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Abstract
Purpose – This paper aims to discuss the classification of targets based on their radar cross-section (RCS).
The wavelength, the dimensions of the targets and the distance from the antenna are in the order of 1mm, 1m
and 10m, respectively.
Design/methodology/approach – The near-field RCS is considered, and the physical optics
approximation is used for its numerical calculation. To model real scenarios, the authors assume that the
incident angle is a random variable within a narrow interval, and repeated observations of the RCS are made
for its random realizations. Then, the histogram of the RCS is calculated from the samples. The authors use a
nearest neighbor rule to classify conducting plates with different shapes based on their RCS histogram.
Findings – This setup is considered as a simple model of traffic road sign classification by millimeter-
wavelength radar. The performance and limitations of the algorithm are demonstrated through a set of
representative numerical examples.
Originality/value – The proposed method extends the existing tools by using near-field RCS histograms
as target features to achieve a classification algorithm.
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1. Introduction
Radars operating in the millimeter-wavelength (mmWave) band are more and more
widespread, e.g. in driving assistance systems (DAS) (Kosuge et al., 2022). The
numerical simulation of mmWave radar operation is still challenging, both in terms of
electromagnetic wave scattering and prediction of the detection/classification
capabilities of the system as well.

Targets of interest in DAS (e.g. vehicles, pedestrians, traffic road signs) are much larger
than the wavelength. Therefore, asymptotic approximations [e.g. physical optics (PO)] are
the only reasonable choice for the simulation of EM scattering. Furthermore, the scattered
field is very sensitive to small angular variations of the target’s orientation. In addition to
that, targets are typically in the near field of the radar’s antenna; thus, the classical definition
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of radar cross-section (RCS) needs to be extended, by introducing the near-field RCS
(Pouliguen et al., 2006; Elfrgani and Reddy, 2019).

The target detection and classification task of mmWave DAS radars are intensively
studied. Many approaches strongly rely on the particular signal processing architecture,
especially frequency-modulated continuous wave (FMCW) radars, e.g. Kim et al. (2022).
Obviously, deep learning is also proposed for target classification: range-azimuth
distributions of the power of the radar echo are considered as image data, which feed deep
neural networks to predict some attributes of the target (Patel et al., 2019). This approach is
efficiently combined with an FMCW architecture in (Gupta et al., 2021), and excellent
classification accuracy is reached.

Other approaches consider the statistical properties of the RCS. When observations are
repeated within a certain (small) time interval, variations in the scenario (e.g. rotation or
vibration of the target) induce the change of the RCS, too. As the scenario varies in an
uncontrollable and unknown manner, the RCS is modeled as a random variable. It has been
shown decades ago that the probability density function (approximated by the histogram) of
the RCS characterizes the target’s properties; this is the key idea behind the Swerling models
(Swerling, 1960). Recently, the histogram of the RCS was again proposed for classification
(Vladyslav and Maxim, 2016) and for enhancing the capabilities of air surveillance radars
(Vaila et al., 2017). Statistical description of the RCS is combined with cutting-edge learning
methods to classify targets in the thorough work (Cai et al., 2021) with which our approaches
have a lot in common, yet they apply parametric distributions to describe the RCS, whereas
we use histograms as non-parametric RCS descriptions.

In the present work, we consider a simple model for traffic road sign classification based
onmmWave radar observations. Our contribution is twofold:

(1) we study the near-field RCS and its histogram for simple objects by means of PO
simulations; and

(2) we apply a supervised learning method [K-nearest neighbor (KNN) rule] for the
shape classification of traffic road signs based on their RCS histogram.

2. Radar cross-section (RCS) and its calculation
2.1 Radar cross-section in the far- and near-field
RCS is classically defined as:

s0 ¼ lim
R!1

4pR2 Sr
Si

; (1)

where Si is the incident power density at the target, Sr are the reflected power density at the
antenna and R is the distance between the antenna and the target. As Sr is proportional to
R�2, the limit yields a finite value of s0, which does not depend on R (Skolnik, 1990). As long
as the target is in the far field (Fraunhofer region) of the antenna, the power of the echo
received by the antenna is proportional to s0. The far field is commonly defined as:

R > RF ¼ 2D2

l
; (2)

where R is the distance from the antenna, and the limit RF is calculated from the diameter of
the targetD (or the aperture of the antenna, if it is larger), and the wavelength l.
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However, in the case of mmWave radar, Condition (2) is not met. For example, in a driving
assistance system operating at 77GHz (l� 4mm), D is in the order of 1m; hence, RF� 500m,
which is much larger than the range of interest of the radar. Therefore, the RCS definition (1)
cannot be applied in such scenarios, but herein wewill use the formula:

s ¼ 4pR2 Sr
Si

; (3)

yielding the near-field RCSs that depends onR, as concluded also in Taylor and Terzuoli (1997).

2.2 Simulation by the physical optics (PO) approximation
In this work, we consider targets made of a good conductor, having a linear extent much
larger than the wavelength. Therefore, the RCS [as given in equation (3)] is numerically
calculated by means of the PO approximation. This method has been applied for decades
(Kouyoumjian, 1965; Bowman et al., 1969). The key assumption of PO is that the surface
current generated on a conducting body is approximated as:

JS ¼ 2n̂ �Hi; on the illuminated surface;

0; on the shadowed surface;

(
(4)

where n̂ is the outward normal vector of the surface, and Hi is the magnetic field strength in
the incident field. Let us consider the configuration sketched in Figure 1, and assume that an
infinitesimal dipole antenna is placed at the position r. This antenna transmits the EM wave
and receives the echo, i.e. a monostatic configuration is considered. For the RCS in equation (3),
under the assumption (4), one can derive the formula:

s ¼ 4p
l2

����
ð
C
cosa r; r0ð Þexp �2jkr r; r0ð Þ� �

dC0
����
2

; (5)

Figure 1.
Configuration for

calculating the RCS
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where k ¼ 2p=l stands for the wavenumber, and r is the distance between the dipole at r
and the point on the target r0. The angle a is the incident angle at the point r0, i.e.
cosa ¼ n̂ r� r0ð Þ=r. The integral (5) is numerically evaluated by an in-house Matlab
function throughout the examples in this work.

As an illustration, for a circular plate, the near-field RCS calculated by equation (5) is
compared to the far-field RCS in Figure 2(a). The frequency equals to 77GHz. Also, the
surface current distribution is plotted in Figure 2(b).

3. Histogram-based target classification
3.1 Histogram representation of the radar cross-section
In Figure 2(a), it can also be observed that the RCS strongly fluctuates even when # has a small
variation. As # can hardly be kept constant in a real-life scenario (e.g. due to the wind, vibration
of the car on which the radar is mounted, etc.), wemodel the radarmeasurement as follows:

� The parameter # is defined as a random variable; thus, the RCS is also random.
� Observations are made repeatedly during a short time interval, in which all

parameters of the scenario are unchanged, except for #, which takes n random
realizations, #i; i ¼ 1; 2; . . . ; n.

� For each #i, the RCS is calculated by equation (5).
� A histogram is calculated from the samples of the RCS. This histogram is considered as

a feature, on which the classification is based later on. In Figure 3, it can be observed
that histograms indeed strongly depend on the shape and the distance of the target.

To formally define the histogram, let us assign bins as:

x1 < x2 < . . . < xb: (6)

Herein we use an equal bin widthDx; thus:

xk ¼ k� 1ð ÞDxþ x1; k ¼ 2; 3; . . . ; b: (7)

Then the histogram of n random samples is denoted by the vector:

h ¼ h0; h1; h2; . . . ; hb½ �; (8)

where each element of the vector equals to the number of samples within the related bin, i.e.:

hk ¼
# sample values in the range xk; xkþ1½ Þ

n
: (9)

For k = 0 and k = b, the lower and upper bound of the interval is extended to �1 and þ1,
respectively.

3.2 Classification algorithm
The classification methodology can be summarized as follows, with the illustration shown in
Figure 4. Q number of classes are defined; one class for each shape of the targets. P number of
training histograms are generated for each shape. Each training histogram is generated at a
different distance from the radar:R ¼ R1; R2; . . . ; RP .

We apply the classical K-NN algorithm (Devroye et al., 1996) for the classification. We chose
this algorithm because we are aiming at the validation of the use of histograms as target
features, and this can basically be evaluated even with this simple algorithm. Furthermore, the
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simplicity of the K-NN method lets us focus on this main question. The K-NN algorithm is
summarized as follows. The distance between the histogram to be classified (i.e. the testing
histogram), and each PQ histogram within the training sets is calculated. The K number of
closest training histograms (i.e. the nearest neighbors) are selected, and a majority voting is held

Figure 2.
A circular plate

centered to the origin,
perpendicular to z,

whereas the antenna
is at the point r=

(R sin #, 0,R cos #,
according to Figure 1
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among them, to decide which class the testing histogram will be classified into. The votes are
weighted by factors related to the distance, as proposed in the classical work Dudani (1976).

The distance between histograms h 1ð Þ and h 2ð Þ is defined as the L1 norm of their
difference (Devroye et al., 1996), which reads as:

d h 1ð Þ
;h 2ð Þ

� �
¼D

������h 1ð Þ � h 2ð Þ
������
1
¼

Xb
k¼0

���h 1ð Þ
k � h 2ð Þ

k

���: (10)

The classification performance is measured by the error rate, which is the number of
incorrect classifications over the total number of testing histograms.

Figure 4.
P number of training
histograms are
present within each of
theQ classes

Figure 3.
Histograms of the
RCS of circular and
rectangular plates at
different R distances.
Horizontal axes: s (in
dBsm), vertical axes:
empirical probability
density
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3.3 Model of the noise
An important part of our work is to study the effect of the measurement uncertainties on the
classification performance. To this end, a simple noise model is introduced. Additive white
Gaussian noise (AWGN) is applied on the simulated RCS data when generating the testing
histograms. The Gaussian distribution is commonly used for modeling random effects;
herein our main goal is to test the robustness of the classification algorithm; this is why,
AWGN was chosen. In case when proper knowledge on the noise distribution is available, it
is straightforward to extend the approach below to another noise model. Formally, the noise-
free RCS result from equation (5) is changed as:

~si ¼ si þ zi; i ¼ 1; 2; . . . ; n; (11)

where zi is a realization of the zero-mean Gaussian random variable Z 2 N 0; STDð Þ, for
each repeated observation. STD stands for the standard deviation of the noise, which takes
different values in our examples as shown below. Then, the testing histogram is calculated
from the noisy samples ~s i.

4. Examples
Numerical examples are presented herein to illustrate the method and demonstrate its
performance. The parameters that are common for all studies are as follows:

� Frequency: f = 77 GHz, which corresponds to a wavelength of l = 3.9 mm.
� The targets are flat plates made of perfect conductor, oriented as shown in Figure 1.

Their shape differs (circular, square, triangular), but their area is the same (0.28 m2,
which corresponds to a circle with diameter of 0.6 m).

� The incident angle is a random variable with uniform distribution within the
interval �1; 1½ �� .

� Bins for the histograms are set as x1 ¼ 0 dBsm; x25 ¼ 50 dBsm, and the bin width
is Dx = 2 dBsm, respectively. Hence, the histograms are 26-element vectors.

� The number of repeated observations for the histogram generation is n= 300 in all cases.

Four different scenarios are presented in the following.

4.1 Training and testing with histograms at fixed distance
In the first scenario, Q = 2 classes are defined (circle and square plate), and each of them is
trained with P = 1 histogram that is generated at a distance of R = 100 m. The testing
histogram comes from the RCS of either a circle or a square plate at the same distance. Let us
note that herein only K = 1 makes sense in the K-NN algorithm. In the noise-free case, the
error rate is obviously zero. However, we test the robustness of the classification by
increasing the standard deviation (STD) of the noise according to equation (11). For all
values of the STD, 200 testing histograms (100 circle and 100 square) are generated, and the
error rate is calculated. The error rate vs noise STD is plotted in Figure 5. For instance, the
case when the STD is set to 8 dBsm, the classification performs with 10% error rate, or
equivalently, 90% of accuracy.

4.2 Training and testing histograms at varying distance
In this part, we stress that the near-field RCS does depend on the distance R, and we present
how this influences the classification performance. Two sub-cases are considered:
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(1) First, the training is performed exactly as in the previous part (Section 4a). However,
the testing histograms are generated at varying distances, with R 2 10; 100½ �m,
in 100 equal steps. No noise is applied now. The results of the classification are
shown in Figure 6. When the target is a square plate, the classification is correct at
all distances, whereas it fails when the target is a circular plate, being closer to the
radar than� 55 m. This shows that the training set is insufficient in this case.

(2) Second, to overcome the difficulty found in the previous case, we extend the training
set by near-field histograms. More precisely, both training classes include P = 50
training histograms, generated at distances in the range R 2 10; 100½ �m in 50 equal
steps. For testing, 100 circular and 100 square plates are considered, at distances
randomly distributed within the same interval as for training. The results for different
K values in the K-NN algorithm are presented in Figure 7. The accuracy is very high,
and interestingly,K seems to have little effect on the performance.

To conclude these two sub-cases, it is seen that the classification algorithm provides amuch better
performance once relevant data are used for training, with respect to the targets to be classified.

4.3 Complex targets
Herein we show examples when complex targets are considered. A complex target is a
combination of two plates of simple shape. This can roughly model the case when two traffic
road signs are mounted on the same pole. In particular, we consider three targets:
“TriangleþCircle,” “CircleþRectangle” and “TriangleþRectangle,” as illustrated in Figure 8.
Therefore, the number of classes is Q = 3, and for each, P = 50 training histograms are
generated, with R 2 10; 100½ �m, in P equal steps. For testing, 100 histograms are generated
for each type of target, at distances randomly distributed within the same interval as for
training. Furthermore, noise is added to the testing data according to equation (11).

The classification performance is presented with different noise STD values, in function of K
in Figure 9. Again, it is found that K has little effect on the performance. For low-noise STD, it
seems that increasing K lowers the accuracy, whereas this is the opposite for high-noise STD.

Figure 5.
Error rate vs noise
STD in the first
scenario
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Nevertheless, it can also be observed that the error rate about 10% can be achieved only when the
noise STD is as low as cca. 0.5 dBsm. Note that in the first scenario (which was much simpler), a
significantly higher noise is allowed to obtain similar performance (see Figure 5).

A confusion matrix for K = 5 and 1 dBsm of noise STD is presented in Figure 10. Here, the
diagonal shows the ratio of correctly classified targets (in percentage). For instance, 91% of

Figure 6.
Correct (hit) and
incorrect (miss)
classification vs

target distance in the
second scenario,
when training is

made with targets at
a fixed distance of

R= 100m
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the “TriangleþCircle” targets are correctly classified, and the right side of the column displays
the percentages of the in/correctly classified observations for each predicted classes of ours, such
as 74%of the “CircleþRectangle” targets are correctly classifiedwith 26%error rate.

5. Conclusion
Radars operating in the mmWave band are essential parts of, among others, DAS. In this
paper, some challenges are exposed in two related domains. First, we investigate the

Figure 7.
Confusion matrices in
the second scenario,
when both training
and testing are made
with targets at
varying distance
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Figure 8.
A complex target

consisting of a
triangle and a square

plate, and the
distribution of the

surface current
density at a certain

position of the
antenna

Figure 9.
Error rate vsK for
complex targets, at

different values of the
noise STD
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modeling of the electromagnetic scattering at such wavelengths, then we propose a post-
processingmethod of radar echos for the solution of a target classification problem.

As targets are typically much larger than the wavelength, we apply the PO
approximation to calculate the scattered field. Furthermore, targets are typically in the near-
field of the radar’s antenna. Therefore, the classical definition of the RCS cannot be used; we
apply the near-field RCS instead.

The near-field RCS shows a very strong sensitivity to the incident angle. We stress
that despite the deterministic physical model of the RCS, it is reasonable to consider the
RCS as a random variable. Hence, we model the incident angle # as a random variable
with small variance, and we calculate the RCS repeatedly for several realizations of #.
Then, we calculate a histogram from the RCS samples, and this histogram is considered
as a feature of the target.

We propose aK-NNmethod for target classification based on the RCS histograms, where
we use the L1 norm of the difference of histograms as a metric. In the examples, we chose
targets that are conducting plates of different shapes, which is considered as a simple model
of sensing traffic road signs by a DAS radar.

We present a set of benchmark examples to demonstrate the performance of the
classification algorithm. The training and testing histograms are chosen in various
ways, furthermore, we apply additive noise on the synthetic data to test the robustness
of the algorithm. We show that the method is able to classify targets of different shapes,
yet the error rate depends on the number of classes and on the strength of the noise that
corrupts the data.

As a future work, we will study different metrics of the histograms, and we will
introduce more complex targets, with a higher degrees of freedom, e.g. the area will also
vary. More sophisticated classifiers, e.g. deep neural networks, will also be tested.
Furthermore, we plan to collect measured data to reveal how our current model should
be further refined.

Figure 10.
Confusion matrix for
complex targets
(classes are in the
order of
“TriangleþCircle,”
“Circle+Rectangle”
and “Triangle +
Rectangle,”
respectively)
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