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Abstract
Purpose – This study aims to investigate the possible use of a deep neural network (DNN) as an inverse
solver.
Design/methodology/approach – Different models based on DNNs are designed and proposed for the
resolution of inverse electromagnetic problems either as fast solvers for the direct problem or as straightforward
inverse problem solvers, with reference to theTEAM25 benchmark problem for the sake of exemplification.
Findings – Using DNNs as straightforward inverse problem solvers has relevant advantages in terms of
promptness but requires a careful treatment of the underlying problem ill-posedness.
Originality/value – This work is one of the first attempts to exploit DNNs for inverse problem resolution
in low-frequency electromagnetism. Results on the TEAM 25 test problem show the potential effectiveness of
the approach but also highlight the need for a careful choice of the training data set.
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Paper type Research paper

1. Introduction
In recent years, various deep learning (DL) approaches have been proposed for solving
computationally demanding or difficult-to-model problems in several fields. A typical
example of application is the problems inherent to electromagnetism (EM), in which it is
often not possible to analytically describe the output (Barmada et al., 2020; Barmada et al.,
2021; Khan et al., 2019; Sasaki and Igarashi, 2018). The main advantage of using DL
approaches is, in fact, the ability to obtain, in almost negligible time, efficient solutions
without the necessity of a specific mathematical formulation, but only an appropriate data
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set for the training of the neural networks (NNs). Note that the accuracy of the solution is not
always granted; for this reason, the combined use of DL with standard numerical models in
optimization procedures is highly recommended to improve effectiveness. Anyway, an
additional advantage of using DL is the possibility to exploit the inherent bidirectionality of
this approach. In other words, NNs can be trained either to promptly solve the direct
electromagnetic problem for given input geometry and sources, to look for the geometry
giving the assigned electromagnetic output with assigned sources or, finally, to look for the
sources from assigned fields and geometry. In fact, DL approaches have been gaining a
constantly increasing interest as a tool for inverse problem resolution in recent years.

A possible definition of inverse problems, relevant for our discussion, can be cast as “the
reconstruction of system characteristics, e.g. its inner structure, from observed or desired
data”. These problems appear in various applications, such as medical imaging with X-rays
(Jin et al., 2017) or other electromagnetic sources (Liang et al., 2020). Inverse problems are
often found also in engineering applications, such as the detection of specific materials
within other structures by analyzing only the surface, thus, avoiding invasive analysis
(Snieder and Trampert, 1999). In the literature, we can observe a constant and continuous
improvement of DL approaches applied to image processing or related problems. Several
works have proven the effectiveness of classical algorithms (Antun et al., 2020; Genzel et al.,
2020; Amjad et al., 2018).

Since the inverse problems we are dealing with are classically formulated as the
minimization of a reconstruction error, notable characteristics of such classical approaches
are the need for regularization (as raw observed data are frequently compatible with
multiple solutions) and the adoption of iterative processes to achieve the minimum error.
Although DNNs, when properly trained, can provide a solution in a single step, much care
must be given to the regularization of the problem inherently produced by the DL approach.
As a matter of fact, the DNN proposes the solution most closely corresponding to the
observed data among those considered in the training step. Consequently, DNN does
provide an inherent regularization, ruled by the construction of the learning set and by the
teaching algorithm: this point needs further investigation from the viewpoint of the authors.

Some notable works collect the literature inherent in DL approaches applied to inverse
problems; however, they are mostly focused on image processing problems. Among the
possible approaches, we can enumerate a classical deep neural network (DNN), i.e. an NN
with more than two layers of neurons, for instance, in Amjad et al. (2019), where some
regression generalization bounds, precisely obtained via DNN, are compared to classical
sparse reconstruction algorithms. Instead, (McCann et al., 2017) collect several convolutional
neural networks (CNNs), which are feedforward NNs, to solve imaging problems such as
denoising, reconstruction and super resolution. Liang et al. (2020) focus on medical
applications of magnetic resonance imaging. Other models used in addition to CNN include
recurrent neural networks, i.e. NNs where connections between nodes form a directed graph,
and generative adversarial networks, i.e. two or more NNs that contest with each other into a
game. The efficiency of these approaches is then verified from the point of view of
computation in comparison to more classical algorithms. Lucas et al. (2018) add multilayer
perceptron and autoencoders to the previously listed approaches, whereas (Bai et al., 2020)
focus on fully connected neural networks. Finally, Ongie et al. (2020) present a taxonomy of
inverse problems depending on the type of supervision and knowledge of the corresponding
“direct” problem. Although numerous works introduce DL approaches to solve direct
problems in EM, contributions dealing with the inverse case are still rare. Recently, Pollok
et al. (2021) have deal with the inverse design of magnetic fields via standard CNNs.
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In this contribution, following previous work (Barmada et al., 2021) in which some of the
authors proposed a topological optimization for the TEAM 25 problem using DNNs as a
prompt direct solver, a DL approach is exploited as an inverse solver: starting from the field
distribution, the geometrical characteristics of the system are obtained. The aim is to
investigate how techniques that are performing well for the direct case are equally
performing for the inverse case. In particular, we propose a DL model where the input
geometry is represented as a bitmap, and we compare it with a classical machine learning
(ML) approach, where the geometry is represented with a small number of parameters.

To the author’s knowledge, this work represents one of the first studies of inverse
problems in low-frequency EM using DL.

Themain contributions of this paper can be identified as follows:
� a real electromagnetic inverse problem was taken into account (electromagnetic

press);
� we performed 10000 FEM simulations, obtaining a large data set of accurate

solutions for training the NNs, where each solution is given as the magnetic
induction field Bx and By values in nine points, corresponding to a 25*36 geometry
bitmap;

� we performed an accurate model selection of the number of neurons in the hidden
layers using fivefold cross-validation (CV) over 8,000 samples;

� we performed the test analysis on 2,000 samples, obtaining very low errors both for
direct (6%) and inverse (3.5%) problems, then demonstrating that the NNs can solve
these problems very well;

� we show that the inverse problem (reconstruct geometry from magnetic fields) can
be solved successfully in two ways using both DL and ML:
– solving the direct problem and then using an optimization loop;
– solving the inverse problem as is;

� we compared the two approaches both regarding their accuracy and their
computational time and highlighting their advantages and disadvantages;

� we analyzed the behavior of the trained model when dealing with test data coming
from a different generative model with respect to training data; and

� all of the results were supported by numerical analysis and statistically significant
error calculations.

The remaining of the paper is organized as follows: in Section 2, we briefly introduce and
discuss the approaches for inverse problems, and in Section 3, we discuss the used DNN
architectures; in Section 4, we present the benchmark problem; in Sections 5 and 6 we
discuss the model selection and the test results; finally, Section 7 presents the conclusion.

2. Proposed approaches for inverse problems
As mentioned above, solving an inverse problem means to obtain a system’s specific
characteristic from a set of available data; often, this data is actually obtained by a forward
process. For general shape optimization problems, the inverse problem is the determination
of a specific geometry, given the evaluation of an objective function (i.e. field values,
mechanical quantities and energy). In typical engineering problems, the relationship
between the geometry and the objective function is not easily obtainable and complex
evaluations (i.e. numerical solutions of the system) should be performed.
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In this contribution, the authors compare two different approaches for solving the
inverse problem, which we call the direct problem approach (DPA) and the inverse problem
approach (IPA). In both DPA and IPA, the problem consists in determining the geometry
corresponding to a given desired field; hence, both approaches aim to solve the inverse
problem, where DPA is actually an optimization problem. The schemes of the two
approaches using DNNs are shown in Figure 1. In both cases (DPA and IPA), a data set to
train the DNNs needs to be generated using finite element analysis (FEA) software. The
training data set consists of randomly generated geometry profiles and the corresponding
fields.

In DPA, a DNN model is trained to predict the fields given an input geometry, and it is
used as a surrogate model inside an optimization loop, seeking the shape that corresponds to
a given desired field map. In IPA, on the contrary, a DNN model is trained to predict the
geometry given an input field distribution, and it is directly used to obtain the optimal shape
corresponding to a given field map. Generally speaking, IPA is faster and straightforward,
but it is often badly conditioned and highly under-determined, while DPA suffers less of
these issues but requires longer computational times.

3. Deep earning and machine learning models
In this section, we focus on the DNN block of Figure 1. In particular, we propose a DNN
architecture for the IPA similar to the one used for the DPA case in a previous work that, for
simplicity of exposure, is reported below. Both in this work and in Barmada et al. (2021), the
input geometry is represented as a binary image subject to some constructive constraints of
shape, continuity and feasibility.

The main characteristic of the proposed DNN is the use of an autoencoder, which is
indeed an NN composed of an encoder, which maps the input space into a representation
with reduced features called latent space, and a decoder which maps the latent space back to
the original space generating the reconstructed pattern. In particular, the autoencoder is
trained to minimize the reconstructed error or, in general, a loss function L(X, X0) = kX �
X0k2, whereX is the input pattern, andX0 is the reconstructed pattern.

In Barmada et al. (2021), the DPA was implemented as a DL model consisting of two
parts, as depicted in Figure 2(a):

(1) an encoder that reduces the input geometry to the latent space; and
(2) a feed-forward NN (Goodfellow et al., 2016) that is fed with the latent space

variables and yields the corresponding field values as outputs.

In the computer science community, stacking an autoencoder with a NN is considered a DL
paradigm that includes the dimensionality reduction step (Goodfellow, 2016). Another

Figure 1.
A representation of

the approaches
considered in the

paper
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commonly accepted characteristic for a neural model to be defined as deep is the presence of
at least two hidden layers, and the proposed model includes exactly two hidden layers, as
shown in Figure 2(c).

The same DL approach is exploited in this work to solve the IPA, as shown in Figure 2(b) and
(c). In particular, starting from the magnetic field values, it is possible to train an NN to obtain the
latent variables as output (this NN is, of course, different with respect to the DPA case). Hence, we

Figure 2.
(a) DLmodel for
DPA, (b) DLmodel
for IPA, (c) DNN
model: NN stacked on
autoencoder latent
space
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use the second part of the autoencoder, the decoder, to obtain a final binary image representing
the geometry [IPA input–output path in Figure 2(c)]. It is worth to note that the DPA and the IPA
in the proposedDLmodel share the same autoencoder but require different NNs.

As an alternative, and for the sake of comparison, we also consider a case where the input
image is nonrepresented with a bitmap but using a small set of geometry parameters. Using
such a compact representation of the geometry limits the degrees of freedom but drastically
reduces the computational complexity. We can thus avoid using DNN approaches and
directly exploit standard ML models such as one hidden layer feed-forward NNs, which can
be directly trained to map the relationship between geometry and fields (and vice-versa).
With this approach, the intermediate dimensionality reduction to the latent space is not
needed because the input geometry is now represented with a lower dimension. We denote
this approach as ML model and, as in the previous case, this implementation can be applied
to both problems IPA and DPA, as shown in Figure 3.

4. Benchmark problem description
The testing electromagnetic analysis methods (TEAM) represents an open international
working group aiming to compare electromagnetic analysis computer codes (www.
compumag.org/wp/team/). The TEAM problem 25 (Takahashi, 1996) is specifically
designed to test shape optimization methods. This problem copes with a die press used to
orient magnetic powders. An electromagnet is employed to generate a field in an air cavity,
and iron die molds help get the required flux distribution. The problem statement asks to
optimize the shape of the inner and outer die molds to obtain a uniform radial flux density
distribution in a cavity (Figure 4 for a schematic drawing). Using the variables defined in
Figure 4(c), the flux density along the line e-f must equal (large Ampere-Turns case):

Bx ¼ 1:5cos# Tð Þ;By ¼ 1:5sin# Tð Þ (1)

In the original problem statement, the degrees of freedom are represented by R1 (the inner
mold radius) and by the size of L2, L3 and L4 segments in Figure 4(b). The authors focus

Figure 3.
(a) MLmodel for

DPA, (b) MLmodel
for IPA
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their attention in this paper on the large Ampere Turns case because the i-j-k-m curve can be
described (as stated in the TEAMproblem description) as free curves.

To obtain a topology optimization problem, we fixed R1 in the model used to train the
DNN to R1 = 5 mm, whereas we used a “staircase” representation of the i-j-k-m line, with 25
steps of size 0.5mm in the x direction and 36 steps of size 0.5mm in the y direction.

Therefore, both in this work and in previous works, the right mold geometry is described
using an image of resolution 36�25 pixels, i.e. 900 binary values subject to constructive
constraints. Themain constraint is that no iron is allowed inside the cavity.

The parametric geometry representation to be used in the ML case consists of 25
parameters of discrete values xn[{0,. . .,36}, n = 1. Note that TEAM 25 is actually an
optimization problem; we turned it into an inverse problem to test the DNN capabilities by
simply considering as “observed” data the field components in the nine test points instead of
considering the overall root medium squared error on the field in the nine points.

5. Model selection
Table 1 reports the dimensionality of input and output patterns in both DL andML approaches.

To train the NNs, we generated a data set of 10,000 random profiles of size 36�25
fulfilling the problem constraints (no iron inside the cavity). The fields have been solved in
terms of scalar magnetic potential by a FEA, and the 18 components of the magnetic flux
(i.e. the values of the magnetic field distribution Bx and By in the nine target points) have
been calculated straightforwardly.

To perform model selection, we used fivefold CV to determine the number of neurons of each
NN, using only 8,000 out of 10,000 samples from the data set. We focused on the three models of
Figures 2(b), 3(a) and (b) because the model of Figure 2(a) was analyzed in the previous work
(Barmada et al., 2021). All NNs, including the encoder and decoder networks, are implemented as
one hidden layer, feed-forwardNNs, with sigmoidal activation functions.

Figure 4.
(a) The press
geometry, (b) a more
detailed view of the
die molds, (c) the iron
BH curve

Table 1.
Dimension and type
of input and output
patterns

Pattern Model Dimensionality Type

Fields in the cavity DL and ML 18 Real
Geometry bitmap DL 900 binary
Geometric parameters ML 25 integer
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As an error metric, we use mean absolute percentage error (MAPE), which is defined as the
mean value over a sample set of the following absolute percentage error:

100�
�
�
�
�
�

output � target
target

�
�
�
�
�
;

where out is the output of the model for a given input pattern, and the target is the known
output value.

In the ML model for DPA (Model 3a), the optimal size of the hidden layer is 22 neurons
with a fivefold CV MAPE (calculated on output fields) of 6%, whereas in the ML model for
IPA, the optimal solution is 21 neurons (knee of the curve, where the error is within 5% of
minimum value) with a fivefold CV MAPE (calculated on output geometric parameters) of
3.3%. A similar result is obtained by the geometric pyramid empirical rule proposed in
Masters (1993), i.e.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
noutninp

p ¼ 21:21, where nout = 18 and ninp = 25 are the sizes of the
input and the output, respectively. In Figure 5(a) and (b), we show the fivefold CVMAPE for
a different number of neurons for theML DPA and IPA cases, respectively.

It is important to point out that the MAPE figures given above and in Table 2 for DPA
and IPA are not comparable, as they are calculated in different quantities (the fields for DPA
and the profiles for IPA) to assess the performance of the corresponding NNs. A comparison
between DPA and IPA is performed in the following.

Regarding the DL model for IPA, i.e. the case of Figure 2(b), the optimal size of the latent
space is equal to 10, and the best NN size, according to fivefold CV, is 14 neurons.

6. Test results and analysis
In this section, we present the results of the test of the selected IPA models [cases in
Figures 2(b) and 3(b)], training them with over 8,000 samples and using a test set of 2,000

Figure 5.
(a) Fivefold cross-
validation for ML-
DPA, (b) Fivefold
cross-validation

for ML-IPA

Table 2.
Results of model

selection over 8,000
points

Model Neurons in hidden layers Fivefold CV MAPE (%)

ML and DPA 22 6
ML and IPA 21 3.3
DL and DPA Autoencoder: 10

Neural Network: 8
5.9

DL and IPA Autoencoder: 10
Neural Network: 14

3.2
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samples. As reported in Table 3, the DL model for the IPA case [Figure 2(b)] achieved a test
MAPE value of 4%.

In the case of the MLmodel for IPA [Figure 3(b)], where we represent the profile using 25
parameters of discrete values yn [ {0,. . .,36}, n = 1,. . .,25. the MAPE on the test set is 3.5%.
Note that in both DL and ML cases for IPA, the MAPE is calculated on the output profiles;
hence, they can be compared. The ML approach shows slightly better results than the DNN
approach, and this can be explained by the fact that the more compact representation of the
images allows a more efficient operation of the NN in the ML approach and also by the fact
that the tuning of the DNN model was carried out as a preliminary test and allows
improvements.

All simulations, training and testing have been performed on an Intel(R) Core(TM) i7-
6700HQ CPU@ 2.60GHz.

The low values of MAPE for the IPA cases demonstrate that the proposed approach
turns out to be valid for solving inverse problems. Figure 6 shows the comparisons between
real (blue line) and predicted (red line) profiles through the proposed approach in some
sample test cases. In particular, in Figure 6, we show the i-j-k-m curve representing the right
mold of Figure 4(b) as obtained by IPAwith a red dashed line.

Figure 6.
Comparison between
predicted by DL for
IPA (red dashed line)
and real geometry
profiles (blue line) in 4
cases belonging to the
test data set

Table 3.
Results of IPA test
analysis over 2,000
points

Model Test MAPE (%)

DL and IPA 4
ML and IPA 3.5
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Regarding the DPA approaches, the calculation of the test error over 2,000 patterns is not
straightforward, as the inversion of each field pattern requires a time of several minutes
because an entire optimization needs to be performed. For this reason, we use DPA only for
the inversion of a special case, i.e. the optimal field of the TEAM 25 problem, to compare the
results with IPA, as discussed in the next section.

The optimization required by DPA was carried out in a genetic algorithm (Sivanandam
and Deepa, 2008) with elitism, with a population of 200 individuals, and defining adequate
constraints so that the cavity shape is preserved. The genetic algorithm was stopped after
about 50,000 function evaluations, as there was no improvement of the best solution in the
last 5,000 function evaluations. Note that the optimization was performed using only the
DNN surrogate model, and the time cost for a function evaluation is 12ms, resulting in a
total time for optimization of 600 s. Considering the time cost for generating the 10,000
solutions with FEM and training the model, a total time of 35,940 s was required.

When comparing DPA and IPA, considering that the training time is almost identical,
the main difference lies in the time for obtaining one inversion, which is 600 s for DPA and
12ms for IPA, as reported in Table 4.

6.1 Testing data from a different generative model
Both the DL and ML models showed to be able to solve the inverse problem directly (IPA
approach) and using an optimization loop (DPA approach). In particular, considering IPA,
the NNs obtain good results when predicting the geometry given a field distribution from a
test set that was not used for training. However, both the test and training data come from
the same generative model, where the geometry is described using a piecewise function with
25 steps. To completely avoid the so-called inverse crime, we have provided the IPA-trained
DNNwith an input magnetic field that has been generated by FEA software using a smooth
elliptical geometry.

In particular, we calculated the field distribution using FEA corresponding to the smooth
geometry depicted on the top left of Figure 7, and we used this field distribution as an input
pattern of the trained DNN for IPA, obtaining the predicted geometry, which is shown in
Figure 7 on the top right. Then, we calculated the magnetic field using FEA, corresponding
to the DNN predicted geometry. At the bottom of Figure 7, we compare the original field of
the smooth geometry and the final field of the inverted geometry. It can be observed that,
even if the two geometries are quite different (absolute percentage error between geometries
is 35%), the fields are similar (absolute percentage error between fields is 5%); in particular,
the field of the inverted geometry is very close to the original one in 7 out of 9 control points.
In fact, being the inverse problem ill-posed, in general, very similar field distributions can be
obtained with very different geometries, and even in this case, the DNN for IPA shows a
satisfactory behavior.

6.2 Optimal solution of TEAM 25
As a final test case, we consider the original TEAM 25 scope, that is, obtaining a geometry
that gives a desired field in the control points as defined in equation (1), which we denote as

Table 4.
Comparison of

computational effort
between IPA and

DPA

Model DL and DPA DL and IPA

Dataset generation 10,000 s Same
Training and model selection 5,340s Same
Inversion of 1 sample 600s 12 ms
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an optimal field. For this problem, we consider both DPA and IPA. It is important to note
that the TEAM 25 problem defines the desired field distribution but not the corresponding
geometry, which is unknown: the geometry is the desired output of the optimization
problem. In the first moment, as in the previous work (Barmada et al., 2021), we solved the
optimization problem using the DNN for the DPA model inside an optimization loop,
obtaining an optimal geometry shown in Figure 8, on the top left. Then, we approached the
problem with the DNN for IPA, directly feeding the model with the optimal field defined by
the TEAM 25 problem, and the resulting geometry is shown in Figure 8 on the top right.
The solution with the DNN for IPA violates the constraints for the mold shape (the
ferromagnetic material enters the cavity), whereas this is not the case for the solution with
DPA, where constraints are managed inside the optimization loop and, for this reason,
always fulfilled. The reason why the DNN for IPA returns an unfeasible solution can be
explained by the fact that the data set does not contain examples sufficiently close to the
optimal field. The generation of the data set was performed to obtain random profiles that
have no holes inside the right mold and that follow a preferable elliptic shape with a certain
probability to resample the shape of the cavity.

This preferable shape of the mold was expected to improve the field distribution inside
the cavity to be close to the optimal field. However, being the optimal shape unknown,
evidently, the generated geometries included in the dataset were not able to provide output

Figure 7.
Comparison between
elliptical geometry
(top left) and output
geometry inverted
using DNN for IPA
(top right)
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fields very close to the optimal field of TEAM 25. For this reason, the IPA fails, and this
raises important evidence: the dataset generation is perhaps the most important and delicate
part of the process for IPA. At the bottom of Figure 8, we show the field vectors in the nine
control points inside the cavity for the optimal case, the DPA case, and the IPA case.

7. Conclusion
The application of ML approaches to the straightforward resolution of shape optimization
problems has been considered, with promising results. The performance of a DNN as IPA
turned out to be as effective as its use in an optimization loop as DPA. However, the
approach has room for improvement and development. It can be observed that in some
cases, the DPA that uses optimization is a more effective approach, even if slower, as it
allows finding a feasible solution even using a data set with reduced generalization
possibilities. On the contrary, the IPA operates well when the patterns to be inverted are
well represented in the training dataset. In fact, IPA fails only in one presented case, which is
the inversion of the optimal solution of TEAM 25, which was originally presented as a
problem to be solved using optimization algorithms and not as an inverse problem. On the
other hand, the IPAworks perfectly for the 2,000 cases of the test set (never used in training),
always giving feasible solutions with errors below 4%. Also, the IPA works very well when
the presented field comes from a geometry not generated as those used for training, as
illustrated in Section 6.1. As a general conclusion, we shall say that the DNN or ML-based

Figure 8.
Comparison between
optimal DPA solution
(top left) and output
geometry inverted

from the optimal field
using DNN for IPA

(top right)
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IPA seems not to be well suited to directly solve optimization problems, but it is perfectly
suited to solve inverse problems as far as the input samples are well represented by the
training set. On the other hand, the DPA approach with optimization shall be preferred for
solving very accurately one-shot critical cases. Relaxing the generative model of the random
profiles to include different geometries can in theory, improve the performance of the DNN
for IPA, but the space where the optimal solution has to be found is unknown apriori,
making this procedure not trivial. As a cue for future work, the authors believe that the most
effective approach to overcome the problem of infeasible solutions is to introduce different
mechanisms that increase exploration, and thus, lead to the generation of more training
examples in the region where the searched solution lies. This can be done, for example, by
combining DPA and IPA, thus, performing a preliminary optimization to obtain good
examples to train the DNN for IPA. Another approach could be to slightly perturb the
desired field that leads to an unfeasible geometry to generate geometries that gradually tend
to the feasible region. As a final comment, from preliminary experiments carried out to
numerically analyze the sensitivity, it comes out that even small changes in the desired
magnetic field values can cause large changes in physical shape, which is a clear indication
of the problem’s ill-posedness. The authors believe that further regularization is needed, and
this aspect will be fundamental in future research to make the DNN perform better in terms
of feasibility, even for solutions with high criticality.
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