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Abstract
Purpose – Confronting the unveiled sophisticated structural and physical characteristics of permanent
magnets, notably the samarium–cobalt (Sm-Co) alloy, This work aims to introduce a simulation scheme that
can link physics-based micromagnetics on the nanostructures and magnetostatic homogenization on the
mesoscale polycrystalline structures.
Design/methodology/approach – The simulation scheme is arranged in a multiscale fashion. The
magnetization behaviors on the nanostructures examined with various orientations are surrogated as the
micromagnetic-informed hysterons. The hysteresis behavior of the mesoscale polycrystalline structures with
micromagnetic-informed hysterons is then evaluated by computational magnetostatic homogenization.
Findings – The micromagnetic-informed hysterons can emulate the magnetization reversal of the
parameterized Sm-Co nanostructures as the local hysteresis behavior on the mesostructures. The simulation
results of the mesoscale polycrystal demonstrate that the demagnetization process starts from the grain with
the largest orientation angle (a) and then propagates to the surrounding grains.
Research limitations/implications – The presented scheme depicts the demand for integrating data-
driven methods, as the parameters of the surrogate hysteron intrinsically depend on the nanostructure and its
orientation. Further hysteron parameters that help the surrogate hysteron emulate the micromagnetic-
simulated magnetization reversal should be examined.
Originality/value – This work provides a novel multiscale scheme for simulating the polycrystalline
permanent magnets’ hysteresis while recapitulating the nanoscale mechanisms, such as the nucleation of
domains, and domain wall migration and pinning. This scheme can be further extended to simulate the part-
level hysteresis considering themesoscale features.
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1. Motivations
Due to its superior corrosion resistance under complex chemical environment and
outstanding stability at high temperature, samarium–cobalt (Sm-Co)-based magnets have
promised industries feasibility in various applications, such as high-performance electric
motors for automotive and aeronautic application. However, former researches have
unveiled the microstructure of such permanent magnets in a sophisticated multiscale
fashion. As shown in Figure 1, it has been investigated that commercial Sm-Co magnets
present a three-phase composite nanostructure (<1mm). This nanostructure can be
described as the cellular Sm2Co17 phase surrounded by a coherent stripe-shaped SmCo5
phase. This is further subdivided by the Zr-rich platelet-shaped phases (hereinafter referred
to as Z-platelets) which develop perpendicular to the crystallographic c-axis of the Sm2Co17
phase (Duerrschnabel et al., 2017; Katter et al., 1996; Song et al., 2020; Gutfleisch, 2009). The
final nanostructure depends on the chemical composition and thermal treatments (Wang
and Zhu, 2021). Notably, Zhou et al. (2021) reported increases in thickness of Z-platelets from
2.4 nm up to 28.8 nm with only an increase in annealing time. Meanwhile, as one of the
commercial permanent magnets that is manufactured by sintering, polycrystalline structure
on the mesoscale (1–100mm) is also observed and examined in Sm-Co alloy (Giron et al.,
2022).

Most of the primary mechanisms contributing to the magnetic behavior (i.e. nucleation of
the reversed domain, andmigration/pinning of the domain wall) occur on the nanoscale with
characteristic length around 1 nm, while receiving effects from grain orientation and local
thermal history, hysteresis behavior varies locally on the level of the polycrystal. This
stresses the importance of scale-bridging on accurate modeling and simulation of the
hysteresis behavior. Although there are well-established models for individual scales, scale-
bridging strategy is intricate and essential. It is worth noting that the strategy bridging the
atomic and nanoscale micromagnetic combining first-principles calculations, atomistic spin
model simulations and micromagnetic simulations has been investigated and discussed
(Gong, 2022). Nevertheless, the strategy bridging the nanoscale and mesoscale is still

Figure 1.
Bright-field TEM
image of the Sm-Co
magnets containing
nanoscopic SmCo5,
Sm2Co17 and Zr-rich
phases

Zr-rich
platelets

SmCo5

Sm2Co17

c-axis (u)

50 nm c
b a

Co
Sm

Note: The lattice structure as well as the crystallographic axes 
of Sm2Co17 are presented as the inset
Source: Figure courtesy of Duerrschnabel et al. (2017) under the
terms of the Creative Commons CC-BY license
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missing. On the other hand, macroscopic hysteresis behavior can be directly modeled using
proposed phenomenological models, such as the Preisach’s (Preisach, 1935), Tak�acs’s
(Tak�acs, 2001) and Jiles-Atherton’s model (Jiles and Atherton, 1984; Zirka et al., 2012). These
models, however, fail to deliver the physics information on individual scales and cannot be
used in the sense of tailoring hysteresis of permanent magnets.

At the end of the day, modeling and simulating the hysteresis of the permanent magnets
demands a multiscale scenario bridging mesoscale phenomena and nanoscale mechanisms,
which becomes the objective of this work. We propose a novel multiscale scheme for
simulating the polycrystalline permanent magnets’ hysteresis combining the merits of both
micromagnetics and computational magnetostatic homogenization. This scheme is also
extendable to simulate the part-level hysteresis and is capable of integrating machine-
learning-based data-driven methods. It is hoped that the present work can serve a new
viewpoint/methodology in the field of electromagnetic engineering in the hysteresis
behavior of magnetic materials and components and provide a computational toolkit that is
practicable and physics-rooted.

2. Models and methods
Figure 2 presents the workflow of proposed multiscale hysteresis simulation for the
polycrystalline permanent magnets. We start with performing a series of micromagnetic
simulations on distinct parameterized nanostructures. Micromagnetics has a sound physics
foundation and thus is suitable for investigating local magnetization switching mechanisms.
To have acceptable computational cost-efficiency with fine spatial discretization for
resolving physical processes (e.g. domain nucleation, and domain wall migration and
pinning), micromagnetic simulations are implemented and performed by the finite
difference method (FDM). Next, the surrogate hysteresis unit (or “hysteron,” adopted from
its pseudo-particle behavior) parameterized by the results of micromagnetics is used to
replace micromagnetic calculations on the mesoscale polycrystalline structures. This
hysteron should preserve the physical characteristics unveiled by the micromagnetics, such
as the local magnetic coercivity and magnetization rotation. Finally, the hysteresis behavior
of the polycrystalline structure with micromagnetics-informed hysterons is evaluated by
computational magnetostatic homogenization. Due to the need for geometrically

Figure 2.
Workflow of the

proposed multiscale
hysteresis simulation

scheme
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complicated polycrystalline structures without compromising in numerical accuracy,
magnetostatic homogenizations are implemented and performed by the finite element
method (FEM).

It is worth noting that the magnetization reversal on each level of the proposed scheme is
modeled and simulated under the equilibrium conditions, which is sufficient for evaluating
the material- and structural-based hysteresis behavior without loss. It also helps reduce the
3D magnetization dynamics (a.k.a. Landau–Lifshitz–Gilbert dynamics) to 2D rotational one
(a.k.a. Stoner–Wohlfarth reversal, where magnetization is also in the plane defined by the
magnetic fieldH and the easy axis u).

2.1 Micromagnetics
Below the Curie temperature, the magnetization of most of magnetic materials saturates
with constant magnitude (Msat). Therefore, in the micromagnetics, it is important to have the
normalized magnetization vector which is position dependent, i.e.m(r). This vector field can
be physically interpreted as the mean field of the local atomic magnetic moments, but yet
sufficiently small in scale to resolve the magnetization transition across the domain wall. In
this regard, we consider the free energy density functional of a micromagnetic system (with
a volumeV) as the functional ofm(r), i.e.:

F ¼
ð
V

fex þ fani þ fms þ fzm þ fcp
� �

dV : (1)

where fex is the exchange contribution, recapitulating the parallel-aligning tendency among
neighboring magnetic moments due to the Heisenberg exchange interaction. In that sense,
this term acts as a thermodynamic penalty to the system at the domain wall and provides
the local driving force to the domain wall migration. By defining a positive exchange
parameterAex, this term is formulated as:

fex ¼ Aexjjrmjj2: (2)

The term fani represents the contribution due to the magnetocrystalline anisotropy. It
provides the energetically preferred orientation to local magnetizations, which is related to
the defined easy axis umostly of the material. Sm-Co permanent magnets generally possess
crystalline structures with uniaxial anisotropy with u parallel to the crystallographic c-axis,
which is perpendicular to the Zr-rich platelet phase, as shown in Figure 1 (Gutfleisch, 2009).
In this regard, fani is formulated as:

fani ¼ �
X
i

Kui u �mð Þ2i: (3)

It is worth noting that most of the investigations only use the lowest order (i ¼ 1) with the
characteristic parameterKu1. It can be shown that the parametersAex andKu1 are related to
the Bloch domain wall energy sdw andwidth ldw of the materials at the equilibrium as:

sdw ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AexKu1

p
and ldw ¼ p

ffiffiffiffiffiffiffiffi
Aex

Ku1

s
(4)

where SI units are used (Kronmüller, 2003). Normally, Aex, Ku1 and Msat are obtained from
either experimental measurements or from ab initial calculation.
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Besides fex and fani which are material-dependent, the terms fms, fzm and fcp provide the
contributions due to the interaction among magnetization and distinct intrinsic/extrinsic
fields and thereby change the local thermodynamic stability. The magnetostatic term fms
takes account of the energy of each local magnetization (or a magnetic moment) under the
demagnetizing field created by the surrounding magnetization (or by all the other magnetic
moments). It is generally formulated as:

fms ¼ � 1
2
m0Msatm �Hdm; (5)

where the calculation of the demagnetizing field Hdm highly depends on the choice of the
boundary condition (BC), andMsat is the saturated magnetization of the material. Similarly,
the Zeeman and multiphysics-coupling terms fzm and fcp, correspondingly taking account of
the energy of each local magnetization under an extrinsic magnetic field H and an effective
field induced by the coupled physical effectsHcp, are formulated as:

fzm ¼ �m0Msatm �H; (6)

fcp ¼ �m0Msatm �Hcp: (7)

The exact formulation of the coupling field Hcp depends on the choice of coupled physical
effects, such as magnetostriction (Kronmüller, 2003), thermal fluctuation (Brown, 1963) and
spin-current interactions (Sun, 2000).

Generally,H is implemented as a controllable quantity for the investigator to emulate the
magnetic loading/unloading as in the experiments, i.e. an applied magnetic field Hext, and
the micromagnetic system should find its equilibrium. This is mathematically determined as
follows:

m� dF
dm|fflfflfflfflffl{zfflfflfflfflffl}

�sprec

þadm� m� dF
dm

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�sdamp

¼ 0

subject to jjmjj ¼ 1: (8)

Equation (8) can be physically interpreted as the balance between two components of
Landau–Lifshitz torque that, respectively, contribute to the precession (sprec) and the
damping (sdamp) actions of the magnetization m (Gilbert, 1955; Coey, 2010), where ad is the
damping coefficient. As the precession direction of them is always perpendicular to bothm
and the effective field Heff : �dF/dm, the term sprec presents thereby no contribution to
the magnetization reversal process, when m evolves from antiparallel to parallel with
respect to (w.r.t.) Heff. In that sense, only the damping term of equation (8) remains for
solving thermodynamically preferredm(r) under an appliedHext, i.e.:

m� m� dF
dm

� �
¼ 0 subject to jjmjj ¼ 1: (9)

In this work, the FDM-based steepest conjugate gradient (SCG) method is used for solving
equation (9) by the merit of its speed, cost-efficiency and capability for GPU-parallel
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implementation (Leliaert et al., 2018). Another key advantage of using FDM-based SCG
method is to obtain the demagnetizing fieldHdm directly by magnetostatic convolution ofm
over the simulation domain without introducing additional degrees of freedom
(Vansteenkiste et al., 2014; McMichael et al., 1999). In this regard, BCs of m become
significant for correct evaluation of Hdm. Two BCs are majorly used in simulating the
magnetization reversal inside magnetic materials: the Neumann BC (rmj@V·n¼ 0 with n
the normal vector of the boundary @V) represents that the neighboring magnetizations
outside of the simulation domain are identical to the ones at the boundary (Donahue and
Porter, 2004); the Periodic BC represents that the spatial distribution of the magnetizations
inside the simulation domain repeats itself periodically along prescribed directions (Fangohr
et al., 2009).

Based on SCG method, the iteration scheme for calculating the magnetization is
formulated as follows with a descending directionHn, i.e.:

mnþ1 ¼ mn � dnHn;

Hn ¼ m*
n �rmF̂ mn;Hð Þ �mn:

(10)

Here, m*
n ¼ mn will derive Hn as the steepest searching direction, and

m*
n ¼ mn þmnþ1ð Þ=2 as the curvilinear searching direction on the sphere (Goldfarb et al.,

2009). F̂ mn;Hð Þ is the free energy on the discretized domain. The step length dn is
initialized by an inexact line search and subsequentially obtained by the Barzilai–Borwein
rule. This method has been implemented by FDM in the package MuMax3 (Vansteenkiste
et al., 2014) with details elaborated in (Exl et al., 2014).

2.2 Micromagnetics-informed surrogate hysteron
To correctly simulate the local magnetization reversal and associated domain wall
migration, sufficiently fine space discretization (mesh) is required to resolve the reversed
nucleus formed near grain edges/corners where the demagnetizing field is high (Yi et al.,
2016), and the transition profile of magnetization across the domain wall with its thickness
characterized by ldw. As most permanent magnets with ldw in the range of several
nanometers, e.g. ldw � 2 nm for Nd-Fe-B and Sm-Co magnets and ldw � 50 nm for electrical
steels (4.6% Si), it is impractical in both numerical and computational senses for direct
micromagnetic calculations on the mesoscale structure of such materials, where the spatial
distribution of grains with distinct sizes and orientations (easy axes) is believed to have
significant influences as well. In this regard, a surrogate model is required to equivalently
replace the direct micromagnetic calculation on every subdomain for the hysteresis
simulation on the polycrystal level. Such a surrogate model:

� can efficiently describe the local magnetization reversal as an isolated unit but also
as the representative component (subsystem) of the polycrystal system. Such local
reversal should be also dependent on the given orientation of the subdomain; and

� can preserve the important characteristics of the local magnetization reversal by the
micromagnetics, e.g. the local magnetic coercivity Hc where the magnetization of the
chosen subsystem cannot withstand the applied field and gets reversed.

In this work, we use the vector hysteron as the surrogate model of the micromagnetic
simulations, which can well describe the magnetization reversal of the ferromagnetic
domain at equilibrium. Each vector hysteron can be regarded as an independent Stoner–
Wohlfarth pseudo-particle, as its magnetization can only rotate freely in the plane defined
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by the magnetic field H and the easy axis u (if Hku, then the hard axis perpendicular to u
should be provided instead), as shown schematically in the inset of Figure 3. A hysteron
inside a system (as an assembly of hysterons) can only affect the neighboring one via
magnetostatic interactions, in other words, by affecting the local magnetic field.

This vector hysteron consists of two major parameters: the local switching fieldHsw and
the orientation angle a. Defining the local coordinates by the defined positive direction of the
applied magnetic field, i.e. H ¼ Hhk, the longitudinal magnetization of a single
demagnetizing process (simplified asH reversely increasing) is analytically formulated as:

m Hð Þ ¼ mjj
�½ �hjj þm?

�½ �h? H < �Hsw

mjj
þ½ �hjj þm?

þ½ �h? otherwise

8<
: (11)

with:

Figure 3.
Pseudo-particles
schematic of the

vector hysteron with
easy axis u, which

presents the
equilibrium

magnetization at the
varying field

(a1)

(b)

(a2) (a3)

Notes: (a1) H > 0; (a2) –Hsw < H < 0; (a3) H < −Hsw. m∥
[±] and 

m⊥
[±]   and   are, respectively, the longitudinal and transverse 

magnetization components with [+] for the upper branch and 
[−] for the lower branch. H = Hh||; (b) Longitudinal half-cycle 
hysteresis of parameterized vector hysteron with different easy
axis orientations
Source: Authors’ own work
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mjj
6½ � ¼

H6Hswcosaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H262HHswcosaþ H2

sw

p ; (12)

where the plus sign for the upper branch and the minus sign for the lower branch (Petrila

and Stancu, 2011). The transverse magnetization m?
6½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mjj

6½ �
� 	2

r
is calculated

accordingly. The reversal of magnetization vector represented by equation (11) with
prescribed a is schematically presented in Figure 3(a). The switching field Hsw should be
intrinsically structure- and orientation-dependent and should be examined on varying
nanostructures. We take the following Hsw to separate the dependence from a set of
nanostructure parameters {s} and the orientation a:

Hsw a; fsgð Þ ¼ Hani fsgð Þ
cosa

þ Hl a; fsgð Þ: (13)

where Hani({s}) is physically regarded as the anisotropic field of a nanostructure. For
homogeneous ferromagnetic materials, Hani ¼ 2K1/m0Msat. The longitudinal shifting field
H1(a, {s}) is to recapitulate the associate effects that might influence the magnetization
reversal (like the pinning effects). Taking H1 ¼ 0, the half-cycle hysteresis curves presented
by equation (11) with varying a are illustrated in Figure 3(b), where we can observe the cut-
off switching of the magnetization once reaching Hsw (Petrila and Stancu, 2011). In this
work, Hsw(a) is the major parameter that is informed by micromagnetic simulations. It is
expected to optimize the formulation of Hsw and further investigate its structural
dependence adopting the data-driven scenario in our works in the near future.

2.3 Computational magnetostatic homogenization
In this work, the overall hysteresis behavior of the polycrystal is examined by
performing computational magnetostatic homogenization. The governing equations for
magnetostatics are derived by eliminating the time derivative terms in Maxwell’s
equations as:

r�H ¼ J; (14)

r � B ¼ 0; (15)

where B is the magnetic flux density, and J is the current density. In this work, we consider
the case when no current density appears in the system (J5 0), which meansH is a curl-free
vector field, i.e. 5 � H¼0. In that sense, we can calculate the magnetic field by using
merely the magnetic scalar potential U, i.e. H ¼ –5U. Considering the constitutive relation
of magnetostatic, i.e. B ¼ m0[HþM(H)] with M(H) the local magnetization, the Gaussian
law in equation (15) is then rewritten in the Laplace form to be the governing equation of the
system:

DU�r �M ¼ 0: (16)

Omitting Ampère’s law in equation (14) by assuming no space current density also
disregards the effects of eddy current. The homogenization scheme considering the eddy
current losses is in development andwill be discussed in upcoming works.
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Themagnetostatic homogenization problem can then be defined as:

B ¼ m0 HþM Hð Þ½ � onmicroscale;
hBi ¼ m0 hHi þ hMi½ � onmacroscale;



(17)

where h·i ¼ $V(·)dV/V, and V here is the volume of the simulation domain. By using the
micromagnetics-informed surrogate hysteron, the local magnetizationM(H) not only readily
recapitulates the magnetization reversal determined by the nanostructure and
micromagnetic contributions but also reflects the orientation-dependences on the
polycrystal level. hHi is provided by linear BC of scalar potential that satisfies the Hill–
Mandel condition hB·Hi ¼ hBi·hHi, i.e.:

Uj@V ¼ �Hext � rj@V ; (18)

where Hext is constantly prescribed, and r represents the coordinates. Equations (16)–(18)
are implemented by FEM in the package NIsoS developed by authors based on MOOSE
framework (Tonks et al., 2012; Permann et al., 2020). Four-node tetrahedron Lagrangian
elements are chosen to mesh the geometry. A transient solver with preconditioned Jacobian-
Free Newton–Krylov method and backward Euler algorithm is used. Randomly seeded
polycrystalline structures as well as corresponding meshes are created using the open-
source package Neper (Quey et al., 2011; Quey and Renversade, 2017; Quey et al., 2018).

3. Preliminary results and discussion
3.1 Hysteresis of Sm-Co nanostructure and its orientation dependence
Following Katter et al. (1996), a parameterized nanostructure for Sm-Co is used. The
structure parameters of interest are the Sm2Co17 cell size L, thickness of the stripe-shaped
SmCo5 phase ws, the distance between Z-platelets d, thickness of the Z-platelets wz and
orientation angle a between the field H and the easy axis u, as shown in Figure 4(a). In this
work, we take L ¼ 150 nm, d ¼ 50 nm, ws ¼ wZ ¼ 8 nm, while a varies between 0 and p/2.
The nanostructure is generated in a 512� 512� 4 nm3

finite difference domain. Periodic BC
is applied on the two boundaries perpendicular to the z direction, while Neumann BC is
applied on other boundaries. A grain boundary layer with the thickness of 2 nm, where
magnetocrystalline isotropy is assumed (i.e. Ku1), is also introduced to emulate the effects of
the grain boundary in reducing the nucleation field to the system (Yi et al., 2016). To
recapture the domain wall behaviors in the micromagnetic simulations without artificial
effects related to mesh, the FD cell size is chosen as 0.8 nm, which is smaller than ldw.
Micromagnetic parameters of each phase are presented in Table 1.

Figure 4(b) presents a half-cycle hysteresis of a nanostructure with a ¼ p/6 examined
over a single demagnetizing process [H from positive to negative with direction denoted in
Figure 4(a)]. The magnetization reversal of the nanostructure consists of two steps: the
reversed domain is first generated (nucleated) when the magnetic field reaches a certain
threshold, denoted as the nucleation contribution Hc. Then, the nucleated reversed domain
starts to grow alongside the reversely increasing magnetic field, demonstrated in the form of
domain wall migration. When the migrated domain wall front encounters the intersections
between different phases where the domain wall energy differences exist, magnetic energy
is consumed to compensate such differences and the domain wall front stops migration, i.e.
domain wall pinning occurs. The pinning events are reflected on the hysteresis curve as
multiple stages where the magnetization is barely changed, as shown in the Figure 4(b).
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Therefore, the extra magnetic field (denoted as pinning contribution Hp) is required for the
magnetization reversal.

We further present that the nucleation and pinning events on the nanostructure vary with
the orientation angle, even though the parameters of constituent phases do not change. As
shown in Figure 4(c), the half-cycle hysteresis curves present varying staging patterns w.r.t. a,
resulting inHsw as a function ofa as shown in the inset of Figure 4(c). We then take thisHsw(a)
and feed in the vector hysteron in equation (11) and present its longitudinal magnetization for
comparison.We can tell that the hysteron can nicely emulate the magnetization reversal for the
coherent case (a ¼ 0). For increasing a to p/2, the hysteron presents an increased deviation in
demagnetization compared to the micromagnetic simulation. When H < Hsw, the hysteron
shows less longitudinal demagnetization than the micromagnetic one, implying the relatively
slower rotation of the surrogate magnetization vector; when H > Hsw, the hysteron shows
higher longitudinal demagnetization than the micromagnetic one, implying the relatively
faster rotation of the surrogate magnetization vector. This difference in the demagnetization
process between the hysteron and the micromagnetics eventually leads to the deviation of the
magnetic coercivity for 0 < a < p/2. For a ¼ p/2, both result in zero coercivity, even though
the difference in demagnetization process still exists.

3.2 Hysteresis of Sm-Co polycrystal
We apply the surrogate hysterons with micromagnetics-informed Hsw(a) in a 10-grain
polycrystal structure with the size 100� 100� 100 mm3. It is sufficiently large so that every
point inside the polycrystal structure can be conceptually regarded as the homogenized
point of the local nanostructure. Figure 5(a) presents the hysteresis loop of the structure with

Table 1.
Micromagnetic
parameters for the
phases appearing in
this work

Parameters Unit Sm2Co17 SmCo5 Z-plateletsa

Aex pJ m�1 19.6 8.6 0.7
Ku1 MJ m�3 3.9 18.3 1.4
Msat kA m�1 987.7 810.8 310.4
ldw nm 7.0 2.2 2.2
sdw mJ m�2 35.0 50.2 4.0

Notes: aRescaled Aex and Ku1 according to equation (4) by taking the sdw from literature and the ldw
assumed to be coherent with one in SmCo5 phase
Source: Table courtesy of Katter et al. (1996)

Figure 4.
(a) Parameterized
nanostructure of Sm-
Comagnets. The
positive direction of
the magnetic field is
also denoted; (b) The
micromagnetic
simulated half-cycle
hysteresis of the
single demagnetizing
process of Sm-Co
nanostructure with
corresponding
domain configuration
denoted; (c) Average
half-cycle hysteresis
of five demagnetizing
processes by
micromagnetic
simulation (MM) for
each orientation angle
(a), which is
compared with
parameterized vector
hysteron (VH). Inset:
orientation
dependence of the
switching fieldHsw

d

L

Zw

sw

H
u

α

VH MM α

(b) (c)(a)
Source: Authors’ own work

α = π/6

M||/Msat

-1

0

1
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its mesh and orientation histogram shown in the insets. The magnetic coercivity of the
polycrystal reads as 1.65T, which is smaller than the one of 3.17T from micromagnetic
simulation on the coherent nanostructure (Hku). This is because more than half of the grains
inside the examined polycrystal possess orientation angles that are beyond p/4, which
significantly affect the overall hysteresis of the structure.

To deliver insight into how those grains with relatively larger a affect the
demagnetization of the structure, we sample 10� 10� 10 points and visualize their on-site
hysterons as oriented cones. With the applied magnetic field reduced to zero, we can tell that

Figure 5.
(a) The simulated

hysteresis loop of the
polycrystal structure.
Insets: the FEmesh
and the orientation
histogram of the
structure. Local
magnetization

reversal of sampled
points (visualized as

rotating cones) is also
visualized under

different applied field:
(b1) 0.0 T; (b2)�1.0 T;

(b3)�2.5 T;
(b4)�4.0T

“Soft” Grain Reversal 
Propagation

Reversal 
Propagation

Cut-off Switching
(Hsw locally reached)

(b1)

(b2)

(b3)

(b4)

(a)

(b1) (b2)

(b3) (b4)

 0.0 T –1.0 T

–2.5 T –4.0 T

Grain

-1 0 1
M||/Msat

z

x y

Hext

Source: Authors’ own work
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the local hysterons inside certain grains [denoted in Figure 5(b1)] point to the direction
almost p/2 w.r.t. the magnetic field direction, which is also the easy axis of the grain. This
grain is regarded as the “soft” grain as the local coercivity inside is nearly zero. The
surrounding hysterons receive the influence of the grain and deviate slightly from their
stable directions. It is worth noting that the hysterons inside the grain with p/4 < a < p/2
would be affected relatively easier, presenting a trend of reversal propagation toward those
directions. When the field starts to reversely increase (H< 0), the hysterons inside the “soft”
grain already present the reversed magnetization and continue propagating the effect to the
surrounded grains with relatively large a, as shown from Figure 5(b2) to Figure 5(b3).
Meanwhile, the hysterons inside grains with 0# a< p/4 (“hard” grains) receive less effects
from already reversed ones, until the local field is large enough to suddenly reverse all of
them, as denoted in Figure 5(b4). This is due to the cut-off switching of those hysterons as
demonstrated in Figure 3, where the local field reaches theHsw.

4. Conclusions
We present in this work a novel multiscale simulation scheme for permanent magnets
recapitulating its structural and physical characteristics from the nanoscale to the
mesoscale. We perform the micromagnetic simulations on the parameterized Sm-Co
nanostructures and investigate the mechanisms that are tightly related to the local magnetic
coercivity, including the nucleation of the reversed domain, domain wall migration and
pinning and unveil the orientation dependence of the demagnetization processes via half-
cycle hysteresis curves. This information is then carried by micromagnetics-informed
surrogate hysterons in the magnetostatic homogenization of a 10-grain polycrystalline
structure with assigned orientations. The simulation results of the polycrystal demonstrate
that the grains with largest a (“soft” grains) influence the overall demagnetization process
significantly by their early reversing and further propagate such effect to the grains with
p/4< a< p/2 via affecting the local field. This is believed to result in a magnetic coercivity
of 1.65T, which is smaller than the one of 3.17T examined from coherent nanostructures.

The presented work also showcases the demand of integrating data-driven methods, as
the parameters of the surrogate hysteron intrinsically depend on the nanostructure and its
orientation. In other words, effects of the nanostructural parameters (here L, d, ws andwZ) on
the behavior of surrogate hysterons and the sensitivity analysis should be addressed in the
upcoming works. More hysteron parameters that further help the surrogate hysteron to
emulate the micromagnetic-simulated magnetization reversal, e.g. an orientation-dependent
offset that adjusts the demagnetization (or rotation) of the hysteron, should be also
discussed and examined.
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