectangular cross-section of the integral arch elements amounted
to 2.95 m and 1.0m, respectively. The strength class of the used concrete is C35. Its Young’s
modulus is equal to 31.5GPa.

The loads depend on the construction program. The precast segments were produced in
a factory. After curing, they were transported to the construction site. Two segments each

Figure 5.
Photo of the precast
part of the vault of
theWuzhong Road
Metro Station in
Shanghai, serving as
a permanent
formwork

EC
38,3

1294



are assembled to a three-hinged arch, serving as a permanent formwork. The arch carries
the dead load of the integral arch, q = 0.059 MN/m [Figure 6(a)]. After hardening of the in
situ cast concrete, the integral arch becomes a clamped arch, subjected to equivalent ground
pressures in the vertical and the horizontal directions, denoted as s v and sh, respectively
[Figure 6(b)]. These pressures are given as follows (Zhang et al., 2020):

s v ¼ gR 1� sin w þ bð Þ� �þ ghs þ p0 ; (8)

s h ¼ KfgR 1� sin w þ bð Þ� �þ ghs þ p0g ; (9)

where b denotes the inclination angle of the initial cross-section relative to the x-axis, hs
stands for the height of the covering soil at the crown of the vault, p0 stands for the overload
on the ground surface and g and K denote the unit weight and the lateral pressure
coefficient of the soil, respectively. As for the investigated vault element, b , hs, p0, g and K
are equal to 0.1408 rad, 2.65m, 20 kPa, 20 kN/m3 and 0.65, respectively.

Two modes of structural analysis were carried out with the help of the transfer relations.
The first one simulates the combined precast and in situ cast construction method. The
results were obtained by superposition of results from structural analysis of the three-
hinged arch, subjected to dead load, and results from structural analysis of the clamped
arch, subjected to the ground pressure, see the magenta curves in Figure 7. The secondmode
simulates the conventional in-situ-cast construction method. The results were obtained from
structural analysis of the clamped arch, subjected to both dead load and the ground
pressure, see the green curves in Figure 7. The effect of the construction method on the
deformed configuration and the distribution of the bending moments of the vault element is
significant. This is underlined by the fact that the deflection at the crown of the vault
element, constructed by the combined precast and in situ cast method, is by 308% larger
than that obtained by the in situ cast method [Figure 7(a)], but that the maximum bending
moment in case of the former is by 46% smaller than that in case of the latter, [Figure 7(b)].
However, the value of the deflection at the crown of the vault element, constructed by the
combined precast and in situ cast method, is only 0.026% of the span of the vault. Hence, the

Figure 6.
Idealization of an

element of the vault
at theWuzhong Road

Metro Station
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percentage increase of this deflection compared to the one obtained by the in situ cast
method is irrelevant. The effect of the construction method on the normal and the shear
forces is insignificant [Figures 7(c) and 7(d)].

An advantage of using transfer relations for structural analysis of the vault element is
the way of consideration of the boundary conditions. They are satisfied by means of
determination of the six kinematic and static variables at the initial cross-section. The three
boundary conditions at this cross-section directly provide the solutions for three of the six
variables. The three boundary conditions at the final cross-section provide three linear
equations for the remaining three kinematic and static variables at the initial cross-section.
A change of the boundary conditions results only in a change of the six kinematic and static
variables at the initial cross-section, whereas the transfer matrix remains unchanged. This is
particularly useful for a comparative analysis of vault elements with different boundary
conditions.

5. Hybrid structural analysis of a real-scale test of a segmental tunnel ring
The re-analyzed real-scale test of a segmental tunnel ring was carried out at Tongji
University (Liu et al., 2016; Figure 8). The radius R of the centerline of the tested ring was
equal to 2.925m. The rings consisted of six reinforced concrete segments. Young’s modulus
E, the uniaxial compressive strength fc, and the tensile strength ft of the concrete were
determined from multiscale models (Königsberger et al., 2018; Hlobil, 2016), as 43.6GPa,
62MPa and 3.17MPa, respectively. The width B and the heightH of the cross-section of the
segments amounted to 1.2m and 35 cm, respectively. The ring was loaded all way up to its
bearing capacity. This was done by means of three groups of altogether 24 equally spaced

Figure 7.
Analysis results for a
vault element
constructed by the
combined precast and
in situ cast method,
see the magenta
curves, and,
alternatively, by the
in situ cast method,
see the green curves

precast and in-situ-cast
in-situ-cast

precast and in-situ-cast
in-situ-cast

precast and in-situ-cast
in-situ-cast

precast and in-situ-cast
in-situ-cast

(a) (b)

(c) (d)

Notes: (a) Deformed configuration of the axis of the vault element; (b) distribution
of the bending moments; (c) the normal forces; (d) the shear forces; the black
curves refer to the undeformed configuration (Zhang et al., 2020)
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hydraulic jacks, acting on the outer surface of the ring. The experimental monitoring
involved the jack forces and the displacement/rotation discontinuities, developing at the
segment-to-segment joints, as well as the vertical and the horizontal convergences.

During the test, cracking of the reinforced concrete segments, a reduction of the initial
contact area of the segment-to-segment joints, and crushing of concrete in compression at
the joints was observed. Therefore, the analysis of the bearing capacity of the tested
segmental tunnel ring requires consideration of the nonlinearities resulting from both
cracking of the segments and the complex behavior of the joints, including segment-from-
segment separation and the nonlinear behavior of the materials of the joints. Herein, a
hybrid method (Zhang et al., 2017) was used for structural analysis of the tested ring. This
way, the complex behavior of the joints was considered in a straightforward manner,
because the measured relative rotations at the joints, together with the external loading,
were used as input. Bending-induced tensile cracking of the segments requires the extension
of the linear transfer relations to consideration of the nonlinearities resulting from such
cracking.

The hybrid analysis consists of two load cases (Zhang et al., 2019a). This approach
follows scientific work by Blom (2002) and by El Naggar and Hinchberger (2008). They
assumed that the relative rotation angles at the joints result in rigid-body displacements of
the segments. Load Case I refers to these rotations. They are estimated from monitored data,
based on the Bernoulli–Euler hypothesis, and then post-processed such as to refer to rigid-
body displacements of the segments, see Zhang et al. (2019a) for details. This post-
processing is carried out with the help of transfer relations including the load integrals for
the relative rotation angles at the joints. Based on the analysis of Load Case I, rigid-body
displacements of the segments are obtained. Load Case II refers to the point loads, while the
relative rotation angles are set equal to zero. In this case, the corresponding structural
analysis is one of a closed ring without joints, subjected to point loads. To consider bending-
induced tensile cracking of the six segments, they are subdivided into 34 elements. The
length of the elements in the tangential direction is approximately equal to the distance of
neighboring cracks. The elements contain a crack band in the middle and an undamaged
zone on each one of the two sides. The extensional stiffness and the bending stiffness of the
crack band is quantified by a multiscale model for tensile softening of concrete (Hlobil,
2016). Then, the effective bending and extensional stiffnesses of the damaged element are
quantified, using the Voigt–Reuss–Hill estimate (Hill, 1952). These stiffnesses are constant
within the elements. They are used for simulations of the segmental tunnel ring, based on
the linear transfer relations. Superposition of the two load cases completes the nonlinear
hybrid analysis of the segmental tunnel ring. This is admissible, even though the analysis of

Figure 8.
(a) Photo and (b)

geometric dimensions
of the analyzed

segmental tunnel ring
according to Liu et al.

(2016) and Zhang
et al. (2017),
respectively
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Load Case II is nonlinear, because Load Case I only results in rigid-body displacements and
the equilibrium conditions of the structure are formulated in the undeformed configuration.

The model-predicted convergences are compared with corresponding experimental
measurements (Figure 9). Their agreement underlines the usefulness of the chosen analysis
approach. It is notable that rigid-body displacements of the segments (see the green curves
in Figure 9) are responsible for approximately 95% of the convergences, whereas the
deformations of the segments (see the black curves in Figure 9) are only responsible for the
remaining 5%. Therefore, the relative rotation angles at the joints govern the convergences
of the analyzed segmental tunnel ring.

The normal stresses of the concrete are evaluated from the obtained internal forces, the
effective stiffnesses of the elements and the constitutive model of the concrete (Zhang et al.,
2019a). Then, the level of loading of the concrete is quantified by the stress levels z , defined
as (Hellmich et al., 2001):

z ¼ js j
smax

; smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:402
0:402þ 0:396v

r
� ft . . . s c � 0 ;

fc . . . s < 0 ;

8<
: (10)

where v denotes the damage variable, which is equal to the crack density parameter by
Budiansky and O’Connell (Budiansky and O’Connell, 1976). z = 1 indicates that concrete cracks
in tension and z = –1 that it crushes in compression. When the bearing capacity was reached, z
was equal to 1 at the inner surface in the crown and the bottom regions as well as at the outer
surface in the two lateral regions, see Figure 10 for the distribution of the stress levels in the
deformed configuration. However, the blue color, associated with z = –1, does not appear.
Because the development of plastic hinges requires the compressive stress of concrete to reach the
compressive strength, i.e. z = –1, there are no plastic hinges inside the segments. Further
analysis of the joints has shown that the bearing capacity of the segmental tunnel ring is a
consequence of the development of plastic hinges at the two top joints and the two lateral joints.

Herein, the relative rotation angles at the joints are post-processed such that they refer to
a symmetricmode of rigid-body displacements of the segments. A generalized mode of rigid-
body displacements was recently considered in Jiang et al. (2020). In addition, the described
hybrid method of analysis of segmental tunnels requires measured relative rotations at the
segment-to-segment interfaces. If such measured quantities are not available, it is necessary
to resort to a classical mode of analysis of such tunnels. To this end, linear transfer relations
are combined with a nonlinear interface law (Zhang et al., 2019b).

Figure 9.
Comparison of the
convergences
obtained from
simulation and
measurements

EC
38,3

1298



The hybrid approach eliminates the need to consider the interfacial nonlinearities and, thus,
significantly simplifies structural analysis (Zhang et al., 2017). The transfer relations are
very valuable for such hybrid structural analysis, because they consider, in a
straightforward manner, the relative rotation angles at the joints. As for finite element
methods, prescribing these relative rotations, however, is a challenging task.

6. Conclusions
Transfer relations, representing analytical solutions of the linear theory of circular arches, were
used for computer-aided engineering analysis of an arch bridge, a vault of a metro station, and
a segmental tunnel ring. The following conclusions are drawn from these three examples:

(1) Increasing the number of hangers/columns of arch bridges results in less
concentrated loading of the arch, rendering a reduction of the maximum bending
moment of the arch. For the investigated arch bridge, ten equally spaced hangers/
columns are sufficient for a good distribution of the deck weight. Further increase
of this number results in an insignificant reduction of the bending moments.

(2) As regards the vault element of the metro station at Wuzhong Road, Shanghai, a
combined precast and in situ cast method of construction results in a decrease of
the maximum bending moment by 46%, compared to the one obtained by the
conventional in situ cast method.

(3) The hybrid method allows for re-analysis of the bearing capacity of the tested
segmental tunnel ring. The analysis results show that the local behavior of the
joints governs both the structural convergences and the bearing capacity.

It is interesting to compare the used approach for structural analysis based on transfer
relations to the alternative and very popular approach of numerical analysis based on the
finite element method (FEM) for curved beams. Notably, results from FE simulations
converge, with increasing discretization efforts (i.e. with increasing fineness of the used FE
meshes), toward analytical solutions. Thus, every application of the FEM requires a
convergence analysis, involving at least one coarser FE mesh and typically two consistently
refined FE meshes. Thereby, mesh generation takes a significant amount of time,
particularly so in the presently discussed context of linear structural analysis. This
underlines the usefulness of the transfer relations, because they provide direct access to
analytical solutions of the linear theory of thin circular arches. The resulting advantages,
demonstrated by the three presented examples, are summarized as follows:

Figure 10.
Distribution of the
stress levels in the

deformed
configuration at the
bearing capacity; the
magnification factors
of the cross-sectional
dimensions and the
displacements are 1
and 10, respectively
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(1) Transfer relations reduce the complexity of structural analysis of circular arches to
that of structural systems consisting of straight beams. These relations are
particularly attractive for sensitivity analysis regarding, e.g. the number of
hangers/columns of arch bridges, because they can be easily specialized for
different numbers of these structural elements.

(2) Transfer relations are beneficial to a comparative analysis of vault elements with
different boundary conditions, to which they can be easily specialized by means of
the integration constants.

(3) Transfer relations are very valuable for hybrid structural analysis of segmental
tunnel rings, because they can consider, in a straightforward manner, the relative
rotation angles at the joints by means of load integrals.
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