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Abstract

Purpose – Breast cancer is a global public health dilemma and the most prevalent cancer in the world.
Effective treatment plans improve patient survival rates and well-being. The five-year survival rate is often
used to develop treatment selection and survival prediction models. However, unlike other types of cancer,
breast cancer patients can have long survival rates. Therefore, the authors propose a novel two-level
framework to provide clinical decision support for treatment selection contingent on survival prediction.
Design/methodology/approach – The first level classifies patients into different survival periods using
machine learning algorithms. The second level has two models with different survival rates (five-year and ten-
year). Thus, based on the classification results of the first level, the authors employed Bayesian networks (BNs)
to infer the effect of treatment on survival in the second level.
Findings –The authors validated the proposed approach with electronic health record data from the TriNetX
Research Network. For the first level, the authors obtained 85% accuracy in survival classification. For the
second level, the authors found that the topology of BNs using Causal Minimum Message Length had the
highest accuracy and area under the ROC curve for both models. Notably, treatment selection substantially
impacted survival rates, implying the two-level approach better aided clinical decision support on treatment
selection.
Originality/value – The authors have developed a reference tool for medical practitioners that supports
treatment decisions and patient education to identify patient treatment preferences and to enhance patient
healthcare.
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1. Introduction
Cancer is the second leading cause of death in the United States and a significant public health
problem. Breast cancer is the most common cancer and accounts for 31% of new cancer
incidents in females in the United States. According to the American Cancer Society, one in
eight women will develop breast cancer in her lifetime (Siegel, Miller, Fuchs, & Jemal, 2022).
Unlike patients with other types of cancer, breast cancer patients have about a 90% chance of
survivingmore than five years (Islami et al., 2022). Modeling studies show that early detection
and effective treatment plans improve survival rates (Berry et al., 2005). To that end,
researchers have adapted various machine learning (ML) tools to propose prognostic and
diagnostic models utilizingmedical datasets. Because the five-year survival rate is commonly
used, better understanding of treatments for longer survival periods should be included in
breast cancer studies as a necessity.

In the past decade, many medical organizations adopted electronic health records (EHRs)
in theUnited States after theMeaningful Use initiative in 2009 (Evans, 2016). The use of EHRs
made patient information easier to read and to be remotely accessed. As a result, clinical
decision support systems received wide attention on account of their potential to improve the
quality of healthcare (Murphy, 2014).

Decision systems with classification or prediction purposes typically employ ML models.
Nevertheless, most of these ML methods are similar to a black-box model, and it can be hard
or even impossible to explain how outcomes were identified. For that reason, Bayesian
networks (BNs) are more attractive for medical applications. The graphical representation of
the structure with the conditional probability distribution (CPD) for each node (variable)
makes BNs highly interpretable models that are easy to comprehend. Interpretability,
especially in the healthcare domain, helps provide medical practitioners insights and thus
make proper therapy decisions with high confidence. Using ML and BN together can be a
powerful approach for individualized treatment recommendations, as it allows to take
advantage of the strengths of both approaches.

This paper presents a novel two-level framework to provide data-driven clinical decision
support on breast cancer treatment selection. In theory, personalized treatments make a
difference in prolonging individual survival periods. Knowing an individual’s personal
survivability should be an important step before her personal treatment recommendation can
be made. Therefore, in this study, the first level classifies patients into different survival
periods using ML methods. Then, the second level derives probabilistic inferences of
prognostic outcomes using BNs.

The remainder of the paper is organized as follows. Section 2 gives a brief overview of
related works on breast cancer prognosis with an emphasis on BNs. Section 3 describes our
data collection and preprocessing techniques. A new two-level methodology structure is
described in Section 4. Section 5 exhibits the experimental results of the proposed approach.
Section 6 discusses the benefits of the new methodology and possible applications. Lastly,
Section 7 provides conclusions and future directions.

2. Background
A vast amount of literature discusses the adoption of ML techniques for prognosis prediction
in breast cancer. Two of the most frequently used MLmethods to predict the survivability of
breast cancer patients are artificial neural network (ANN) and support vector machine (SVM)
(Li et al., 2021). Delen, Walker and Kadam (2005) developed an ANNmodel to predict the five-
year life expectancy of breast cancer patients using the Surveillance, Epidemiology and End
Results database, and it achieved high-performance measures. However, Shin and Nam
(2014) report that SVM has better performance measures than ANN over ten datasets. Most
survivability prediction studies in breast cancer focus on five-year relative survival, as it

DTS
2,2

164



indicates treatment success for many cancer types. Nevertheless, the risk of distant
recurrence can reach 41% after five years of survival, depending on different factors
(Pedersen et al., 2022). In addition, the rate of breast cancer recurrence is high for patients
between the age of 20 and 50 (Imani, Chen, Tucker, & Yang, 2019). Thus, involving longer
survival rates in prognosis prediction and treatment selection models provides a deeper
understanding of the effectiveness of any intervention.

Current research on breast cancer usingBNs is primarily related tomedical diagnosis, risk
evaluation and prognostic applications. Cruz-Ram�ırez, Acosta-Mesa, Carrillo-Calvet, Alonso
Nava-Fern�andez and Barrientos-Mart�ınez (2007) developed and evaluated seven BNs to
diagnose breast cancer using two databases that contain information derived from fine-
needle aspiration, whereas Kahn, Roberts, Shaffer and Haddawy (1997) built BNs using
features obtained from mammographic findings to detect breast malignancy. In a study
published in 2018, Witteveen, Nane, Vliegen, Siesling and IJzerman (2018) designed different
BNs to predict the risk of locoregional recurrence and second primary breast cancer. Gevaert,
Smet, Timmerman, Moreau and Moor (2006) established prediction methods using BNs
toward classifying breast cancer patients into poor or good prognosis groups. Gevaret et al.
integrated clinical and microarray data in three separate ways. Nonetheless, survivability is
part of prognosis, and few survivability studies apply BNs.

In relevant BN applications on survival prediction, Forsberg, Eberhardt, Boland, Wedin
and Healey (2011) estimated 3-month and 12-month life expectancy of patients with operable
skeletal metastases. Jayasurya et al. (2010) and Sesen, Nicholson, Banares-Alcantara, Kadir
and Brady (2013) created BNs to predict lung cancer patient survival by focusing only on
short-term survival. In addition, a study of colon cancer built BNs to perform individualized
survival prediction (Stojadinovic et al., 2013). Like these examples, mid- and long-term
survival rates are usually neglected.

Focusing on the application of BNs in breast cancer survivability, Choi, Han and Park
(2009) developed three models with the aim of predicting five-year survival: two BNs and one
hybrid BN model that combined ANN and BN. Also, Endo, Shibata and Tanaka (2008) and
Lotfnezhad Afshar, Ahmadi, Roudbari and Sadoughi (2015) applied ML methods, including
BNs, to predict five-year survival and compared their performance. Mainly BNs are employed
in breast cancer survivability models for prediction or variable selection. At the same time,
probability inference is often ignored, which could help answer essential questions, such as
“How do different treatment decisions affect the probability of survival for a patient?”.
Therefore, this study seeks to fill the highlighted gaps by considering different survival
targets and providing treatment decision support.

3. Data
3.1 Data collection
We used EHR data provided by TriNetX Research Network. TriNetX allows access to
de-identified patient records from around 60 different healthcare organizations (HCOs). Also,
it is compliant with the Health Insurance Portability and Accountability Act. The data
comprise patients’ clinical information, such as demographics, diagnosis, tumor properties
and genomics. Each of these patients’ information is represented in a different table and could
be mapped using key features, for instance, patient ID and encounter ID.

For this study, we created one dataset that contains patient information from the following
tables: demographics, tumor, tumor properties, oncology treatment and diagnosis. We used
ICD-10 codes starting with C50 to identify breast cancer patients and cross-checked them with
the tumor registry table to reduce the chance of misdiagnosis andmissing values. We included
only one record with the earliest diagnosis date derived from HCOs’ cancer registry for each
patient. After the patient demographic was aggregated with the tumor table based on the
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unique ID of the patient, the tumor properties table was combined with them when similar
variables/features in the tumor tablematched, such as patient ID, diagnosis date and tumor site.

Similarly, we merged the oncology treatment table to assemble the needed information in
one table. In accordance with the American Cancer Society, breast cancer treatment can be
divided into two primary categories: local and systematic. Local treatments include surgery
and radiation, whereas systemic treatments include chemotherapy and hormone therapy.
However, we only obtained radiation (RTx), chemotherapy (chemo) and hormone therapy
(HT) treatments as binary variables. Furthermore, the three treatments were combined into
one variable to reduce the dimensionality of the BN structure and to better assess treatment
recommendations.

Two variables were internally computed: age at diagnosis and survival. The first was
obtained from the difference between the earliest diagnosis date of malignant neoplasm of the
breast and the birth date. The latter was computed as the interval between the date of the
patient’s death and the diagnosis date. In addition, we included five of the most common
health conditions in breast cancer patients based on the cohort analysis provided by TriNetX
plus personal history of malignant neoplasm of the breast. The health conditions include
essential hypertension (ICD-10: I10), heart failure (I50), chronic ischemic heart disease (I25),
diabetes type I (E11), and acute kidney failure and/or chronic kidney disease (N17–19). The
health conditions were binarized variables that indicated presence or absence. Table 1 shows
the list of variables obtained in this study and their corresponding table location.

3.2 Data preprocessing
Data preprocessing is necessary for any ML model, as data quality is vital for a reliable
predictive model (Kotsiantis, Kanellopoulos, & Pintelas, 2006). Therefore, we performed the
following preprocessing steps.

# Variables Original tables Values

1 Marital status Patient demographics Married; Single; Unknown
2 Tumor site code Tumor C50.0; C50.1; C50.2; C50.3; C50.4; C50.5;

C50.6; C50.8; C50.9
3 Tumor stage Tumor 0; I; II; III; IV; Unknown
4 Tumor size (T) Tumor T0; T1; T2; T3; T4; Tis; TX
5 Number of lymph nodes (N) Tumor N0; N1; N2; N3; NX
6 Metastatic (M) Tumor M0; M1; Unknown
7 Estrogen receptor (ER) Tumor properties Positive; Negative; Unknown
8 Progesterone receptors (PR) Tumor properties Positive; Negative; Unknown
9 HER2 Tumor properties Positive; Negative; Unknown
10 Essential hypertension Diagnosis Yes; No
11 Personal history of malignant

neoplasm of breast
Diagnosis Yes; No

12 Heart failure Diagnosis Yes; No
13 Essential hypertension Diagnosis Yes; No
14 Chronic ischemic heart disease Diagnosis Yes; No
15 Diabetes type I Diagnosis Yes; No
16 Age at diagnosis None; internally

calculated
<50; 50–60; 60–70; >70

17 Therapy Oncology treatment RTx; chemo; HT; RTx and chemo;
RTx and HT; chemo and HT; all; None

18 Survival None; internally
calculated

<5 5yr; 5–10 yr; >10 yr
Table 1.
List of variables and
their original tables
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First, we removed patients whose sex was male or unknown since the study focused on
female breast cancer. Also, we deleted incidences with no birth or death date since age at
diagnosis and survival could not be obtained without them. In addition, records with
contradictory information were removed, for example, when the diagnosis date was before
the birthdate or after the death date.

Secondly, we discretized “age at diagnosis”, which was the only non-categorical variable
in the database, since most available BNs packages are applicable only to categorical
variables. This variable was discretized into four intervals (<50; 50–60; 60–70; >70),
achieving an almost balanced distribution, as shown in Figure 1.

Thirdly, we only allowed up to three values missing among tumor stage, tumor size (T),
number of lymph nodes (N), metastatic (M), estrogen receptor (ER), progesterone receptors
(PR) and HER2, as they are valuable in determining the case severity and treatment plan,
according to theAmerican Cancer Society. Therefore, we replaced the null observations in the
dataset with the “Unknown” string. Altogether, 6,375 patients were included in this study.

Lastly, we selected “5_yr≥”, “5–10_yr” and “>10_yr” as our multi-class definitions for the
classification model. Figure 2 reveals the distribution of patients across the three proposed
classes. To address the imbalance in the dataset, we performed SMOTE-N to up-sample the
minority classes (5–10_yr and >10_yr) for model tuning and evaluation (Chawla, Bowyer,
Hall, & Kegelmeyer, 2002). After the up-sampling, we created two BN models, each of which
used a binary variable indicating whether the patient survived for at least five years or at

Figure 1.
Age at diagnosis

distribution

Figure 2.
Patients distribution

across all classes
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least ten years. The dataset was randomly partitioned into training and test sets with a ratio
of 80:20, and we performed 10-fold cross-validation on the training set to tune the
hypermeters for ML algorithms. We used the same training and testing sets to train and
evaluate both ML and BN models, to ensure consistency in the building of the models.

4. Research methodology
In this study, we used a two-level architecture to predict and make treatment
recommendations for breast cancer patients. In the first level, we used ML algorithms to
classify patients into different survival categories, which allowed us to identify subgroups of
patients with specific survival categories (e.g. “>10_yr”). In the second level, we used BN to
make treatment recommendations for the identified subgroups based on the patient’s
survival category and other relevant factors. Finally, using BNs allowed for the consideration
of uncertainty and dependencies between the different variables and facilitated more
informed treatment decisions.

To analyze the datawith limited patient numbers, this study used three classes forML and
two survival rates for BN analysis. Figure 3 shows the outline of the proposed methodology.
In the first level, ML classification algorithms predict whether the patient belongs to “5_yr≥”,
“5–10_yr” or “>10_yr” without including the therapy variable. For example, if the classifier

Figure 3.
The outline of the
proposed methodology
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predicts that the patient belongs to the “5–10_yr” class, then the second level is responsible
for emanating inference from the BN of the five-year survival rate model for the given patient.
Therefore, three models were prepared: a first-level classification model (BCI), a second-level
BN model for the five-year survival rate (II-5) and a second-level BN model for the ten-year
survival rate (II-10). The survival variable (target variable) has three classes in BCI and is
binary in II-5 and II-10. For the construction of II-5, patients were labeled with one if they
survived more than five years and zero otherwise. In contrast, patients were labeled with one
if they survived more than ten years and zero otherwise for the construction of II-10.

4.1 First level
In the first level of the approach, the goal is to assign each patient (i.e. instance) to one of the
several predefined categories (e.g. survival periods). To do this, we used ML algorithms
designed for classification tasks with multiple classes. Five traditional ML algorithms were
applied: logistic regression, random forest, SVM, ANN and naı€ve Bayes. According to the
previous literature on survival prediction, no single traditional classification ML algorithm
performs consistently better in all experiments. Thus, these widely applied ML algorithms in
survival analysiswereused to investigatewhich one produces better performance results on the
gathered dataset. In addition, these algorithms vary in terms of their complexity and flexibility.

4.2 Second level
In the second level of this approach, two BNmodels were constructed with different survival
targets to investigate variations in variable dependencies between ten-year and five-year
survivals. The ability to observe differences in the topology and the conditional probability of
the models may provide more personalized treatment recommendations based on the specific
dependencies between variables for different survival periods. Using multiple models with
different survival targets may also facilitate a more comprehensive analysis of the data. In
addition, BNs are suitable tools for determining several probabilistic inferences that aid
clinical decision-making. However, we focused on the inference of survival given different
treatments and observed evidence on patient variables. Mainly, there are two steps for
developing a BN: define the network structure and specify a conditional probability table
(CPT) for each node.What follows is a brief description of the BN and the two steps (structure
and parameter learning) for creating a BN.

4.3 Bayesian networks
A BN is formally defined as a pair (G, Ω) that encodes a joint probability distribution over a
finite set of categorical variables (Pearl, 1988). The first component, G, is a directed acyclic
graph (DAG) whose nodes resemble the random variables in the dataset and arcs represent
direct dependencies between variables. The latter component,Ω, represents CPDs that define
each variable behavior given its parents. In addition, the BN has a Markov property, since
each variable is conditionally independent of its non-descendant given its parents. Function 1
shows a unique representation of the joint probability distribution.

pðX1; : : : ; XnÞ ¼
Yn

i¼1

p
�
Xi

��PXi

�
(1)

(1) Structure learning

Mainly, there are three general methods to obtain a DAG structure: (1) manual construction,
(2) automatic structure learning and (3) hybrid learning. The first method requires access to
human knowledge experts in each development stage. Therefore, we have not included it in
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this study – this work emphasizes the second and third methods to learn the network
structure.

Automatic learning obtains the structure of a DAG purely from the data. Several methods
are adopted to learn BN structure fromdata, and eachmay provide a different structure. They
can generally be categorized into (1) score-based algorithms, which explore the search space
for the DAG with maximum score function and (2) constraint-based algorithms that link
nodes based on conditional independence constraints.

Two score-based algorithms were used in this paper. The first is hill-climbing (HC), a greedy
search that starts exploring with disconnected DAG by performing a single-arc operation
(addition, removal and reversals) to maximize the structure score (G�amez, Mateo, & Puerta,
2011). The algorithm ends when a local maximum is found. The second is tree-augmented naı€ve
Bayes (TAN), which relaxes the naı€ve Bayes assumption of independency and permits each
variable to depend on another variable as well as the target class (Friedman, Geiger, &
Goldszmidt, 1997). TAN is a tree-based approach and can learn the structure in polynomial time.
We used BayesianDirichlet equivalent uniform (Bdeu) andBayesian Information Criterion (BIC)
as scoring functions in both methods. Therefore, we have four approaches for learning the
network structure entirely from the dataset: HC(Bdeu), HC(BIC), TAN(Bdeu) and TAN(BIC).

Lastly, we explored hybrid structure learning using Causal Minimum Message Length
(CaMML) (Wallace & Korb, 1999), which allows experts to specify prior information to be
incorporated with automatic learning. This information can include tier information, which
allows the order of variables to be specified (A<B;A happens before B, A can be a parent of B,
but B cannot be a parent of A), and direct connection, which indicates direct influence (A→B).
Thus, we have five methods to learn the topology of BNs for II-5 and II-10.

(2) Parameter learning

After learning the structure, we used maximum likelihood estimation to estimate the
parameters and represent the CPTs in all BN experiments.

4.4 Architecture setting
We utilized the bnlearn package (Taskesen, 2020) in python to learn the structure and the
parameters for TAN and HC algorithms. However, we used the BI-CaMML (Wallace, 2014),
developed atMonashUniversity, for the hybrid structure learning.We builtMLmodels using
the Scikit-learn package in python.

4.5 Performance metrics
Accuracy, precision, F1 score, recall and area under the ROC curve (AUC) were selected as the
evaluation metrics for the models built in this study. Equations for the evaluation metrics are
defined as follows:

Accuracy ¼ TP þ TN

TP þ FP þ TN þ FN
(2)

Precision ¼ TP

TP þ FP
(3)

Recall ¼ TP

TP þ FN
(4)

F1 score ¼ 2 *
Precision *Recall

Precisionþ Recall
(5)
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5. Experimental results
In this section, we report the experimental results of both level settings mentioned in the
previous section regarding accuracy, precision, recall and F1 score. Also, it presents a
comparison between II-5 and II-10 models on probabilistic inference findings when the same
evidence is observed.

5.1 Experimental results of the first-level classification models
For this level, we evaluated the performance of five ML algorithms to classify patients into
predetermined survival classes. These algorithmswere trained using the training dataset and
evaluated using the test dataset. We found that the random forest classifier achieved the
highest accuracy at 0.85 as well as the highest precision, recall and F1 score across the three
classes. Next, the ANN had an accuracy score of 0.8 with close performance measures to the
random forest classifier for the long survival class “>10_yr”. On the other hand, naı€ve Bayes
and logistic regression had the lowest performance measures. The long survival period
mostly achieved a better performance than the other survival classes. Additionally, “5_yr≥”
had better performance than the mid-survival class “(5–10_yr)” in the majority of the ML
algorithms proposed. Table 2 displays the complete set of results in a tabular format.

As the mission of the first level was to determine which model to use in the second level, a
classifier algorithm with the strongest performance results had to be selected. Thus, the
random forest classifier was the best fit for the BCI model.

5.2 Experimental results of the second-level BN models
We developed two BNs: one for the five-year survival rate and the other for the ten-year
survival rate. Both models used the same dataset except for the target variable for training
and testing. In order to discover a network structure for BNs, we tried several network
structure learning approaches. At the outset, we used four approaches that automatically
learn the network structure from the data and one with a hybrid approach. Therefore, ten
experiments were done at this level (2 models * 5 approaches for building the structure). To
construct hybrid learning, we used CaMML to utilize the data and prior information to
discover the structure. Then, through knowledge gained from previous research, we obtained
the prior information used in hybrid learning. Finally, the following set of ruleswas applied as
an expert prior in CaMML.

Model Class
# Instances

Accuracy Precision Recall F1 scoreTrain Test

Logistic Regression 5_yr ≤ 3,420 856 0.64 0.65 0.67 0.66
5–10_yr 3,419 857 0.52 0.50 0.51
>10_yr 3,423 853 0.75 0.76 0.76

Random Forest 5_yr ≤ 3,420 856 0.85 0.80 0.81 0.81
5–10_yr 3,419 857 0.81 0.80 0.80
>10_yr 3,423 853 0.93 0.93 0.93

SVM 5_yr ≤ 3,420 856 0.79 0.76 0.73 0.74
5–10_yr 3,419 857 0.72 0.71 0.72
>10_yr 3,423 853 0.89 0.91 0.90

ANN 5_yr ≤ 3,420 856 0.81 0.79 0.74 0.76
5–10_yr 3,419 857 0.75 0.78 0.77
>10_yr 3,423 853 0.90 0.93 0.92

Naı€ve Bayes 5_yr ≤ 3,420 856 0.56 0.73 0.3 0.43
5–10_yr 3419 857 0.4 0.43 0.42
>10_yr 3,423 853 0.54 0.81 0.65

Table 2.
MLmodel performance
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1; 2; 3; 4; 5; 6; 7; 8; 9; 16 < 17 < 18

10; 11; 12; 13; 14; 15 < 18

17 → 18

Table 3 displays the performance in predicting the five-year and ten-year outcomes achieved
by the different learning methods. For BNs with the five-year survival model, the network
structure learned by CaMML achieved the highest performance measures with an accuracy
of 0.798 and AUC of 0.757. Similarly, for the ten-year survival model, the network structure
discovered by CaMML had the best performance results of 0.857 and 0.84 for accuracy and
AUC, respectively. Despite applying two scoring functions in the automatic approach, they
provided the same network structure in the TAN algorithm. On the other hand, the learned
network structure determined using the Bdeu scoring function in the HC algorithm had a
higher performance than the BIC function for both survival targets. Furthermore, the TAN
algorithm for BN with the five-year survival had the second-highest performance. However,
the HC algorithm learned via Bdeu had slightly lower performance measures than CaMML
for ten-year survival. Thus, we chose the structures learned via CaMML for both survival
targets for making the inference. CaMML enables the specification of prior knowledge, such
as the assignment of variables to tiers, to improve the accuracy of causal models. For
instance, by placing the variable “Survival” in a higher tier, the model will be constrained to
not allow it to influence other variables, thus reducing the risk of identifying inaccurate arcs.
Figures 4 and 5 show the selected BN structure for the II-5 and II-10 models, respectively.

5.3 Inference results
After selecting the BN structure for the II-5 and II-10 models, we explored the influence of
different treatments on the probability of survival using these models. For illustration, we
explored two cases: (1) P(>5_yr?/>10_yr? 5 1 j Treatment, ER 5 Positive, Age5 >50,
Tumor_stage5 III) and (2) P(>5_yr?/>10_yr?5 1 jTreatment, ER5Negative, Age5 50–60,
Tumor_stage5 I). In Figures 6 and 7, the orange bars represent the probability from the II-5
model and the blue bars represent the probability from the II-10 model.

Figure 6 shows that patients who received all three types of treatment (RTx, Chemo and
HT) had the highest probability of surviving more than five years, but patients who received
only RTx had a better probability of surviving more than ten years. Also, in the second case
(Figure 7), patients who received all treatments had maximal probability for the five-year
survival but lower probability of ten-year survival. Nonetheless, patients who received a
single type of treatment had similar outcomes for both survival targets in the second case.

Survival target
models

Learning
algorithms

# Instances
Accuracy Precision Recall F1 score AUCTrain Test

Five-year TAN (BIC) 5_yr 5 0 0.785 0.813 0.884 0.847 0.731
TAN (Bdeu) 3,420 856 0.785 0.813 0.884 .847 0.731
HC (BIC) 5_yr 5 1 0.756 0.779 0.890 0.831 0.684
HC (Bdeu) 6,842 1,710 0.779 0.809 0.880 0.843 0.724
CaMML 0.798 0.825 0.881 0.852 0.757

Ten-year TAN (BIC) 10_yr 5 0 0.826 0.739 0.704 0.721 0.794
TAN (Bdeu) 6,839 1,713 0.826 0.740 0.703 0.721 0.794
HC (BIC) 10_yr 5 1 0.809 0.703 0.695 0.699 0.779
HC (Bdeu) 3,423 856 0.849 0.761 0.765 0.763 0.826
CaMML 0.857 0.765 0.796 0.780 0.84

Table 3.
BNs performance
comparison
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Figure 4.
CaMML structure for

five-year survival

Figure 5.
CaMML structure for

ten-year survival
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Figure 6.
First case of inference
result

Figure 7.
Second case of
inference result
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6. Discussion
Clinical decision support tools aid clinical decision-making (Hunt, Haynes, Hanna, & Smith,
1998) and further help improve practitioner performance (Garg, Adhikari, & Devereaux,
2005). In addition, the medical practitioner can use accurate survivability prediction for
various treatment options as a reference tool to analyze decisions. As the understanding of
cancer therapy progresses, the type of treatment available varies; as a result, the complexity
of optimal treatment planning for a particular patient also increases. Thus, the proposed
model can be included as a part of decision-making support for medical professionals. Once
the model is integrated into the hospital information system, physicians can evaluate
treatments versus survivability odds and make an informed decision.

When prioritizingmultiple treatment options, patient preference is often incorporated. For
example, a study that integrates patient preference and treatment decisions for prostate
cancer patients found that patients felt more involved and mutually responsible with
oncologists when additional treatment was needed (Johnson et al., 2016). Therefore, patients
could also benefit from the model to weigh the outcome of different treatments when listing
their preferences.

In addition, this model may not only positively affect the patient outcome but also the
efficiency of the healthcare provider. Knowing what survival outcomes might happen will
bring knowledge to the caregiver to utilize their resources better and help them improve their
patients’ health. Moreover, linking EHR with the decision support tool will provide a
recommendation at the exact time it is needed and enhance the model performance as more
information enters the system.

Our approach starts with applying various ML algorithms that vary in accuracy and
interpretability. For instance, ANN is generally considered highly accurate but difficult to
interpretable, whereas logistic regression is the opposite. Nevertheless, the first level’s
primary goal was to predict a patient’s survival to select the appropriate BNmodel. Then, the
second level provides the probabilistic inference. This approach integrates an accurate
classification algorithm with the interpretable nature of BNs and offers multiple benefits for
using BN models with different survival targets.

First, we avoided incorporating bounded survival periods while including different
survival rates. Especially for the mid-survival (5–10_yr), it is desirable to expect the
survivability of a treatment to be an unbounded period. For instance, it is more optimistic to
inform patients of an expectation of living more than five years than between five and ten
years. Additionally, this approach enables us to involve more patients with higher
survivability periods when training the BN.

Second, the network structure may differ for different survival targets when learning
partially or entirely from data.Wen et al. (2017) and Franco, Steyerberg, Hu, Mackenbach and
Nusselder (2007) link diabetes and other medical conditions with shorter life expectancy.
When higher survivability targets are used, such as 15-year or 20-year, survival may be
heavily determined by medical conditions and age rather than stage or treatments. However,
we did not find a direct relationship between the health conditions we evaluated and survival
in our network structures with the exception of personal history of breast cancer. Another
reason why longer survival should be considered is that several cancer types have a more
than 90% chance of surviving for more than five years, such as breast and skin cancers.

Third, andmost importantly, treatment recommendations differ for five-year and ten-year
survival targets when the same evidence is observed. As a result, creating a BNwith a single
target does not discover the whole picture for treatment outcomes. In the two inference cases
presented here, patients who received all three types of treatment were more likely to be
associated with survival of more than five years but less than 10.

Although BNs are able to perform both classification and inference tasks, using a single
BN model may limit the ability to discover the differences in dependency between variables
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and may not be as effective when there are more classes. This is because a single BN model
will rely on explicit assumptions about the relationships between the variables, which may
not accurately reflect the true dependencies between the variables in all cases. Usingmultiple
BN models and appropriate model selection techniques can allow for a more comprehensive
analysis of the data and can help to identify any discrepancies or inconsistencies in the
dependencies between variables, particularly when there are more classes.

Nonetheless, we acknowledge that the experiments described here have several
limitations. Foremost, our study includes only diseased patients, as it is the only method
to compute the survivability period. As a result, few patients fall into the long survivability
class, and therefore there is not enough information to discover accurate factors for this
group. Moreover, surgery information was not included in treatment plans. In addition, this
approach lacked the sequence of treatments and the time span between them.

7. Conclusions
This study presents a novel approach to providing clinical decision support for treatment
selection for breast cancer patients considering survival expectations. It starts with
utilizing ML algorithms to predict the survivability class. Subsequently, it employs the
appropriate BN model for probabilistic inference. It was prominent that the treatment
preference relies on the BN’s survival targets, as shown in our inference results. In the two
cases presented, five-year and ten-year targets were associated with different treatments
that yielded a high probability of survival. In the end, this decision support tool does not
replace the intuition or judgment of the medical practitioner, but it could serve as a
reference for physicians and as a resource to educate and involve patients in their treatment
decisions to ultimately enhance the health of the patient. The results of this study provide
sufficient motivation to pursue the proposed approach, potentially with more survival
classes and for different cancer types, in order to provide a more comprehensive analysis of
the data and gain insight into the dependencies between variables for different cancer types
and survival classes.

Incorporating temporal data is critical to providing a sequence of treatments. This also
opens another channel to improve the performance of survival models and treatment plan
selection with appropriate intervention time. Thus, the plan to include temporal information
in the future work to explore questions like “How does the sequence of treatments change the
probability of survival?” and “When is the best intervention time?”.
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