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Abstract
Purpose – The purpose of this paper is to examine a solution strategy for coupled nonlinear magnetic-
thermal problems and apply it to the heating process of a thin moving steel sheet. Performing efficient
numerical simulations of induction heating processes becomes ever more important because of faster
production development cycles, where the quasi steady-state solution of the problem plays a pivotal
role.
Design/methodology/approach – To avoid time-consuming transient simulations, the eddy
current problem is transformed into frequency domain and a harmonic balancing scheme is used to
take into account the nonlinear BH-curve. The thermal problem is solved in steady-state domain,
which is carried out by including a convective term to model the stationary heat transport due to the
sheet velocity.
Findings – The presented solution strategy is compared to a classical nonlinear transient reference
solution of the eddy current problem and shows good convergence, even for a small number of
considered harmonics.
Originality/value – Numerical simulations of induction heating processes are necessary to fully
understand certain phenomena, e.g. local overheating of areas in thin structures. With the presented approach
it is possible to perform large 3D simulations without excessive computational resources by exploiting certain
properties of the multiharmonic solution of the eddy current problem. Together with the use of
nonconforming interfaces, the overall computational complexity of the problem can be decreased
significantly.

Keywords Induction heating, Multiphysics, Finite element method, Coupled systems,
Computational electromagnetics, Magnetic nonlinearity

Paper type Research paper

1. Introduction
Depending on the actual heating application and the thickness of the sheet, excitation
frequencies of up to 100 kHz are necessary. This results in large timescale differences between
the magnetic O(Dtmagnetic) ! 10�6 s and the thermal field O(Dtheat) ! 1 s, which makes a
transient analysis not feasible. There are attempts to circumvent this issue, e.g. in Kaufmann
et al. (2014), where the thermal heat conduction problem is only solved every N-th time step or
by using an effective material in a harmonic simulation, e.g. in Paoli et al. (1998). Another
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interesting approach, using the fact, that the solution is time periodic, is presented in Biro and
Preis (2006). In our approach, we use a multiharmonic ansatz to transform the nonlinear
problem into frequency domain and a harmonic balancing scheme to incorporate the nonlinear
commutation curve. The resulting system is solved with a nested iteration strategy [see
Bachinger et al. (2002)], including an adapted algebraic multigrid (AMG) preconditioner, based
on the auxiliarymesh ansatz, proposed in Reitzinger (2002).

To incorporate a moving sheet, we use the convection diffusion equation, which is the
classical heat conduction partial differential equation (PDE), augmented by a convective term and
solved in steady state, which further improves the computational performance of themethod.

2. Definition of the coupled problem
For the electromagnetic part, we solve the eddy current problem:

r� � jjr �Ajjð Þr �A ¼ J i � g Tð Þ @A
@t

; (1)

for the magnetic vector potential A, where v (jjr � Ajj) represents the solution dependent
reluctivity, based on the commutation curve, Ji the impressed current density and g (T) the
electric conductivity, which is assumed isotropic and constant, to focus on the
multiharmonic approach. To obtain the temperature distribution in the moving sheet, we
have to solve the nonlinear convective heat PDE:

@ rc Tð ÞT
� �

@t
þr � rc Tð ÞTu

� �
¼ r � l Tð ÞrTð Þ þ _Q; (2)

where r is the density, c(T) the temperature dependent specific heat capacity, l (T) the
thermal conduction coefficient, u the velocity of the sheet and _Q the heat source density,
based on Joule losses resulting from eddy currents (no hysteretic losses are considered).
These losses are defined as:

_Q ¼ J � E; (3)

with E as the electric field intensity. This (total) electric field intensity can then be given as
the sum of any irrational part Ei, included in the impressed current density later on and a
solenoidal partEs. Now the constitutive relation J= g (Eþu�B) can be rewritten as:

J ¼ J i þ g Es þ u � Bð Þ; (4)

with Ji as the impressed current density because of a given electric potential difference
(current- or voltage-loaded coil). With this relation, (3) simplifies to:

_Q � J i þ gEsð Þ � Es: (5)

This is valid because Es � u�B for slowly moving sheets. From the definition of the
magnetic vector potential (B = r � A) and Faraday’s law, we can state for the solenoidal
part of the electric field intensity:

Es ¼ � @A
@t

: (6)

Using this in (5), results in the final form:

_Q ¼ g
@A
@t

� @A
@t

� J i � @A
@t

: (7)
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3. Multiharmonic ansatz
Because we are not interested in transient effects of the magnetic field, we transform the
nonlinear eddy current problem (1) into frequency domain, using a multiharmonic Ansatz
forA, v (jjr �Ajj) and Ji of the form:

f x; tð Þ ¼ <
XN
k¼0

f̂ k xð Þ � ejkv t

0
@

1
A ¼

XN
k¼�N

f̂ k xð Þ � ejkv t; (8)

where a generic quantity f is used as a template for the above mentioned quantities.
Inserting this ansatz into (1), results in:

r�
XM

m¼�M

�̂m xð Þejmv tr�
XN
k¼�N

Âk xð Þejkv t ¼
XN
k¼�N

Ĵ i xð Þejkv t � jvg
XN
k¼�N

kÂk xð Þejkv t;

(9)

whereM#N. With this additional expansion number, we obtain the possibility to expand the
solution Âk and the reluctivity �̂m into different Fourier series with different truncations. This
could be beneficial when considering a large number of harmonics N for the solution quantity
but reducing the size of the global system by choosing a small M, which results in less off-
diagonal matrices and saves memory. In this work, we set M=N, because N is not chosen
as large as to gain significant benefits from a smallerM. We then multiply (9) by e–ivnt for
n [ [–N, . . . ,N] and integrate over one period t = 2p /v , to obtain the frequency domain
problem. An important aspect is the existence and uniqueness of the solution for the eddy
current problem, which is proven, e.g. in Bachinger et al. (2005), together with an estimate of the
truncation error, because we only incorporate a finite number of harmonics into the ansatz.

Rewriting the summation as matrix-vector multiplication, results in the following system
of equations:

r�

�̂0 �̂�1 . . . �̂�M

�̂1 �̂0 �̂�1
. .
.

..

.
�̂0 �̂�M

�̂M
. .
. ..

.

. .
.

�̂0 �̂�1

�̂M . . . �̂1 �̂0

2
66666666666664

3
77777777777775

r� Â�N

..

.

r� Â0

r� Â1

..

.

r� ÂN

2
666666666664

3
777777777775

þ jvg

�N
. .
.

0
1

. .
.

N

2
666666664

3
777777775

Â�N

..

.

Â0

Â1

..

.

ÂN

2
6666666664

3
7777777775
5

Ĵ �N

..

.

Ĵ 0

Ĵ 1

..

.

Ĵ N

2
6666666664

3
7777777775
: (10)
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Now we can use a Galerkin ansatz together with edge finite elements in H(curl) to construct
the final linear system:

K �̂0ð Þ K �̂�1ð Þ . . . K �̂�Mð Þ

K �̂1ð Þ K �̂0ð Þ K �̂�1ð Þ . .
.

..

.
K �̂0ð Þ K �̂�Mð Þ

K �̂Mð Þ . .
. ..

.

. .
.

K �̂0ð Þ K �̂�1ð Þ
K �̂Mð Þ . . . K �̂1ð Þ K �̂0ð Þ

2
66666666666666664

3
77777777777777775

0
BBBBBBBBBBBBBBBB@

þ jv

�NM

. .
.

0

M

. .
.

NM

2
66666666666664

3
77777777777775

1
CCCCCCCCCCCCCA

Â�N

..

.

Â0

Â1

..

.

ÂN

2
6666666666666664

3
7777777777777775

¼

Ĵ�N

..

.

Ĵ
0

Ĵ
1

..

.

Ĵ
N

2
66666666666666664

3
77777777777777775

; (11)

whereK �̂ kð Þ is the stiffness matrix associated to the k-th harmonic of the reluctivity andM
the mass matrix, which is the same for all harmonics. The vectors Âk contain the values of
the unknown vector potential for harmonic k and Ĵ

k
the excitation current.

4. Numerical solution procedure
This global system (11) is solved via the proposed solution strategy in (Bachinger et al.,
2002) with the adaption, that the Richardson solver for the inner iteration is replaced by a
generalized minimal residual method (GMRES) or conjugate gradient (CG), owing to the
better convergence for the application example in Section 8.

For the proposed block Jacobi preconditioner, we need a strategy to efficiently evaluate
the inverse diagonal elements, which are matrices itself. Therefore an adapted AMG
preconditioner is used, as presented in (Reitzinger, 2002).

An important aspect is the correct evaluation of the reluctivity Fourier coefficients
�̂ k in (11), depending on the commutation curve. In this section, the subscript represents
the harmonic number k [ [–N, N] and the superscript i, the iteration counter. Our
approach consists of using an alternating time frequency scheme, as depicted in
Figure 1, where we first solve the initial (linear harmonic) system with the linear
reluctivity �0 � �0 tð Þ � �̂0

0 for the harmonics (Fourier coefficients) of the magnetic

vector potential Â
0
k .
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Because we solely inserted �̂0
0 into the diagonal blocks in (11) without any off-diagonal entries:

�̂0
k ¼ 0; for k 6¼ 0; (12)

the solution Â
0
k for k [ [–N, N] represents the linear harmonic solution for every excitation

with harmonic k.
After transforming the initial solution Â

0
k into time domain (F�1) and computing the

magnetic flux density:

B i tð Þ ¼ r �Ai tð Þ; (13)

we evaluate the commutation curve and obtain �i(t). This time signal �i(t) can then be
transformed into frequency domain (F) to obtain the new reluctivity Fourier coefficients
�̂ iþ1
k , used to reassemble the global system (11).
The resulting system fully incorporates the information of the commutation curve,

represented by the coupling matrices (off-diagonal entries), causing a dependency between
all harmonics. Solving the adapted multiharmonic system, results in an updated solution for

the Fourier coefficients of the magnetic vector potential Â
iþ1
k for k [ [–N, N]. The procedure,

depicted in Figure 1 is then continued until the absolute residual reaches a certain threshold.

5. Reduction to odd harmonics
The global system (11) has to be solved and reassembled several times, depending on the
number of iterations, needed for convergence. This is computationally expensive, especially
when increasing the number of harmonics. Therefore we are striving to increase the
performance of the presented approach by considering the following aspect.

Figure 1.
Alternating time
frequency scheme Source: Based on Lang and Zhang (2016)
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The basis for this derivation is the proof of existence and uniqueness of a solution for
(10), carried out in Bachinger et al. (2005). Owing to better readability, the Fourier series in
the following are considered in the real valued notation, which is equivalent to the complex
valued pendant, used in (8). Now we temporarily suppose an excitation only in the base
harmonic:

J tð Þ ¼ J ccos v tð Þ; (14)

where J c is the cos-Fourier coefficient. For a generic harmonic function f (t) it is obvious,
that when phase shifting the function half a period, we obtain:

f t þ p

v

� �
¼ �f tð Þ: (15)

Representing f(t) in a Fourier series of the form:

f tð Þ ¼
XN
k¼0

f ckcos kv tð Þ þ f sksin kv tð Þ; (16)

it also follows from (15) that the coefficients for even harmonics (2k) are zero. This can easily
be seen by comparing the following three cases:

f1 tð Þ ¼ cos v tð Þ þ sin v tð Þ; (17)

f2 tð Þ ¼ cos 2v tð Þ þ sin 2v tð Þ and (18)

f3 tð Þ ¼ cos 3v tð Þ þ sin 3v tð Þ: (19)

When phase shifting f1 half a period, we obtain –f1. Doing the same with f2, results in f2,
which violates (15). On the other hand, f3 fulfills (15), which shows that only odd harmonics
remain, which also holds for the excitation J(t), as it fulfills (15).

This procedure only shows the property of the right hand side (excitation). In fact, also
the solution has this property, which follows directly from the existence of a unique solution
(Bachinger et al., 2005).

Another, more intuitive way to see this property is to consider the commutation curve
�(B), based on the actual BH-curve, where �(B) is an even function (symmetric aroundB=0).
Varying B with e.g. B(t) = Bc cos(v t), results in a signal with period length p /v , which is
half the period length of B(t). Therefore, no odd harmonics are present in the Fourier
transform of �(t), except the contributions from frequency zero. Inserting this relation into
(11), one can observe that the rows and columns for harmonics k [Neven are zero. Therefore
also the solution Âk is zero for k [N

even.
With this property, we can decrease the size of the global system (11) from (2Nþ 1)

harmonics to only (Nþ 1), which poses a significant performance improvement, especially
when considering a large number of harmonics.

6. Joule losses in multiharmonic analysis
For the convective heat PDE, we need consistent heat sources for the steady state
formulation, given in Section 7. Therefore we average the Joule loss density (7) over one
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period in frequency domain. Because the solution is given in terms of harmonics Âk for k [
N, special care has to be taken to correctly compute the average. For better readability, both
terms in (7) are handled separately:

_Q ¼ g
@A
@t

� @A
@t|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Term1

� J i � @A
@t|fflfflffl{zfflfflffl}

Term2

: (20)

Term-1. We transform the term from time to frequency domain by applying the multi-
harmonic ansatz:

g
@A
@t

� @A
@t

! g
XN
k¼�N

jkvÂkejkv t �
XN
l¼�N

jlvÂ l ejlv t

0
@

1
A: (21)

The aim is to integrate all periodic “AC components” (alternating) parts over one period, which
then vanish and only the total offset “DC component” remains. Let us now integrate (21) over
one period of the base harmonic t iþ1� t i= 2p /v and concatenate the double sum:

g
1

t iþ1 � t i

ðt iþ1

t i

@A
@t

� @A
@t

dt ¼ gv 2 �1
t iþ1 � t i

ðt iþ1

t i

XN
k¼�N

XN
l¼�N

k l Âk � Â lej kþlð Þv t

0
@

1
Adt:

(22)

At this point we can use: ðt iþ1

t i

ejhv t ¼ 0; 8h 2 N; (23)

which means that all combinations Âk � Â l ej kþlð Þv t vanish iff (kþ l ) = 0. Based on this
property, we can evaluate the remaining parts (for k= –l) as:

g
1

t iþ1 � t i

ðt iþ1

t i

@A
@t

� @A
@t

dt ¼ 1
2
gv 2

XN
k¼�N

k2Âk � Â�k ¼

1
2
gv 2

XN
k¼�N

k2Âk � Â
*
k ¼

1
2
gv 2

XN
k¼�N

k2jjÂkjj2;
(24)

where * denotes the conjugate complex and j·j the Euclidian norm in Rd. The additional
factor of 1/2 is valid, because in comparison to (22), where the combination k = –l occurs
exactlyN-times, it occurs 2N-times in (24).

Based on the above derivation, we obtain the following expression for the first term,
where the tilde represents the period averaged quantity:

_~QTerm1 ¼ 1
2
gv 2

XN
k¼�N

k2Âk � Â
*
k ¼

1
2
gv 2

XN
k¼�N

k2jjÂkjj2 (25)
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Term-2. With the assumption of an excitation only in the base harmonic, this term follows
analogously to Term-1. It is not further considered in this paper, as we are not solving for the
temperature distribution inside the coil.

7. Heat partial differential equation and coupling
To increase efficiency and because of the fact that we are not considering transient effects,
we can reformulate (2) for the steady state case t!1 as:

r � rc Tð ÞTu
� �

¼ r � l Tð ÞrTð Þ þ _~Q; (26)

Regarding the computational domain X, its boundary @X is split into Neumann (natural Cn)
and Dirichlet (essential Ce) boundaries @X ¼ Cn [ Ce. Then, the weak form can be
formulated as:

FindT [V: = {u [H1| u=0, onCe} such that:

�
ð
X
rc Tð ÞrT 0 � uTð Þdxþ

ð
X
l Tð ÞrT 0 � rTdx5

�
ð
Cn

rc Tð ÞT 0uT
l Tð Þ
rc Tð Þ þ l Tð ÞT0rT

 !
� n dsþ

ð
X

_~Q T 0dx; 8T 0 2 V ; (27)

where the Dirichlet boundary Ce is not visible in the weak form because the test
functions T 0 are (per definition of V) zero at essential boundaries. Special attention has
to be paid to the convective term (first integral in the equation above) because it
produces asymmetric entries in the system matrix. This can increase the condition
number of the system, which is of importance, especially when using preconditioners
for iterative solvers.

The global coupling of the nonlinear eddy current problem with the nonlinear
thermal- (convective diffusive-) PDE is performed, according to Figure 2, where
iteration counter i represents the harmonic balancing scheme from Figure 1 and
iteration counter j a nonlinear Newton iteration, adapting the thermal conductivity l (T)
and specific heat capacity c(T).

8. Application example
We consider the heating of a 1 mm thick and 200 mm wide endless steel sheet with a
horseshoe-shaped inductor, depicted in Figure 3, assumed to have no conductivity, to
prevent eddy currents. The sheet has a constant electric conductivity of g = 5.08 · 106

S/m and the linear permeability is chosen, based on the commutation curve, as m0 =
8 · 10�6Vs/Am. The temperature dependency of the electric conductivity is ignored in
this example because it has negligible influence on the resulting temperature
distribution in the moving sheet. The considered material nonlinearity is taken into
account by its commutation curve, depicted in Figure 4, which is a smooth-spline
approximated curve from measurement data. It is important to notice the need for a
correct approximation, to obtain a strictly monotone magnetization curve, as
described in Reitzinger et al. (2002). This is essential because otherwise the unique
existence of a solution for the eddy current problem cannot be ensured.
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For the excitation, an impressed current in the coil, with a frequency of 2.8 kHz and a current
of 9 kA is chosen. The material parameters of steel, together with the excitation frequency
result in an approximate skin penetration depth of:

d ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p f gm 0

p ¼ 0:52mm: (28)

Figure 2.
Nonlinear magnetic
thermal iteration
scheme

Figure 3.
Transversal inductor
above a 1-mm thin
steel sheet
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The problem with this approximate skin depth is that it heavily depends on the actual
working point on the commutation curve (Figure 4) and even more so on the number of
considered harmonics. The above approximation is only valid for N= 1, if however we
increase the number of harmonics, the mesh must be significantly finer because we
have to fully resolve the eddy currents up to the highest possible frequency, which is
N s² f. To accomplish this, the sheet is meshed with structured hexahedral elements,
including a refinement to resolve the eddy currents correctly. The discretization of the
air volume is performed with large, unstructured tetrahedrons, which is possible, as we
are using nonconforming Nitsche interfaces. Otherwise, transition elements (pyramids)
would be necessary, leading to more degrees of freedom, respectively lower
computational efficiency.

With this approach, the number of elements is about 226,000 and the discretization
of the continuous function space is carried out, using lowest order Nedelec edge
elements.

To obtain a reference solution, we compare the multiharmonic results to a nonlinear
transient analysis with a timestep size of Dt = 1 · 10�5s. For induction heating
processes, the most important output quantity of the magnetic analysis are the Joule-
(eddy current) losses. In total, seven periods were simulated to ensure a quasi-steady
state solution. To compare these losses to the steady state ones, obtained from the
multiharmonic simulation, as derived in (25), a numerical integration and averaging
over three periods of the time signal of the transient analysis is carried out using the
trapezoidal rule. The results for the relative errors between multiharmonic and
transient analysis are given in Table I. One can observe monotone convergence for
increasing numbers of considered harmonics. Additionally, the ratio of wall clock times
between multiharmonic- and nonlinear transient-solution are given and a significant
performance improvement can be noticed, especially for smaller numbers of considered
harmonics.

In Figure 5, a quasi-steady state period of the B field from the nonlinear transient
analysis is compared to multiharmonic simulations for different numbers of considered
harmonics from 1 to 7. For a more quantitative comparison of nonlinear transient and
multiharmonic analysis, the FFT of the transient solution is compared to the
multiharmonic one for N= 7 in Figure 6. In this plot, the real and imaginary parts of
both, nonlinear transient and multiharmonic simulation are depicted separately and

Figure 4.
Commutation curve,

based on
measurements and

smooth spline
approximation
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one can observe excellent matching of Fourier coefficients up to the seventh harmonic
at 17.5 kHz.

For the nonlinear eddy current problem it is difficult to a priori estimate the skin depth,
as it not only depends on temperature dependent electric conductivity g (T) (which is
assumed to be constant in this work) but also on the actual solution, which defines, together
with the commutation curve, the reluctivity �(jjr �Ajj).

Figure 6.
Comparison of
Fourier coefficients of
transient and
multiharmonicB-
field forN=7

Figure 5.
Comparison of
magnetic flux density
for transient and
multiharmonic
analysis in a point on
the centerline of the
sheet under the
inductor

Table I.
Comparison of
multiharmonic
simulations with
nonlinear transient
ones

Considered harmonics Multiharmonic _~QMH % Rel. error j
_~QMH � _~Q transj

_~Q trans

twallMH =t
wall
trans

N=1 (1) 4.0121 · 107 8.882 0.07
N=3 (1,3) 4.3495 · 107 1.220 0.19
N=5 (1,3,5) 4.4414 · 107 0.262 0.28
N=7 (1,3,5,7) 4.4008 · 107 0.057 0.37
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Applying the Joule- (eddy current) losses from Table I to the moving steel sheet with a
velocity u ¼ 5 mm

s , results in a temperature distribution, depicted in Figure 7. Plotting
the temperature along the centerline of the sheet, Figure 8 is obtained, where one can
observe a similar behavior, correlating to the error investigation in Table I. Looking at
the highest temperatures in Figure 8, a large gap between the simulations with N= 1
and N= 3 is visible. When increasing the number of considered harmonics, this gap
becomes smaller.

9. Conclusion
In this paper we presented a method to circumvent the time consuming nonlinear
transient analysis of the coupled magnetic thermal problem, when simulating
induction heating processes by means of a multiharmonic ansatz. For the correct
handling of the solution dependent reluctivity, an alternating time frequency scheme
was proposed.

This strategy was used to simulate a heating process of a thin steel sheet and the
multiharmonic results (Joule losses, as well as B field) converge towards a nonlinear
transient reference solution.

Figure 8.
Temperature along
the centerline of the

sheet

Figure 7.
Steady-state

temperature field for
moving steel sheet
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