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Abstract
Purpose – Inverse problems in electromagnetism, namely, the recovery of sources (currents or charges) or
system data from measured effects, are usually ill-posed or, in the numerical formulation, ill-conditioned and
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require suitable regularization to provide meaningful results. To test new regularization methods, there is the
need of benchmark problems, which numerical properties and solutions should be well known. Hence, this
study aims to define a benchmark problem, suitable to test new regularization approaches and solves with
different methods.
Design/methodology/approach – To assess reliability and performance of different solving strategies
for inverse source problems, a benchmark problem of current synthesis is defined and solved by means of
several regularization methods in a comparative way; subsequently, an approach in terms of an artificial
neural network (ANN) is considered as a viable alternative to classical regularization schemes. The solution of
the underlying forward problem is based on a finite element analysis.
Findings – The paper provides a very detailed analysis of the proposed inverse problem in terms of
numerical properties of the lead field matrix. The solutions found by different regularization approaches and
an ANN method are provided, showing the performance of the applied methods and the numerical issues of
the benchmark problem.
Originality/value – The value of the paper is to provide the numerical characteristics and issues of the
proposed benchmark problem in a comprehensive way, by means of a wide variety of regularization methods
and an ANN approach.

Keywords Current synthesis, Inverse magnetostatics, Regularization methods, Finite elements,
Inverse problems, Finite element analysis, Magnetic device

Paper type Research paper

1. Introduction
Recovering a current distribution from field measurements can be formulated as a source
synthesis problem (Isakov, 1990). Inverse problems of this kind are usually ill-conditioned due to
the presence of multiple solutions matching the field measurements. With respect to this lack of
solution uniqueness, a regularizationmethod needs be used to pick up a single, stable solution.

From literature, many approaches are available, ranging from the standard Tikhonov’s
regularization to the truncated singular value decomposition (Hansen, 1997) (in the case of
linear problems) up to regression-based statistical approaches (Kaipio and Sommersalo,
2005; Formisano, 2019) and the more recent data-based solutions (Khan et al., 2019). In this
paper, we propose a simple yet descriptive magnetostatic benchmark problem, which can be
used as a testbed to compare different regularization methods.

The case study considered in this paper extends the benchmark proposed by some of the
authors in Di Barba et al. (2020). While in the former, the geometry of a multi-turn winding
generating a uniform field from a given current distribution was searched for, in this work,
in contrast, the geometry of the winding is given, while the current distribution is unknown.
Therefore, the contribution here proposed is new in terms of both problem formulation
(current synthesis instead of shape synthesis) and solution methods (regularization
techniques and of optimization algorithms).

The paper is thus organized as follows. in Section 2, the proposed benchmark problem is
introduced, in Section 3, the properties of the lead field matrix are shown, then in Sections 4 and
5, a review of some regularization and artificial neural network (ANN) approaches is presented
and finally, in Section 6, a comparison of the performance for the introduced approaches on the
benchmark problem is discussed, to highlight advantages and drawbacks of each of them.

2. Benchmark problem
2.1 Forward problem
A multi-turn air-cored winding is considered [Figure 1(a)]. The winding, which is composed
of nt = 20 independent turns, is suitable for in vitro experiments of magneto-fluid
hyperthermia.
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The direct problem, i.e. computing the flux density B, given the DC source current density J
and the coil geometry, is defined as an axisymmetric system, in static conditions. No
polarizable magnetic materials are present, and the problem can be considered linear.
Notwithstanding the absence of ferromagnetic materials, due to the hollow shape of the
conductors, the forward field analysis is better approached by the finite element (FE)
method. In this model, to focus on regularization algorithms, each of the turns is
characterized by a different current value, controlled by a specific current supply.

2.2 Current synthesis problem
The aim of the problem is to select the nt currents to generate a uniform flux density map
with a prescribed value B0, uniform within the coil in a region adjacent to the symmetry

Figure 1.
Geometry, controlled
regions and magnetic
flux lines
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plane z = 0 and with an amplitude as small as possible outside the winding. In such a
situation, it is reasonable to limit the search for the best current distribution to
configurations symmetric with respect to the plane z = 0, thus reducing the unknown
currents to just nt/2 = 10.

To evaluate the field uniformity in the inner region of interest (ROI), the magnitude of the
trial flux density fieldB is sampled over np = 30 field points, evenly spaced on the boundary
of the ROI (lines S1, S2 and S3 in Figure 1); on the other hand, to guarantee the minimum field
amplitude in the outer region, the field is sampled on nk = 10 points along the line g in
Figure 1. More details on the benchmark problem geometry can be found in Di Barba et al.
(2020).

Starting from this background, the field synthesis problem is defined as:

[. . .] find the current distribution I that minimizes the discrepancy between the actual induction field
B(r, z) and the prescribed field B0(r, z)

whereB0 = (Br0, Bz0); Br0 = 0 and Bz0 =K along S1 and S2; Bz0 =K along S3; Bz0 = 0 along g ;
K represents the desired field level (2.00mT is assumed in the present work) and advantage
is taken from symmetry being Br0 = 0 on the axis r = 0.

By exploiting the linearity of the relation between magnetic field and current in the
forward problem, the current synthesis problem can be tackled and solved in terms of an
inverse problem governed by a rectangular matrix, usually called the lead field matrix. The
lead field matrix exhibits as many columns as unknown currents and as many rows as the
number of measured flux densities. For the sake of data availability, the computed lead field
matrix is reported in Appendix 1.

Accordingly, several methods for solving a rectangular system of equations are
considered in a comparative way.

3. Properties of the lead field matrix
The synthesis criteria defined in Section 2.2 can be recast in terms of field component values
in several “control points” along curves S1, S2, S3 and g ; under these hypotheses, the
computation of the magnetic field in the control points can be described using a matrixA :

A I ¼ m (1)

where I is the array of unknown currents,m is the array of field data (called “measurements”
in the following, to comply with the jargon of inverse source problems) and A is the lead
field matrix, linking the currents in the coils and the field values in the measurement points,
can be computed either analytically (Urankar, 1982) or by using numerical methods. As
mentioned before, in this paper, we compute A using an FE approach, assuming a two-
dimensional (2D) axial symmetric model and exploiting the symmetry along the z plane to
reduce the computational area to only the upper part of the geometry.

In this section, we will present the most relevant characteristics of the matrixA , together
with a correlation analysis of the input data (the currents in the coil) and of the output data
(the flux density components in the test points), based on a database of 10,000 random
samples of ten currents.

The measurements are given in ten points along S1 (20 measurements in total, as Br0 = 0
and Bz0 = K in each point along S1), ten points along S2 (again, 20 measurements), ten points
along S3 (but just 10 measurements, as Br0 = 0 by definition) and finally, ten points along g
(again, Br0 = 0 on g ). A picture of the target field measurements is reported in Figure 2.
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The matrix A has ten columns (as many as independent currents) and 60 rows (as many as
considered flux density “measurements”). Its rank is ten, and its conditioning number is
7.9� 104, which suggests an ill-conditioned problem. Moreover, the conditioning number
sets a lower bound on the solution error associated with direct methods (Section 4).

The distribution of the singular values is reported in Figure 3, while the right singular
vectors, which form the basis of currents algebraic space defined by the singular values
decomposition, are reported in Figure 4.

It can be noted that the “natural” field distributions corresponding to low-order modes in
the current base are associated to prevalently z-directed fields both inside and just outside

Figure 2.
Target field values on
lines S1, S2, S3 and g ,
put together
according to a
measurement index

Figure 3.
Singular values of the
lead field matrixA
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the solenoid. By contrast, the problem definition requires a vanishing Bz0 just at its outer
edge, making the problem of finding currents quite hard to solve if not using all current
modes.

The inverse problem is shown to be ill-conditioned also by looking at the principal
component analysis (PCA) (Jolliffe, 2002) of the input (currents) and output (flux densities)
spaces. By using 10,000 randomly generated current distributions and computing the flux
densities by multiplying by A , a database of 10,000 samples of input–output couples are
built and then statistically analyzed. The representation of the covariance matrix for the
currents is reported in Figure 5(a) and percentage of variance of data fitted by a model with
increasing number of retained principal components is reported in Figure 5(b). Note that the
covariance matrix is mostly diagonal; in this case, almost all ten currents reveal to be
necessary.

Figure 4.
Right singular
vectors ofA

Figure 5.
(a): Covariance matrix

for currents in the
sample database.
(b): Percentage of

fitted variance using
reduced set of

components in the
PCA
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The situation is rather different when analyzing the output space (the flux density values).
The covariance matrix is reported in Figure 6(a), while the percentage of variance of data
fitted by a model with increasing number of retained principal components is reported in
Figure 6(b). The situation is now pretty different with respect to Figure 5(b). The data on the
flux density measurements are correlated, because they can be derived from a single
components vector potential, thanks to symmetry and Maxwell’s equations; thus, the
measurements are redundant, as the highly symmetric geometry makes the r and z
components of the field correlated. This is also shown by Figure 6(b), showing that just five
principal components of the measured flux densities array are sufficient to explain 95% of
data variance.

Note that the benchmark nature of the considered problem justifies the redundant nature
of the output space, because the problem characteristics allow the maximum range of action
to regularizing approaches, including a model reduction approach to simplify the input–
output relationship.

4. Regularization methods
The focus of this paper is on the proposal of a benchmark problem for source synthesis
problems, which were introduced in Section 2. In this section, we present a comparative
review of some among the best-known regularization methods and their application to the
proposed current synthesis problem.Wewill be considering the following schemes:

� Classical (direct) methods: Tikhonov method, truncated SVD principle, n-method,
Kaczmarz method; and

� Statistical methods: Linear regression, linear fit with PCA, elastic net regularization.

The classical and statistical methods considered here are based on the properties of the lead
field matrixA , computed using field equations via FE analysis.

4.1 Direct methods
The regularization of linear inverse problems I = A�1m, where A�1 represent the (pseudo-)
inverse of A , is a classical topic in the literature on inverse problems, and quite many
different approaches have been proposed in literature. Starting from the classical Tikhonov
approach [TA, (Neittaanmäki et al., 1996)], the truncated singular value decomposition
[SVD, (Neittaanmäki et al., 1996)] and the discrepancy principle [DP, (Morozov, 1984)], until
more recent “iteration-based” methods, such as the �-method [�M, (Brakhage, 1987)] or the

Figure 6.
(a): Covariance matrix
for measurements in
the sample database.
(b): Percentage of
fitted variance using
reduced set of
components in the
PCA
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ART method (Natterer and Wù̀bbeling, 2001). This list is in no way exhaustive and just
represents the set of classical regularization methods adopted in this paper. A broader list of
possible regularization methods can be found in Engl and Groetsch (1987), Formisano and
Martone (2019) and Formisano (2005). For the readers’ convenience, we provide in this
section a very short description of the regularization methods.

4.1.1 Truncated approach. The TA is probably the most diffused counter measure to the
ill-posed nature of inverse problems. In the notation adopted here, the solution process of the
(regularized) inverse problem can be cast as:

min
I

jjAI �mBjjB þ l I jjI
� �

(2)

where k·kB represents the two-norm in the output space of measurements, k·kI represents the
two-norm in the input space of currents and l is the “regularization parameter”. The choice
of l is crucial to get a smooth yet meaningful solution. l is usually chosen either using the
l -curve approach (Hansen, 2001) or alternatively the generalized cross-validation method
(Di Barba, 2010).

The actual problem of the TA is, hence, to identify the value of the Tikhonov parameter
l , which gives the best trade-off between model-to-data agreement (small discrepancy) and
solution norm (smooth solution). Often the best suited value of l is obtained by a parametric
analysis and plotting the solution norm. The best suited l value is obtained at the point of
maximum curvature in the L-curve, usually called the “knee” of the curve.

Other possibilities have been introduced for the norm of the solution, but the two-norm is
the most common one.

4.1.2 Truncated singular value decomposition. The T-SVD is based on the representation
of the lead field matrixA in terms of its left and right singular vectors:

A ¼
XN

i¼1
siuivi

T (3)

where ui and vi are ortho normal vectors in the input and output spaces, respectively (to
which I andm belong), while si are the matrix singular values, in descending order, and N is
the matrix rank. If summation is truncated to n<N, we get a rank deficient well-conditioned
matrix A

n
, whose pseudo-inverse A�1

n is used to compute the solution: In= A�1
n m. The

smaller n, the fewer terms in the expansion are taken and the smoother will be the solution,
so a tradeoff between smoothness and solution details must be achieved when selecting the
truncation index.

4.1.3 Discrepancy principle. The DP essentially swaps the role of system error and
solution norm in the TA, solving the following minimization problem to determine the
solution I:

min
I

jjI jjI
� �

subject to jjAI �mBjjB < « (4)

4.1.4 �-method. The key idea behind the �-method is related to the characteristic of the
linear problem AI = m that can be solved iteratively by applying the conjugate gradient
(CG) algorithm for the (unregularized) normal equationATAI =ATm. It has been observed
that when using CG, the “low frequency” components of the solution tend to converge faster
than higher frequency ones. This “regularizing” capability is achieved by stopping the CG
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iterations to an index n less than the index required to achieve full convergence. Thus, the
number of stopping iterations n has the role of a regularizing parameter. The idea behind
�M is to exploit this property, yet slowing down convergence of low frequency components,
to reduce the dependence on the stopping criterion.

4.1.5 Algebraic reconstruction technique. The Kaczmarz method (also known as the
algebraic reconstruction technique) is an iterative method based on a row-wise correction of
the trial solution Ik:

I k ¼ I k�1 þ
mk� AkI k� 1

jjAkjj2
(5)

The regularization parameter is again the index n. The ART method does not involve
matrix inversion or even matrix multiplication, but its convergence is slower than CG or
other CG-based approaches.

4.2 Statistical approaches
The idea behind this type of approach to inverse problems resolution is to extract a
relationship between measurements and sources from a set of “measured” data. This is the
approach typically adopted in experimental physics, when adopting a “behavioral model”
(e.g. a linear relationship between two sets of data) and using the available data to fit
parametrically the model to the data, in the hypothesis that the fitted model will be able to
describe also unseen examples. A number of tentative models are available in literature, but
for the problem at hand, it is quite natural to assume a linear fit, as knowledge about the
linearity of the underlying problem is available. The major problem in this case is that the
ill-conditioned nature of the problem amplifies data nuisances, and a redundant number of
examples helps reducing this problem. We will analyze here a few well-known interpolation
approaches:

4.2.1 Multi-linear regression (MLR). A linear regression model from multiple data mk
(k = 1, 2, . . ., M) to multiple output Il is expressed by:

Il ¼ b l0 þ
X
k¼1:M

b lkmk þ « l l ¼ 1;2; . . .N (6)

b 0 is the constant term in the model (vanishing in the present case), b lk are the interpolation
coefficients, « l is the residual error, due to, e.g. measurement noise. In the following, the
uncorrelated assumption is taken for « l, and for currents Il (thus using independent fit for
each current). The coefficients are estimated by minimizing the mean squared difference
between the predicted and true response arrays (method of least squares). Under
assumptions on the noise terms, these coefficients also maximize the likelihood of the
prediction vector.

4.2.2 Linear fit with principal component analysis (LPCA). As easily seen from the lead
field matrix analysis and from the correlation analysis of the field measurement, the
information about the (required) field map is highly redundant, so any regression model
should probably deal with such an issue. A robust way to ease the building of “regressors”
is to use a PCA to help regularizing the inverse problem resolution when using statistical
analysis. As already discussed in Section 3, the principal components may be seen as a new
set of variables, each one being a linear combination of the original variables. All the
principal components are orthogonal to each other, so there is no redundant information.
The principal components as a whole form an orthogonal basis for the space of the data. The
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peculiar characteristic of the new basis is that the elements can be ranked in a decreasing
order of variance over the data set, so a reduced number of variables can be selected to
“describe” data with any selected level of variance. Linear fit of outputs is then performed
over the reduced set of input descriptive variables.

4.2.3 Elastic net regularization (ENR). Elastic net regularization (ENR) is a
regularization technique to minimize the regression coefficients of less relevant variables.
For each “reconstructed” variable (currents, in our example), the ENR technique solves the
following minimization problem to find the set of interpolation coefficients b 0, b k, k =
1. . .M (Zou and Hastie, 2005):

b 0; b
� � ¼ argmin

b 0;b

1
2NSamples

X
i¼1;NSamples

Ii � b 0 �mT
i b

� �2
þ lPa b

� � !
(7)

where a 2 0;1, l is a nonnegative real number and:

Pa b
� � ¼ 1� að Þ

2
jjb jj22 þ ajjb jj1 (8)

Note that ENR for a = 1 reduces to lasso regularization, while for a ! 0, ENR approaches
ridge regression.

5. Artificial neural network approach
As a further alternative to the classical regularization methods, an ANN is applied (Bernd,
1986; Vasilyev and Tarkhov, 2014). Accordingly, sources can be identified by a suitably
trained ANN. This strategy for inverse problem-solving is rather common and requires a
data set composed by the parameters and solutions for the problem (either in direct or
inverse form). Training an ANN on this data set teaches the network the functional
relationship between parameters and solutions, thus creating a black-box solver of the
inverse problem.

In fact, an ANN-based method intends to address the solution of the synthesis problem
based on an equation-free model; while classical methods here considered are based on the
properties of the lead field matrix, ANN-based methods are driven by a big collection of
purely numerical data, which represent the available knowledge of the direct problem.

For the purpose of this work, the inputs of the ANN are the field measurements and the
outputs of the ANN are the current sources. A single k-th element of the data set is composed
by a 1 � 10 column vector of currents Ik and a 1 � 60 column vector of measurements mk.
The numerical nature of the inverse problem is a linear LSQ problem, for which the ordinary

solution is Ik ¼ ATA
� ��1

ATmk. Indeed, the ordinary solution is not advisable considering

the ill-conditioning of the problem, but it still gives a clear insight on the linear nature of the
inverse problem. Because the here discussed inverse problem is linear, a feed-forward NN
architecture, with a single hidden layer and linear activation function, has been chosen. The
data set used for the training of the neural network consists of 500 examples of current
distributions and the corresponding magnetic field profiles. As all neurons have a linear
activation function, the training procedure is a linear problem as well. For this reason, the
only quantity monitored to halt the training algorithm is the performance in terms of mean
absolute error (MAE).
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6. Results
In this section, we present the results obtained by different regularization approaches,
grouped by the regularization method class (direct, statistical, heuristics) to ease readability.

6.1 Classical regularization methods
To find the knee point of the L-shaped curve, the discrepancy function:

f lð Þ ¼ jjAI l �mjj2 � jjIl jj2
jjI gjj2

(9)

subject to:

ðA¼
T A¼ þ l 1Þ I l ¼ ATm (10)

and where Ig is a guessed solution (e.g. the one found by means of the SVD method), is
plotted versus l (Figure 7).

Byminimizing equation (9), the knee point of the L-curve is found for lTik = 2.5 10�9.
The magnetic field BTik reconstructed using the value of the knee point is represented in

Figure 8.
Both SVD and truncated SVD approaches have been used. The truncated SVD has been

subsequently applied, after discarding 1, 2, ., 8 SVs, respectively.
The reconstructed induction field obtained by means of truncated SVD with 4 and 8 SVs

is shown in Figure 9.
The corresponding profile of reconstructed currents, identified by means of Tikhonov’s

regularization and SVDmethod, are shown in Figure 10.
Being the maximum current allowed in the conductors about 500A, a few currents

identified by means of SVD regularization are not feasible because they exceed this value

Figure 7.
Discrepancy function
(3) versus l
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(some of them are in the order of 104 A). On the other hand, all the currents identified by all
the other methods are feasible; at a first glance, this positive feature could be attributed to
the search for a minimum energy solution achieved by Tikhonov and truncated SVD
methods.

Figure 8.
Induction field

reconstructed by
means of Tikhonov

regularization

Figure 9.
Magnetic induction

field reconstructed by
means of truncated

SVD approach
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It can be noted that, if a single copper wire is supposed to be wound and the turns are series-
connected, the distribution of currents in Figure 10 represents also the distribution of the
number of turns needed for each conductor.

The current values reconstructed by means of DP, �M and ART approaches are reported
in Figure 11. The truncated SVD keeps five singular values.

Figure 10.
Current source
reconstructed by
means of Tikhonov
and SVDmethod
(4SVs and 8SVsmean
that 4 and 8 singular
values are discarded,
respectively)

Figure 11.
Current values
identified with DP,
vM and ART
approaches
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In turn, the magnetic field profiles reconstructed along Sk [ g with currents found with
DP, �MandART approaches using currents reported in Figure 11 are shown in Figure 12.

6.2 Statistical approaches
Finally, currents computed using plain multilinear regression (MLR), multilinear regression
using PCA and retaining five principal components (LPCA) and finally using elastic net
regularization to select most relevant measurements (ENR) are reported in Figure 13. The
corresponding measurements are reported in Figure 14. Note that the highly correlated
nature of the measurements allowed satisfactory results yet retaining just five principal
components, while the elastic net approach, which amounts to select the most relevant
measurements among the available ones, did not perform satisfactorily, as the data set used
for model building did not correctly represent the actual requirements of the benchmark
problem.

Figure 12.
Magnetic induction

field profile
reconstructed with
DP, vM andART

approachesMeasurement index

Figure 13.
Current values

identified with MLR,
LPCA, ENR
approaches
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6.3 Artificial neural network approach
For the sake of a comparison, an approach based on ANNs is here considered. Concerning
the creation of the data set, a set of 500 random current vectors were created with
range 6105A. Note that the variation range of the current is intentionally considered very
broad to investigate the exploration capability of the network.

The number of samples used for this approach is definitely smaller if compared to the
other methodologies presented in this work. This is because the problem presented to the
neural network is purely linear and the only task that is required from the network is to
learn the linear relationship between currents and fields. However, the training algorithm
(the Levenberg–Marquardt, or LM) is the same regardless of the linear or non-linear nature
of the problem and to work correctly, needs to express the training procedure in terms of a
least-squares problem (Yu and Wilamowski, 2011). Thus, a data set of 500 samples is the
minimum suitable for a LM algorithm formulation. Moreover, it is a realistic training set size
that could accommodate a further expansion of the problem, including non-linearities. For
each current vector, the relative measurement vector was computed through equation (2).
The choice for the upper limit of the currents magnitude is to obtain a field distribution in
the range of mT. Gaussian distribution was used independently for all the currents; thus,
each current has 500 samples.

Thus, the complete data set is composed by 500� 60 inputs and 500� 10 outputs. This
data set (addressed from now as the “training set”) is representative for the physical system,
but is essentially random and not representative for the synthesis problem. For this reason,
an additional validation data set (not used for the ANN training) was created with ten
waveforms obtained by scaling the one shown in Figure 2. The performance of the ANN is
evaluated against the training and validation set independently. The precision of the ANN
is quantified through the MAE between two reconstructed fields. The first one is
reconstructed using the currents computed by the ANN. The second one is reconstructed
using the currents computed by the LSQ ordinary solution. Once the error metric has been
defined, the optimal sizing of the ANN is a progressive approach (Riganti Fulginei et al.,
2013). For the simple ANN used in this work, the only degree of freedom is the number of
neurons in the hidden layer. Thus, a statistical observation of the training and validation
error is performed for an increasing number of neurons. The operation is repeated and
averaged with a random re-creation of the data set to compensate for bad initial conditions
or non-inclusive training sets. The training results are shown in Figure 15. As can be seen, a

Figure 14.
Magnetic field profile
reconstructed with
MLR, LPCA, ENR
approaches Measurement index
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steep change in theMAE for both training and validation set can be seen at ten neurons. The
error slightly rises beyond this threshold, due to slower training convergence (Laudani et al.,
2015). Hence, the optimal size for the ANN hidden layer is set to 10. An example of the
reconstructed field, considering B = 2.0mT in the uniform sampling points, is shown in
Figure 16. Concerning the training computational times, they are extremely reduced due to
the linear activation function of the neurons. Convergence is statistically achieved in less
than 100 epochs that requires, on a Core i7 machine running Matlab 2020, less than 10 s. The
last aspect to take into account is the solution stability with respect to a noisy input. On this

Figure 16.
Comparison between

the reconstructed
fields from the

network and from the
LSQ ordinary

solution

Figure 15.
MAE trend for the
training (blue) and
validation (red) sets

for increasing
number of neurons
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matter, considering a base desired field as the one in Figure 16, a white Gaussian noise was
added to the non-zero sampling points. The MAE reported in Figure 17 is with respect to the
non-noisy field distribution. The error for the ordinary LSQ solution is reported as well for
comparison, showing that the ANN is slightly less robust than the LSQ with respect to
noise.

Tables with reconstructed current values for each method are reported in Appendix 2.

7. Conclusion
Benchmark problems should find a compromise between problem solutions, that should be
easy to enable many scientists to test them, but, at the same time, highlighting a peculiar
difficulty in the solution, thus being an adequate test bench for different algorithms. The
proposed benchmark shows that even in the case of quite simple geometries – and
straightforward analysis tasks – complicated inverse problems may arise and quite
different results are obtained, depending on the adopted regularization strategy. Various
optimization algorithms may, therefore, be tested against the proposed benchmark.
Accordingly, in the paper, a comparison of a few regularization methods is presented; while
most of the “classical”methods depend on parameters able to make solution smoother at the
expense of discrepancy on data, statistical-based methods depend on the choice of learning
data set and its congruence with actual data for the problem at hand. Similarly, machine
learning approaches provide quite effective inverse problem resolution methods, but they
tend to be time consuming both in the data generation and in the training step.

Solutions of the proposed benchmark with different numerical methods and results
obtained by different authors are welcome, to set up a reference collection of data in the area
of inverse magnetostatics.
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Appendix 1

Table A1.
Computed lead-field
matrix (60, 10)

–2.29 10–09 –6.28 10–10 3.96 10–10 5.86 10–10 4.90 10–10 3.62 10–10 2.62 10–10 1.90 10–10 1.40 10–10 1.05 10–10

–1.06 10–06 –4.83 10–07 3.76 10–09 2.09 10–07 2.49 10–07 2.25 10–07 1.85 10–07 1.46 10–07 1.13 10–07 8.72 10–08

–2.01 10–06 –9.90 10–07 –4.13 10–08 3.92 10–07 4.88 10–07 4.47 10–07 3.70 10–07 2.93 10–07 2.27 10–07 1.75 10–07

–2.78 10–06 –1.52 10–06 –1.77 10–07 5.21 10–07 7.06 10–07 6.64 10–07 5.55 10–07 4.42 10–07 3.44 10–07 2.65 10–07

–3.34 10–06 –2.05 10–06 –4.24 10–07 5.69 10–07 8.91 10–07 8.72 10–07 7.40 10–07 5.93 10–07 4.63 10–07 3.58 10–07

–3.67 10–06 –2.52 10–06 –7.90 10–07 5.03 10–07 1.02 10–06 1.06 10–06 9.24 10–07 7.48 10–07 5.87 10–07 4.55 10–07

–3.82 10–06 –2.89 10–06 –1.23 10–06 3.12 10–07 1.08 10–06 1.23 10–06 1.10 10–06 9.05 10–07 7.15 10–07 5.56 10–07

–3.82 10–06 –3.14 10–06 –1.70 10–06 –1.94 10–08 1.04 10–06 1.35 10–06 1.27 10–06 1.06 10–06 8.49 10–07 6.62 10–07

–3.71 10–06 –3.25 10–06 –2.12 10–06 –4.63 10–07 8.69 10–07 1.41 10–06 1.42 10–06 1.22 10–06 9.87 10–07 7.75 10–07

–3.53 10–06 –3.26 10–06 –2.45 10–06 –9.64 10–07 5.66 10–07 1.39 10–06 1.54 10–06 1.38 10–06 1.13 10–06 8.94 10–07

–1.55 10–05 –1.33 10–05 –1.04 10–05 –7.97 10–06 –6.13 10–06 –4.77 10–06 –3.77 10–06 –3.01 10–06 –2.43 10–06 –1.98 10–06

–1.53 10–05 –1.32 10–05 –1.04 10–05 –8.02 10–06 –6.17 10–06 –4.80 10–06 –3.79 10–06 –3.02 10–06 –2.44 10–06 –1.99 10–06

–1.48 10–05 –1.31 10–05 –1.05 10–05 –8.16 10–06 –6.28 10–06 –4.89 10–06 –3.85 10–06 –3.07 10–06 –2.47 10–06 –2.01 10–06

–1.39 10–05 –1.28 10–05 –1.07 10–05 –8.39 10–06 –6.48 10–06 –5.03 10–06 –3.95 10–06 –3.14 10–06 –2.52 10–06 –2.05 10–06

–1.29 10–05 –1.23 10–05 –1.08 10–05 –8.69 10–06 –6.75 10–06 –5.23 10–06 –4.09 10–06 –3.24 10–06 –2.60 10–06 –2.10 10–06

–1.18 10–05 –1.17 10–05 –1.08 10–05 –9.02 10–06 –7.09 10–06 –5.49 10–06 –4.28 10–06 –3.38 10–06 –2.70 10–06 –2.18 10–06

–1.07 10–05 –1.10 10–05 –1.07 10–05 –9.33 10–06 –7.48 10–06 –5.81 10–06 –4.52 10–06 –3.55 10–06 –2.82 10–06 –2.27 10–06

–9.68 10–06 –1.01 10–05 –1.04 10–05 –9.57 10–06 –7.92 10–06 –6.20 10–06 –4.81 10–06 –3.76 10–06 –2.97 10–06 –2.38 10–06

–8.71 10–06 –9.25 10–06 –9.87 10–06 –9.66 10–06 –8.34 10–06 –6.64 10–06 –5.15 10–06 –4.01 10–06 –3.15 10–06 –2.51 10–06

–7.83 10–06 –8.40 10–06 –9.23 10–06 –9.56 10–06 –8.72 10–06 –7.13 10–06 –5.56 10–06 –4.31 10–06 –3.37 10–06 –2.67 10–06

–3.31 10–06 –3.17 10–06 –2.65 10–06 –1.46 10–06 1.37 10–07 1.25 10–06 1.61 10–06 1.52 10–06 1.27 10–06 1.02 10–06

–2.90 10–06 –2.73 10–06 –2.23 10–06 –1.23 10–06 1.56 10–08 9.44 10–07 1.31 10–06 1.30 10–06 1.13 10–06 9.19 10–07

–2.52 10–06 –2.34 10–06 –1.87 10–06 –1.04 10–06 –5.35 10–08 7.12 10–07 1.07 10–06 1.10 10–06 9.84 10–07 8.16 10–07

–2.15 10–06 –1.97 10–06 –1.56 10–06 –8.81 10–07 –9.27 10–08 5.36 10–07 8.58 10–07 9.23 10–07 8.44 10–07 7.11 10–07

–1.80 10–06 –1.64 10–06 –1.29 10–06 –7.36 10–07 –1.10 10–07 4.01 10–07 6.83 10–07 7.59 10–07 7.09 10–07 6.07 10–07

–1.47 10–06 –1.33 10–06 –1.04 10–06 –6.01 10–07 –1.10 10–07 2.97 10–07 5.34 10–07 6.09 10–07 5.80 10–07 5.03 10–07

–1.16 10–06 –1.04 10–06 –8.12 10–07 –4.74 10–07 –9.90 10–08 2.14 10–07 4.04 10–07 4.72 10–07 4.57 10–07 4.00 10–07

–8.54 10–07 –7.70 10–07 –5.98 10–07 –3.52 10–07 –8.07 10–08 1.48 10–07 2.91 10–07 3.45 10–07 3.38 10–07 2.99 10–07

–5.62 10–07 –5.06 10–07 –3.92 10–07 –2.32 10–07 –5.60 10–08 9.29 10–08 1.87 10–07 2.25 10–07 2.22 10–07 1.98 10–07

–2.76 10–07 –2.49 10–07 –1.93 10–07 –1.14 10–07 –2.87 10–08 4.42 10–08 9.10 10–08 1.10 10–07 1.09 10–07 9.76 10–08

–7.05 10–06 –7.59 10–06 –8.51 10–06 –9.25 10–06 –8.96 10–06 –7.62 10–06 –6.01 10–06 –4.66 10–06 –3.62 10–06 –2.85 10–06

–7.25 10–06 –7.68 10–06 –8.37 10–06 –8.85 10–06 –8.54 10–06 –7.43 10–06 –6.04 10–06 –4.77 10–06 –3.76 10–06 –2.97 10–06

–7.40 10–06 –7.74 10–06 –8.25 10–06 –8.54 10–06 –8.22 10–06 –7.27 10–06 –6.03 10–06 –4.85 10–06 –3.86 10–06 –3.08 10–06

–7.51 10–06 –7.77 10–06 –8.14 10–06 –8.30 10–06 –7.97 10–06 –7.13 10–06 –6.02 10–06 –4.91 10–06 –3.95 10–06 –3.16 10–06

–7.59 10–06 –7.79 10–06 –8.05 10–06 –8.12 10–06 –7.78 10–06 –7.01 10–06 –5.99 10–06 –4.95 10–06 –4.02 10–06 –3.24 10–06

–7.64 10–06 –7.79 10–06 –7.97 10–06 –7.98 10–06 –7.63 10–06 –6.92 10–06 –5.97 10–06 –4.98 10–06 –4.07 10–06 –3.29 10–06

–7.68 10–06 –7.79 10–06 –7.91 10–06 –7.87 10–06 –7.52 10–06 –6.84 10–06 –5.95 10–06 –5.00 10–06 –4.11 10–06 –3.34 10–06

–7.70 10–06 –7.79 10–06 –7.87 10–06 –7.79 10–06 –7.44 10–06 –6.78 10–06 –5.93 10–06 –5.01 10–06 –4.14 10–06 –3.38 10–06

–7.72 10–06 –7.79 10–06 –7.84 10–06 –7.74 10–06 –7.38 10–06 –6.75 10–06 –5.92 10–06 –5.02 10–06 –4.16 10–06 –3.40 10–06

–7.72 10–06 –7.78 10–06 –7.82 10–06 –7.71 10–06 –7.35 10–06 –6.72 10–06 –5.91 10–06 –5.03 10–06 –4.17 10–06 –3.41 10–06

–1.16 10–05 –1.09 10–05 –9.81 10–06 –8.43 10–06 –7.03 10–06 –5.75 10–06 –4.66 10–06 –3.75 10–06 –3.03 10–06 –2.45 10–06

–1.15 10–05 –1.08 10–05 –9.76 10–06 –8.43 10–06 –7.06 10–06 –5.79 10–06 –4.70 10–06 –3.79 10–06 –3.06 10–06 –2.47 10–06

–1.12 10–05 –1.06 10–05 –9.65 10–06 –8.42 10–06 –7.11 10–06 –5.87 10–06 –4.78 10–06 –3.87 10–06 –3.12 10–06 –2.53 10–06

–1.09 10–05 –1.04 10–05 –9.53 10–06 –8.40 10–06 –7.17 10–06 –5.96 10–06 –4.88 10–06 –3.96 10–06 –3.20 10–06 –2.59 10–06

–1.04 10–05 –1.00 10–05 –9.33 10–06 –8.36 10–06 –7.24 10–06 –6.09 10–06 –5.02 10–06 –4.09 10–06 –3.32 10–06 –2.68 10–06

–9.93 10–06 –9.66 10–06 –9.12 10–06 –8.30 10–06 –7.30 10–06 –6.22 10–06 –5.17 10–06 –4.24 10–06 –3.44 10–06 –2.79 10–06

–9.41 10–06 –9.24 10–06 –8.85 10–06 –8.21 10–06 –7.35 10–06 –6.35 10–06 –5.34 10–06 –4.40 10–06 –3.59 10–06 –2.91 10–06

–8.87 10–06 –8.78 10–06 –8.54 10–06 –8.08 10–06 –7.37 10–06 –6.49 10–06 –5.53 10–06 –4.60 10–06 –3.76 10–06 –3.06 10–06

–8.32 10–06 –8.31 10–06 –8.21 10–06 –7.92 10–06 –7.38 10–06 –6.61 10–06 –5.71 10–06 –4.79 10–06 –3.95 10–06 –3.22 10–06

–7.73 10–06 –7.79 10–06 –7.82 10–06 –7.70 10–06 –7.34 10–06 –6.71 10–06 –5.91 10–06 –5.03 10–06 –4.18 10–06 –3.42 10–06

–2.21 10–06 –2.32 10–06 –2.53 10–06 –2.87 10–06 –3.33 10–06 –3.89 10–06 –4.54 10–06 –5.19 10–06 –5.73 10–06 –6.03 10–06

–2.04 10–06 –2.14 10–06 –2.34 10–06 –2.65 10–06 –3.07 10–06 –3.61 10–06 –4.24 10–06 –4.91 10–06 –5.51 10–06 –5.92 10–06

–1.87 10–06 –1.96 10–06 –2.14 10–06 –2.43 10–06 –2.82 10–06 –3.32 10–06 –3.93 10–06 –4.60 10–06 –5.25 10–06 –5.76 10–06

–1.72 10–06 –1.80 10–06 –1.97 10–06 –2.22 10–06 –2.58 10–06 –3.05 10–06 –3.63 10–06 –4.29 10–06 –4.96 10–06 –5.55 10–06

–1.60 10–06 –1.67 10–06 –1.82 10–06 –2.05 10–06 –2.38 10–06 –2.82 10–06 –3.36 10–06 –4.00 10–06 –4.68 10–06 –5.32 10–06

–1.48 10–06 –1.55 10–06 –1.69 10–06 –1.90 10–06 –2.20 10–06 –2.60 10–06 –3.11 10–06 –3.72 10–06 –4.40 10–06 –5.08 10–06

–1.36 10–06 –1.42 10–06 –1.54 10–06 –1.74 10–06 –2.01 10–06 –2.38 10–06 –2.85 10–06 –3.42 10–06 –4.08 10–06 –4.77 10–06

–1.26 10–06 –1.32 10–06 –1.43 10–06 –1.60 10–06 –1.85 10–06 –2.19 10–06 –2.62 10–06 –3.16 10–06 –3.79 10–06 –4.48 10–06

–1.17 10–06 –1.22 10–06 –1.32 10–06 –1.48 10–06 –1.71 10–06 –2.02 10–06 –2.42 10–06 –2.92 10–06 –3.52 10–06 –4.20 10–06

–1.08 10–06 –1.13 10–06 –1.22 10–06 –1.36 10–06 –1.57 10–06 –1.85 10–06 –2.21 10–06 –2.67 10–06 –3.24 10–06 –3.89 10–06
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Appendix 2.Tables with reconstructed current values for each method
The currents in Tables A1–A3 are in ampère. Three significant digits are considered.

Table A1.
results obtained by

means of Tikhonov’s
regularization and
SVD method. 8SVs
and 4SVs mean that

SVD method has
been applied after
discarding 8 and 4

singular values,
respectively

Turn Tik 8SVs 4SVs SVD

1 –31.5 –46.3 111 –311
2 –31.6 –43.3 –250 951
3 –31.3 –37.8 –58.5 –2.19 103

4 –29.9 –31.1 223 4.57 103

5 –26.8 –24.2 –15.5 –9.50 103

6 –22.1 –18.2 –273 1.62 104

7 –16.8 –13.3 –214 –1.84 104

8 –11.4 –9.36 3.23 1.03 104

9 –6.57 –6.19 161 –1.39 103

10 –2.48 –3.66 127 –465

Table A2.
results obtained by

means of DP, �M and
ART methods

Turn DP �M ART

1 –46.2 –80.9 –27.4
2 –23.2 –13.9 –78.1
3 12.4 50.8 30.7
4 2.08 28.5 99.0
5 –79.7 –77.6 –23.6
6 –144 –162 –165
7 –116 –150 –176
8 –19.7 –54.5 –72.9
9 86.5 78.1 65.9
10 171 204 175

Table A3.
results obtained by

means of MLR,
LPCA, ENR and
ANN methods

Turn MLR LPCA ENR ANN

1 –547 120 176 –29.6
2 1.93 103 –290 –214 –52.2
3 –4.96 103 –2.81 132 94.3
4 1.17 104 194 497 –548
5 –2.62 104 –13.4 –177 2.15 103

6 4.91 104 –268 27.0 –7.43 103

7 –6.59 104 –210 –3.28 1.72 104

8 5.45 104 10.4 –194 –2.40 104

9 –2.43 104 99.8 2.89 1.68 104

10 4.59 103 177 214 –4.49 103
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