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Abstract
Purpose – The purpose of the paper is the simulation of nonuniform transmission lines.
Design/methodology/approach – The method involves a Magnus expansion and a numerical Laplace
transform. The method involves a judicious arrangement of the governing equations so as to enable efficient
simulation.
Findings – The results confirm an effective and efficient numerical solver for inclusion of nonuniform
transmission lines in circuit simulation.
Originality/value – The work combines a Magnus expansion and numerical Laplace transform algorithm
in a novel manner and applies the resultant algorithm for the effective and efficient simulation of nonuniform
transmission lines.
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Introduction
The ongoing increase in signal frequencies and increase in the density of circuits have the
consequential requirement for accurate modelling of interconnects. Models of interconnects in
circuits need to include the nonuniformity in geometry so as to enable accurate analysis and
design (Antonini, 2012). Another application of nonuniform transmission lines is in
microwave filters that are used in many applications, for example, mobile and satellite
communications and test and measurement systems (Hashash et al., 2018; Arnedo et al., 2012;
Attamimi and Alaydrus, 2015). While such filters may be designed using cascaded distributed
transmission lines, abrupt changes in structure can lead to parasitic effects and consequently
to errors. To avoid these errors, nonuniform transmission lines are used in microwave filters.
Non-uniform transmission lines are also present in power systems (Gunawardana, 2022).
Many approaches have been proposed for time-domain modelling of nonuniform transmission
lines. Antonini (2012) proposes a method based on Green’s function of a uniform transmission
line. The result is a rational macromodel that is suitable for the time-domain simulation.
Afrooz and Abdipour (2012) present a Finite Difference Time Domain technique that is
unconditionally stable and describes a method for handling modulated signals in an efficient
manner. Bran�cík and Šev�cík (2011) present a method based on an implicit Wendroff method.
Juri�c-Grgi�c (2015) uses a finite element approach. Manfredi et al. (2016) present a perturbative
approach whereby the variations in the transmission line parameters are seen as
perturbations of their average value. Chernobryvko (2014) also uses a perturbative approach

© Marissa Condon. Published by Emerald Publishing Limited. This article is published under the
Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and
create derivative works of this article (for both commercial & non-commercial purposes), subject to
full attribution to the original publication and authors. The full terms of this licence may be seen at
http://creativecommons.org/licences/by/4.0/legalcode

Nonuniform
transmission

lines

1

Received 24 January 2023
Revised 14March 2023

20April 2023
Accepted 23April 2023

COMPEL - The international
journal for computation and
mathematics in electrical and

electronic engineering
Vol. 43 No. 1, 2024

pp. 1-13
EmeraldPublishingLimited

0332-1649
DOI 10.1108/COMPEL-01-2023-0042

The current issue and full text archive of this journal is available on Emerald Insight at:
https://www.emerald.com/insight/0332-1649.htm

http://dx.doi.org/10.1108/COMPEL-01-2023-0042


focussing on multiconductor lines. Some frequency-domain approaches have also been
presented, for example those of G�omez and Escamilla (2013) and Moreno et al. (2005). An
approach based on the state-transition matrix and using the Peano–Baker Series is proposed
inMomeni et al. (2020).

The first section of the present paper shall describe the theory governing the proposed
method. The following section shall give examples to highlight its efficacy. Finally,
conclusions and suggestions for future work shall be given.

Methodology
Consider a section of a nonuniform transmission line, as shown in Figures 1 and 2. Let x be
the direction of propagation.

The Telegrapher’s equations are:

@

@x
V s; xð Þ ¼ � R xð Þ þ sL xð Þð ÞI s; xð Þ ¼ �Z s; xð ÞI s; xð Þ

@

@x
I s; xð Þ ¼ � G xð Þ þ sC xð Þ� �

V s; xð Þ ¼ �Y s; xð ÞV s; xð Þ
(1)

V(s, x) and I(s, x) are the voltage and current along the line. s is the Laplace parameter. R(x),
L(x),G(x) and C(x) are the per-unit resistance, inductance, conductance and capacitance along the

Figure 1.
Nonuniform
transmission line of
varying width Source: Author’s own work

Figure 2.
Nonuniform
transmission line
per-unit length
parameters

R(x) L(x)

C(x) G(x)

Source: Author’s own work
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line. Z(s, x) =R(x)þ sL(x) is the per-unit length impedance of the line.Y(s, x) =G(x)þ sC(x) is the
per unit length admittance of the line.

The solution of the equations in (1) are of the form:

V s; xð Þ ¼ Vþ s; xð Þ þ V� s; xð Þ
I s; xð Þ ¼ Iþ s; xð Þ þ I� s; xð Þ

(2)

Vþ(s, x),V �(s, x) are the forward and backward waves on the transmission line.
Bearing in mind the approaches taken in Tang and Zhang (2011), Zhang et al. (2011) and

Pereira (2014), the following form of equations shall be considered, with aþ(s, x) and a�(s, x)
defined as follows:

V s; xð Þ ¼ Z
1
2
0 s; xð Þ aþ s; xð Þ þ a� s; xð Þ

� �
I s; xð Þ ¼ Z�1

2
0 s; xð Þ a� s; xð Þ � aþ s; xð Þ

� � (3)

This form of equation is selected as it is appropriate for the subsequent analysis.
The propagation constant is:

g s; xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z s; xð ÞY s; xð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R xð Þ þ sL xð Þð Þ G xð Þ þ sC xð Þ� �q

The characteristic impedance is:

Z0 s; xð Þ ¼ Y�1
0 s; xð Þ

Y0 s; xð Þ ¼ R xð Þ þ sL xð Þð Þ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R xð Þ þ sL xð Þð Þ G xð Þ þ sC xð Þ� �q (4)

Then:

@

@x

aþ s; xð Þ
a� s; xð Þ

2
4

3
5 ¼

M s; xð Þ K s; xð Þ
K s; xð Þ �M s; xð Þ

2
4

3
5 aþ s; xð Þ

a� s; xð Þ

2
4

3
5 ¼ A

aþ s; xð Þ
a� s; xð Þ

2
4

3
5 (5)

where:

M s; xð Þ ¼ 1
2

Z�1
0 s; xð Þ R xð Þ þ sL xð Þð Þ þ G xð Þ þ sC xð Þ� �

Z0 s; xð Þ
� �

K s; xð Þ ¼ � 1
2
Z�1
0 s; xð Þ dZ0 s; xð Þ

dx

K(s, x) is the coupling coefficient that varies along the length of the line.
Equation (5) is then solved using an efficient numerical algorithm.
The numerical algorithm involves two steps. The first is solution in the spatial domain, x.

For this purpose, the approach in Vaibhav (2019) and Blanes and Moan (2006) is used. It is a
fourth-order algorithm based on an equispaced division of the x axis. The divisions are x
and the nth point is xn.
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The solution of (5) is:

aþ s; xð Þ
a� s; xð Þ

� �
¼ e K x;xnð Þ aþ s; xnð Þ

a� s; xnð Þ
� �

(6)

For the remainder of the paper, explicit dependence of variables on x, s shall be omitted in
some equations to enable ease of understanding.

K(x, xn) can be represented by theMagnus series (Magnus, 1954):

K x; xnð Þ ¼
X1

i¼1

Ki (7)

The series is made up of an infinite series of terms, and the subscript is to distinguish each term.
The method proposed by Blanes andMoan (2006) and used by Vaibhav (2019) involved a

truncation of this series to obtain a fourth-order method. The first two terms in the Magnus
series are:

K1 ¼
ðx
xn

A tð Þdt

K2 ¼ 1
2

ðx
xn

dt1

ðt1
xn

A t1ð Þ;A t2ð Þ
	 


dt2

(8)

whereA is as defined in equation (5).
A Taylor series expansion ofA(x) about x1=2 ¼ xn þ Dx

2 is performed and let:

A0 ¼
ðxnþ Dx

xn

A tð Þdt

A1 ¼ 1
Dx

ðxnþ Dx

xn

x� x1=2ð ÞA tð Þdt (9)

Then a fourth-order method is given by:

Korder4 ¼ A0 þ A1;A0
	 


(10)

[a, b] is the commutator bracket, [a, b] = ab – ba.
Gauss-Legendre-Lobatto quadrature is used to evaluate the integrals in (9). The method may

be derived bymatching the zeroth, first and secondmoments. The ithmoment is defined as:
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mi ¼
ðxnþ Dx

xn

xidx (11)

The numerical quadrature method is:

ðxnþ Dx

xn

f xð Þdx ¼
X

k¼1;2;3

wkf xkð Þ (12)

The weights are determined as follows:

w1xni þ w2 xn þ Dx
2

� �i

þ w3 xn þ Dxð Þi ¼ mi; i ¼ 0; 1; 2 (13)

Solving equation (13) yields:

w1 ¼ Dx
6

; w2 ¼ 4 Dx
6

; w3 ¼ Dx
6

Using this result, the integrals in (9) may be determined as follows:

ðxnþ Dx

xn

A tð Þdt ¼ Dx
6

A1 þ 4A2 þ A3ð Þ (14)

A1 ¼ A xnð Þ;A2 ¼ A xn þ Dx
2

� �
;A3 ¼ A xn þ Dxð Þ

1
Dx

ðxnþ Dx

xn

x� x1=2ð ÞA tð Þdt ¼ Dx
12

A3 � A1ð Þ
(15)

Korder4
nþ1 ¼ K4 xn þ Dx; xnð Þ ¼ Dx

6
A1 þ 4A2 þ A3ð Þ þ Dx2

72
A1 þ 4A2 þ A3;A3 � A1½ �ð Þ

(16)

The first and second terms in (16) correspond to the first and second terms in (10) when the
Gauss-Legendre-Lobatto quadrature is used. The superscripts denote the terms in (9) and
(10) while the subscript refers to the definitions in (14).

Computing matrix exponentials is computationally expensive and hence, the structure of
theK(x, xn) matrix must be investigated for savings in computation as was done in Vaibhav
(2019) and Blanes andMoan (2006).
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For the equation in (5), (16) becomes:

Korder4
nþ1 ¼ Dx

6

Mn þ 4M
nþ1

2

þMnþ1 Kn þ 4K
nþ1

2

þ Knþ1

Kn þ 4K
nþ1

2

þ Knþ1 � Mn þ 4M
nþ1

2

þMnþ1
� �

2
664

3
775

þ Dx2

72

Mnþ1 �Mn Knþ1 � Kn

Knþ1 � Kn � Mnþ1 �Mnð Þ

2
4

3
5 (17)

Kn ¼ K xnð Þ;Knþ1
2
¼ K xn þ Dx

2

� �
;Knþ1 ¼ K xn þ Dxð Þ;

Mn ¼ M xnð Þ;Mnþ1
2
¼ M xn þ Dx

2

� �
;Mnþ1 ¼ M xn þ Dxð Þ:

Because of its structure, det exp Korder4
nþ1

� �� �
¼ 1. Hence, for a single transmission

line:

e Korder4
nþ1 ¼

cosh Cnþ1ð Þ 0

0 cosh Cnþ1ð Þ

2
4

3
5þ sinh Cnþ1ð Þ

Cnþ1
Knþ1 (18)

where:

Cnþ1 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det Korder4

nþ1

� �r

Thus an efficient method for computing the exponential of Knþ1 has been
determined.

For 2-conductor lines, the matrix Korder4
nþ1 has the following structure:

Korder4
nþ1 ¼

a b

b a

c d

d c

c d

d c

�a �b

�b �a

2
666664

3
777775

(19)

For this specific structure of matrix, the matrix exponential can be computed as:
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e Korder4
nþ1 ¼

el1
Knþ1 � l2Ið Þ Knþ1 � l3Ið Þ Knþ1 � l4Ið Þ

l1 � l2ð Þ l1 � l3ð Þ l1 � l4ð Þ
� �

þel2
Knþ1 � l1Ið Þ Knþ1 � l3Ið Þ Knþ1 � l4Ið Þ

l2 � l1ð Þ l2 � l3ð Þ l2 � l4ð Þ
� �

þel3
Knþ1 � l1Ið Þ Knþ1 � l2Ið Þ Knþ1 � l4Ið Þ

l3 � l1ð Þ l3 � l2ð Þ l3 � l4ð Þ
� �

þel4
Knþ1 � l1Ið Þ Knþ1 � l2Ið Þ Knþ1 � l3Ið Þ

l4 � l1ð Þ l4 � l2ð Þ l4 � l3ð Þ
� �

2
66666666666666664

(20)

l1;2 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bð Þ2 þ cþ dð Þ2

q

l3;4 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� bð Þ2 þ c� dð Þ2

q

This enables the a6(s, x) to be determined for each xn for a particular s in an efficient
manner.

Numerical Laplace transform
The second part of the algorithm involves computation of the inverse Laplace transform.
The advantage of using the inverse Laplace transform is that it enables ease of inclusion of
frequency-dependent effects. In addition, it avoids the difficulties of Fourier transform
approaches when step responses are of interest (Griffith and Nakhla, 1990). Many methods
have been proposed for numerical inversion of the Laplace transform for example (Griffith
and Nakhla, 1990; Cohen, 2007). A recent work recommending and indicating its suitability
for state-of-the-art circuit simulation is Gad (2022). The work (Gad, 2022) involves a rational
approximation of the exponential function. In the current work, the approach of Wilcox
(1978) is used. This approach uses the midpoint integration rule and uses the FFT thus
resulting in an efficient routine. To account for Gibbs oscillations, the sigma-factor, s,
suggested in Wilcox (1978) is used. If the inverse Laplace transform of F(s) is required, then
the suggested approach involves multiplying this by s :

s ¼ sin vp= Xð Þ
vp= X

(21)

where X rad/s is the frequency beyond which the frequency spectrum of the time-domain
signal may be assumed to be neglected. This method was selected as it is efficient and
includes a method to overcome Gibbs oscillations. Future work will compare different
numerical inverse Laplace transform routines.

Examples
The first example is a two-conductor coupled nonuniform transmission line similar to that in
Manfredi et al. (2016). The length of the line is l = 4 cm. The conductance is set to zero, as is
done in other publications, for example, Antonini (2012) andMomeni et al. (2020).
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L xð Þ ¼
200 20

20 200

2
4

3
5ex=lnH=m

C xð Þ ¼
60 �6

�6 60

2
4

3
5e�x=lpF=m

R xð Þ ¼
100 0

0 100

2
4

3
5 X=m

Figure 3 shows the unit-step response at the end of the excited line. The proposed method is
compared with that obtained with a very fine segmentation technique. The proposed
method uses Dx = 1 cm. The segment technique uses 128 sections. Figure 4 shows the
voltages at the receiving end of the second conductor. Figure 5 shows the response at
the receiving end of the excited conductor to a pulse with a rise and fall time of 25 ps. The
duration of the pulse is also 25 ps. Figure 6 shows the response at the receiving end when the
input is a 20GHz sinewave.

The results indicate the efficacy of the proposedmethod.
In a manner similar to Momeni et al. (2020), the accuracy and efficiency of the techniques

are compared as follows: The finite discretisation technique is applied with 8,000 sections to
obtain an “exact” solution. This is denoted vex. The same technique is then applied with a
varying number of sections to obtain a result within a tolerance e. This is denoted vsect.

Figure 3.
Unit-step responses
at the receiving end of
the excited conductor Source: Author’s own work
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Figure 4.
Unit-step responses

at the receiving end of
the second conductorSource: Author’s own work

Figure 5.
Pulse responses at the
receiving end of the
excited conductorSource: Author’s own work
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Finally, the proposed method is applied with varying x values to lie with the same tolerance.
This is denoted as vproposed: 



 vex � vsect=proposed

vex





 < e

The results are noted. The speed of computation is then measured. For the two-conductor line, 128
sections are required for an accuracy of e = O(�10�4). For the proposed method, x = 1 cm. The
computation time for the proposed method is less than 50% that for the method, with the sections
indicating the efficacy of the proposedmethod as an alternative to traditionalmethods.

The second example is also similar to that in Momeni et al. (2020). The parameters of the
line are:

L xð Þ ¼ 400 75
75 400

� �
1þ kx

l

� �
nH=m

C xð Þ ¼
175 �15
�15 175

� �

1þ kx
l

pF=m

R xð Þ ¼ 100 0
0 100

� �
X=m

Figure 6.
Sinusoidal responses
at the receiving end of
the excited conductor Source: Author’s own work
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The conductance is set to zero.
The length of the line is 7 cm and k= 1.
The input is a modulated signal:

vin tð Þ ¼ sin p� 108tð Þsin p� 109tð Þ

The load resistance is Rload = 1X. Figure 7 shows the result at the receiving end of the line
with the proposed method superimposed on the result using the method with sections. The
results indicate the efficacy of the proposed technique.

Conclusions
The paper has introduced an alternative and efficient procedure for simulating nonuniform
transmission lines. The method involves a Magnus expansion for the spatial variation and
numerical inverse Laplace transform to determine the time-domain response. The method is
accurate, and results have confirmed its efficacy, and computation times indicate its
efficiency. Possible future work could involve optimising the code and memory usage.
Future work could include frequency-dependent per-unit length parameters of the
transmission line and nonlinear loads. In addition, further exploration is required with input
signals of widely varying frequency content. Exploration of terahertz interconnects may
also be a possibility.

References
Afrooz, K. and Abdipour, A. (2012), “Efficient method for time-domain analysis of Lossy nonuniform

multiconductor transmission line driven by a modulated signal using FDTD technique”, IEEE
Transactions on Electromagnetic Compatibility, Vol. 54 No. 2, pp. 482-494, doi: 10.1109/
TEMC.2011.2161765.

Figure 7.
Voltages are the
receiving end of

the transmission line
when the input is a

modulated signal and
when there is a load

resistanceSource: Author’s own work

Nonuniform
transmission

lines

11

http://dx.doi.org/10.1109/TEMC.2011.2161765
http://dx.doi.org/10.1109/TEMC.2011.2161765


Antonini, G. (2012), “Spectral models of Lossy nonuniform multiconductor transmission lines”, IEEE
Transactions on Electromagnetic Compatibility, Vol. 54 No. 2, pp. 474-481, doi: 10.1109/
TEMC.2011.2167015.

Arnedo, I., Arregui, I., Lujambio, A., Chudzik, M., Laso, M.A.G. and Lopetegi, T. (2012), “Synthesis of
microwave filters by inverse scattering using a closed-form expression valid for rational
frequency responses”, IEEE Transactions on Microwave Theory and Techniques, Vol. 60 No. 5,
pp. 1244-1257, doi: 10.1109/TMTT.2012.2187921.

Attamimi, S. and Alaydrus, M. (2015), “Design of Chebychev’s low pass filters using nonuniform
transmission lines”, Journal of ICT Research and Applications, Vol. 9 No. 3, pp. 197-213, doi:
10.5614/itbj.ict.res.appl.2015.9.3.1.

Blanes, S. and Moan, P. (2006), “Fourth- and sixth-order commutator-free magnus integrators for linear
and non-linear dynamical systems”, Applied Numerical Mathematics, Vol. 56 No. 12,
pp. 1519-1537, doi: 10.1016/j.apnum.2005.11.004.

Bran�cík, L. and Šev�cík, B. (2011), “Time-domain simulation of nonuniform multiconductor
transmission lines in Matlab”, International Journal of Mathematics and Computers in
Simulation, Vol. 5 No. 2.

Chernobryvko, M., De Zutter, D. and Ginste, D.V. (2014), “Nonuniformmulticonductor transmission line
analysis by a two-step perturbation technique”, IEEE Transactions on Components, Packaging,
and Manufacturing Technology (2011), Vol. 4 No. 11, pp. 1838-1846, doi: 10.1109/TCPMT.
2014.2360312.

Cohen, A. (2007), Numerical Methods for Laplace Transform Inversion, Springer Publishing Company,
New York, NY.

Gad, E., Tao, Y. and Nakhla, M. (2022), “Fast and stable circuit simulation via Interpolation-Supported
numerical inversion of the Laplace transform”, IEEE Transactions on Components, Packaging
andManufacturing Technology, Vol. 12 No. 1, pp. 121-130, doi: 10.1109/TCPMT.2021.3122840.

G�omez, P. and Escamilla, J.C. (2013), “Frequency domain modeling of nonuniform multiconductor lines
excited by indirect lightning”, International Journal of Electrical Power and Energy Systems,
Vol. 45 No. 1, pp. 420-426, doi: 10.1016/j.ijepes.2012.09.019.

Griffith, J.R. and Nakhla, M.S. (1990), “Time-domain analysis of Lossy coupled transmission lines”,
IEEE Transactions on Microwave Theory and Techniques, Vol. 38 No. 10, pp. 1480-1487, doi:
10.1109/22.58689.

Gunawardana, M., Ng, A. and Kordi, B. (2022), “Time-domain coupling model for nonparallel
frequency-dependent overhead multiconductor transmission lines above lossy ground”,
IEEE Transactions on Power Delivery, Vol. 37 No. 4, pp. 2997-3005, doi: 10.1109/TPWRD.
2021.3121194.

Hashash, A.I., Bataineh, M.H. and Al-Zoubi, A.S. (2018), “Applications of nonuniform transmission
lines in filters”, 5th International Conference on Electrical and Electronic Engineering (ICEEE).
IEEE, pp. 47-51, doi: 10.1109/ICEEE2.2018.8391299.

Juri�c-Grgi�c, I., Luci�c, R. and Bernadi�c, A. (2015), “Transient analysis of coupled non-uniform
transmission line using finite element method”, International Journal of Circuit Theory and
Applications, Vol. 43 No. 9, pp. 1167-1174, doi: 10.1002/cta.2002.

Magnus, W. (1954), “On the exponential solution of differential equations for a linear operator”,
Communications on Pure and AppliedMathematics, Vol. 7 No. 4, pp. 649-673.

Manfredi, P., De Zutter, D. and Ginste, D.V. (2016), “Analysis of coupled exponential microstrip lines by
means of a multi-step perturbation technique”, IEEE 20th Workshop on Signal and Power
Integrity (SPI), IEEE, pp. 1-4. doi: 10.1109/SaPIW.2016.7496303

Momeni, A., Baharian, M. and Abdolali, A. (2020), “General analysis of coupled nonuniform
transmission lines based on state transition matrix”, IEEE Transactions on Electromagnetic
Compatibility, Vol. 62 No. 5, pp. 2321-2324, doi: 10.1109/TEMC.2019.2947466.

COMPEL
43,1

12

http://dx.doi.org/10.1109/TEMC.2011.2167015
http://dx.doi.org/10.1109/TEMC.2011.2167015
http://dx.doi.org/10.1109/TMTT.2012.2187921
http://dx.doi.org/10.5614/itbj.ict.res.appl.2015.9.3.1
http://dx.doi.org/10.1016/j.apnum.2005.11.004
http://dx.doi.org/10.1109/TCPMT.2014.2360312
http://dx.doi.org/10.1109/TCPMT.2014.2360312
http://dx.doi.org/10.1109/TCPMT.2021.3122840
http://dx.doi.org/10.1016/j.ijepes.2012.09.019
http://dx.doi.org/10.1109/22.58689
http://dx.doi.org/10.1109/TPWRD.2021.3121194
http://dx.doi.org/10.1109/TPWRD.2021.3121194
http://dx.doi.org/10.1109/ICEEE2.2018.8391299
http://dx.doi.org/10.1002/cta.2002
http://dx.doi.org/10.1109/SaPIW.2016.7496303
http://dx.doi.org/10.1109/TEMC.2019.2947466


Moreno, A., G�omez, P., Naredoa, J.L. and Guardado, J.L. (2005), “Frequency domain transient analysis of
electrical networks including non-linear conditions”, International Journal of Electrical Power
and Energy Systems, Vol. 27 No. 2, pp. 139-146.

Pereira, M.R. (2014), Inverse Scattering Techniques for the Synthesis of Microwave Structures, ProQuest
Dissertations Publishing, Ann Arbor.

Tang, H. and Zhang, Q. (2011), “An inverse scattering approach to soft fault diagnosis in Lossy electric
transmission lines”, IEEE Transactions on Antennas and Propagation, Vol. 59 No. 10,
pp. 3730-3737, doi: 10.1109/TAP.2011.2163772.

Vaibhav, V. (2019), “Efficient nonlinear Fourier transform algorithms of order four on equispaced grid”,
IEEE Photonics Technology Letters, Vol. 31 No. 15, pp. 1269-1272.

Wilcox, D.J. (1978), “Numerical Laplace transformation and inversion”, The International Journal of
Electrical Engineering and Education, Vol. 15 No. 3, pp. 247-265, doi: 10.1177/0020720
97801500309.

Zhang, Q., Sorine, M. and Admane, M. (2011), “Inverse scattering for soft fault diagnosis in electric
transmission lines”, IEEE Transactions on Antennas and Propagation, Vol. 59 No. 1, pp. 141-148,
doi: 10.1109/TAP.2010.2090462.

Corresponding author
Marissa Condon can be contacted at: marissa.condon@dcu.ie

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Nonuniform
transmission

lines

13

http://dx.doi.org/10.1109/TAP.2011.2163772
http://dx.doi.org/10.1177/002072097801500309
http://dx.doi.org/10.1177/002072097801500309
http://dx.doi.org/10.1109/TAP.2010.2090462
mailto:marissa.condon@dcu.ie

	Simulation of nonuniform transmission lines
	Introduction
	Methodology
	Numerical Laplace transform
	Examples
	Conclusions
	References


