
Pyrit: A finite element based field
simulation software written

in Python
Jonas Bundschuh, M. Greta Ruppert and

Yvonne Späck-Leigsnering
Institute for Accelerator Science and Electromagnetic Fields,
Technical University of Darmstadt, Darmstadt, Germany

Abstract
Purpose – The purpose of this paper is to present the freely available finite element simulation
software Pyrit.
Design/methodology/approach – In a first step, the design principles and the objective of the software
project are defined. Then, the software’s structure is established: The software is organized in packages for
which an overview is given. The structure is based on the typical steps of a simulation workflow, i.e., problem
definition, problem-solving and post-processing. State-of-the-art software engineering principles are applied
to ensure a high code quality at all times. Finally, the modeling and simulation workflow of Pyrit is
demonstrated by three examples.
Findings – Pyrit is a field simulation software based on the finite element method written in Python to solve
coupled systems of partial differential equations. It is designed as a modular software that is easily modifiable
and extendable. The framework can, therefore, be adapted to various activities, i.e., research, education and
industry collaboration.
Research limitations/implications – The focus ofPyrit are static and quasistatic electromagnetic problems
aswell as (coupled) heat conduction problems. It allows for both time domain and frequency domain simulations.
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Originality/value – In research, problem-specific modifications and direct access to the source code of
simulation tools are essential. With Pyrit, the authors present a computationally efficient and platform-
independent simulation software for various electromagnetic and thermal field problems.

Keywords Finite element method, Computational electromagnetics, Coupled systems,
Field-circuit coupling, Circuit models

Paper type Research paper

1. Introduction
Today, electromagnetic (EM) field simulation software is essential for the design of electric
equipment, e.g., electric power converters and transmission systems, electronics and particle
accelerator components. Many different tools for EM field simulation based on the finite element
(FE) method have been developed over time. Commercial software tools, e.g., Ansys MaxwellVR

(Ansys Maxwell, 2022), CST EM STUDIOVR (CST EM Studio, 2022), Flux2D/3DVR (Altair Flux,
2022), JMAGVR (JMAG, 2022) and COMSOL MULTIPHYSICS

VR (Comsol Multiphysics, 2022), are
designed to solve universal EM field problems with standard computational methods. The
design principles of commercial packages are, first of all, a broad applicability. Second, the
software is made easy to use by powerful graphical user interfaces and template-based
workflows. However, users cannot customize and access the internal routines and system solvers.

In a research setting, however, problem-specific modifications and direct access to the FE
matrices is indispensable. Various available freeware FE tools offer different levels of
abstraction: General FE research tools with a focus on numerical mathematics are, for example,
Deal (Arndt et al., 2022), FEniCS (Alnæs et al., 2015) and GetDP (Dular et al., 1998). However,
these tools typically require an in-depth knowledge of the FE method. Besides, research tools
motivated by electrical engineering problems are, for example, Agros (Karban et al., 2013),
FEMM (Meeker, 2022) and openCFS (openCFS, 2022) and for electrical machine problems
Pyleecan (Bonneel et al., 2018). These tools allow to study and further develop formulations,
discretization techniques and solver strategies for EM field simulation, thereby covering a large
fraction of research in a computational EM research group. Nevertheless, there is an additional
need for a research code built from scratch, with access to all basic routines, with full flexibility
and possibly adapted to a few specific lines of research.

Pyrit [1] is a FE solver developed from the perspective of the electric field simulation
workflow. To allow a fast prototyping and due to its popularity in industry and academia, it
is written in Python [2]. In general, it solves static and quasistatic EM and heat transfer
problems. One of the central aims of Pyrit is to provide a user-friendly and computationally
efficient FE code with a template-based structure for standard and coupled EM and
thermal problems. Furthermore, a plain user interface via Python scripts supports the
implementation of new modeling and simulation ideas. Its inherent structure supports
students to learn how to implement and use an FE solver.

2. Design principles
Pyrit is developed collaboratively based on the following principles: it is robust, portable,
scriptable, extensible and thoroughly documented. Users organize the simulation workflow
with Python scripts or Jupyter notebooks (Perkel, 2018). Therefore, the full capabilities of
Python can be exploited, and studies can be tailored to the needs of individual users.

The object-oriented structure of Pyrit allows, in contrast to other FE software packages,
different levels of abstraction: On one hand, the user can access and customize the basic and
physics-independent FE routines. On the other hand, Pyrit offers classes that serve as
templates and predefined solvers for a set of selected EM and thermal problems. This allows
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to model and simulate field problems without detailed knowledge of the weak formulation or
of the FE method. In addition, Pyrit provides standard post-processing routines as well as
the possibility to export results to Paraview and LaTeX (for plotting with pgfplots). Pyrit is
user-friendly, as all packages, modules, classes, functions and methods are thoroughly
documented. The documentation of the whole software is stripped directly from the source
files and is therefore always up-to-date. Supplementary information such as tutorials further
extends the documentation. Furthermore, the geometry and mesh generation of the open
source software Gmsh (Geuzaine and Remacle, 2009) is used. To make the geometry
generation more convenient, the package geometry provides a unified interface toGmsh.

3. Software structure
Pyrit’s modeling and simulation workflow is organized in packages. They are assigned to
the three steps in Figure 1 that are described in this section. Because the toolbox package can
be associated with all three steps, it is described here:

� toolbox: This package is a collection of different toolboxes with additional functionalities
that are not solely associated with one package. It contains, inter alia, a material and
geometry library (for the problem definition step), a circuit simulation and a time
integration toolbox (for the problem solving step) and a post-processing and export
toolbox (for the post-processing step).

3.1 Problem definition
Before a simulation is executed, Pyrit defines a field problem. This first step is the choice of the
problem type. This includes the differential equation to be solved, the dimension of the problem
and the time dependency. Subsequently, the geometry is built, and the materials, boundary
conditions and excitations are assigned. The assignment relies on the concept of physical
groups of Gmsh, as indicated by an UML class diagram in Figure 2. The pendant in Pyrit are
regions. A region has one or more geometrical entities that share a material, a boundary
condition or an excitation. Consequently, a geometrical entity can have at most one region.

The following packages are associated with the problem definition step:
� bdrycond: In this package, boundary conditions are defined. Besides the standard

Dirichlet and Neumann boundary conditions, also Robin, periodic, antiperiodic and
floating boundary conditions are supported (De Gersem et al., 2004b). There is a
container class that manages all boundary conditions of a problem and can apply
them to the system of equations of the corresponding problem.

� excitation: In this package, excitations for problems are defined. Its structure is
similar to bdrycond. Typical excitations are charges, charge densities, currents or current

Figure 1.
Assignment of the

packages to the steps
“problem definition,”

“problem solving”
and “post-processing”
of a field simulation

workflowSource: Authors’ own work
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densities. In addition to that, the field-circuit coupling models solid and stranded
conductor (De Gersem et al., 2004a) are also implemented in this package. Like in the
previous package, there is also a container class that manages all excitations of a problem.

� geometry: In this package, the interaction between Pyrit and Gmsh is handled via the
Gmsh Python API. This includes primarily the generation of geometries and meshes
and the extraction of the relevant data for Pyrit. There are also several wrapper
classes for geometrical entities to simplify the geometry generation.

� material: In this package, the management of material information is implemented.
Materials can be defined by giving them a set of material properties, e.g., a conductivity
or a permeability. The values of the material properties can be constants or functions
that can depend, in particular, on space, time or other field values. They can be scalar or
tensor valued. With this, a nonlinear, inhomogeneous and anisotropic material can be
defined. A container class manages all the materials of a problem.

� region: In this package, classes for the organization of materials, boundary
conditions and excitations on the mesh are provided. Regions can be seen as discrete
counterpart to physical groups and are defined on the mesh. The package includes a
class for defining a region and a container class that manages different regions.

3.2 Problem solving
Now that the problem is completely defined, it can be solved. For that, a mesh object and a
shape function object are required. The former can be generated and extracted from Gmsh
with the geometry package. The latter is fixed by the chosen problem. With the shape
function object, the required matrices and vectors can be computed and assembled into the
final system of equations. This can be solved using a predefined solve routine defined in
the problem class or any other solve method. Currently, there exist wrappers for direct and
iterative solvers for sparse matrices from SciPy [3] and Pardiso [4].

The relevant packages in this step are:
� mesh: In this package, classes for different kinds of meshes are defined, e.g., a

triangular mesh for two-dimensional (2D) domains or a tetrahedral mesh for three-
dimensional domains. These classes are responsible for the mesh data. They store
the coordinates of all nodes and the definition of the higher dimensional entities
(edges, triangles and tetrahedra).

� problem: This package collects classes that represent standard problem formulations.
They provide a framework for organizing all the data needed for defining a problem.
Furthermore, the classes in the problem package implement a solve method that
provides a convenient way to solve a problem, i.e., to setup and solve the system of
equations. There are separate classes for static, harmonic and transient problems per
problem type, i.e., the underlying differential equation.

Figure 2.
UML class diagram
of the assignment of
materials, boundary
conditions and
excitations to
physical groups.
They, in turn, are
then assigned to
geometrical entities
as points, lines,
triangles and
tetrahedra. An object
of a class can have at
most one object of a
class to its right but
one or more objects of
a class to its left

Source: Authors’ own work
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� shapefunction: This package provides the core of the FE method, i.e., the different
shape functions. There is one class per FE shape function and dimension of the domain.
For example, there is a class for nodal shape functions in cylindrical coordinates or a
class for edge shape functions in 2D Cartesian coordinates. These classes implement the
routines to compute the FE matrices. Currently, nodal shape functions are implemented
for two- and three-dimensional Cartesian and cylindrical coordinates. Furthermore, edge
functions are implemented for 2D Cartesian and cylindrical coordinates.

3.3 Post-processing
The result from the problem-solving step is a vector or several vectors, depending on the problem,
respectively. Each problem class is equipped with a corresponding solution class. These
implement standard post-processing routines and allow for a straightforward visualization of the
results. This step also includes the export of the data tofiles of different formats.

The post-processing step comprises the following package:
� solution: This package collects solution classes for standard problem formulations.

For each class in the problem package, there is an associated class in this package.
The problems solve routine returns a solution object of correct type that contains
the simulation result. In the solution class, standard post-processing and
visualization routines, specific for this problem type, are implemented. In the case of
an electrostatic problem, this includes, for example, the computation and
visualization of the electric displacement field from the electric scalar potential.

4. Quality management
In the development of Pyrit, state-of-the-art software engineering principles were applied to
ensure a good code quality and a high usability and reproducibility. This section addresses
testing, linting and the documentation of the code. Continuous integration (CI) ensures that
the code fulfills these requirements.

A dedicated focus lies on developing the software collaboratively. For that reason, the
version control system Git [5] is used. It keeps track of the evolving software project and
serves as a backup. It also helps distributing the code between the developers and users.

To ensure the correctness and robustness of the code in presence and in future, there are
many tests for Pyrit. They range from testing the functionality of single functions and
methods over the interaction of modules to integration tests, i.e., the test of whole simulation
procedures. The tests of the shape functions cover, in particular, the consistency and
convergence of the implemented FEmethod.

The coding style, which can vary depending on the collaborator, and the readability of
the code are optimized through the use of a linter, i.e., a static code analyzer that finds
discrepancies between the code and a predefined style.

A crucial part for every software is its documentation, as it guides the user through the
software’s functionalities. In Pyrit, the documentation is automatically generated based on
the provided docstrings of the source files. This implies that the documentation file is
always up-to-date. Furthermore, the documentation is enriched by application examples and
tutorials of EM and thermal field problems.

The tasks in the described aspects of quality management, i.e., testing, linting and
documentation, have to be executed regularly, but at least after a commit has been pushed.
This is automated on Git with CI. After new commits have been pushed, a so-called pipeline is
started where first Pyrit is installed with the recent dependencies and, then, tested and linted.
The single tasks are executed via Docker [6] in containers on a separate machine (Merkel, 2014).
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5. Examples
Three examples show the modeling and simulation workflow in Pyrit. The first two examples
use a predefined problem class of Pyrit, i.e., the user models the EM problem. Subsequently, the
predefined template is used to setup, solve and postprocess the FE system. The third example
shows how Pyrit can be customized. There, a system of equations from the FE formulation is
built and extended by a field-circuit coupling.

5.1 Template-based simulation example
As a starting point, a simple example shows the basic procedure of the problem definition. It is
an electrostatic simulation of a plate capacitor in 2D Cartesian coordinates filled with two
materials [see Figure 3(a)]. The bottom plate is grounded, and the top plate is set to a potential
of 1V. On the left and right side, homogeneous Neumann boundary conditions are imposed.

We start at a point where the mesh and the regions already exist. The geometry was
build with theGmsh PythonAPI and imported into Pyritwith the geometry package:

Next, the materials and boundary conditions of this example are defined:

With the region IDs from Figure 3(a), materials and boundary conditions can be assigned to
the regions:

Figure 3.
Plate capacitor with
two materials. In (a),
the model is shown
with the region IDs in
blue. In (b), the
electric field strength
is plotted

(a)

Source: Authors’ own work

(b)
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With that, the problem is completely defined, and all data structures necessary to instantiate
an object of the problem class ElectricProblemCartStatic are available. The
solve routine then solves the problem and returns an object of the associated solution
class ElectricSolutionCartStatic:

The solution object can be used to plot, for instance, the electric field strength [see Figure 3(b)]:

5.2 Template-based nonlinear simulation example
The second example is a nonlinear electrothermal simulation of a cylindrical resistor (see
Figure 4). The resistor consists of a nonlinear material, which features a strongly field- and
temperature-dependent electric conductivity (see Figure 5). Such nonlinear materials are used
in field grading layers of high-voltage cable systems (Hussain and Hinrichsen, 2017; Ruppert
et al., 2023). The material is located between two electrodes to which a transient voltage V(t)
is applied (see Figure 6). The resistor is surrounded by a layer of soil. The inner surface of the
resistor and the outer surface of the soil are at a fixed temperature of 60°C and 20°C,
respectively. For a more detailed description of the model configuration and material
parameters, see Ruppert et al. (2023).

The first step in the simulation process is the definition of the geometry. Pyrit offers
several ways to do this. The user can import a step file, create a geometry using Pyrit’s
geometry package or import an already existing Gmsh file. For this example, an already
existingGmsh file is imported:

Figure 4.
Schematic of the

second example. The
cylindrical resistor

consists of a
nonlinear material
(blue) with an inner

radius of 0.1 m and an
outer radius of 0.3 m.

The material is
located between two
electrodes to which a
transient voltageV(t)

is applied, where t
denotes the time. The
resistor is surrounded

by a layer of soil
(gray) with a

thickness of 0.7 m.
The inner surface of
the resistor and the
outer surface of the
soil are at a fixed

temperature of 60°C
and 20°C,

respectively. The
surrounding space is

nonconductive
Source: Authors’ own work
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Second, the materials and boundary conditions are defined. The excitation voltage and fixed
temperatures are implemented as Dirichlet boundary conditions of the electric potential and
temperature, respectively:

The homogeneous Neumann boundary conditions of the lower and upper boundary in the z-
direction are automatically satisfied by the FE ansatz.

Figure 5.
Field- and
temperature-
dependent
conductivitys E;Tð Þ
of the nonlinear
material. The electric
field strength and the
temperature are
denoted as E andT,
respectively Source: Authors’ own work
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Finally, the material properties and boundary conditions are assigned to the geometry. A
region maps the physical properties to corresponding edges and elements in the FEmesh:

As stated in Section 3, Pyrit offers classes for EM and heat transfer problems of any
time dependence. This allows to solve field problems based on a template-based
workflow. Here, the class ElectrothermalProblemAxiTransient, which
represents a coupled transient electrothermal problem in cylindrical coordinates, is used. It
is composed of two subproblems containing the boundary conditions of the electric and
thermal subsystem, respectively:

Figure 6.
Transient voltage
V(t) over the time tSource: Authors’ own work
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The ElectrothermalProblemAxiTransient class offers a solve method for
running the electrothermal simulation. It automatically handles the coupling of the two
subproblems either by a weak coupling scheme or a successive substitution iteration. The
nonlinearity arising in the electric subproblem due to the nonlinearity of the nonlinear
material is solved using a damped Newton method:

34

35

36
37
38
39

The solutions returned by the solve method come with a set of post-processing and
plotting routines:

Figure 7.
Plot generated by the
method plot_
temperature_
at_position of
the temperature
evaluated at r = 0.2m
inside the resistor
depicted in Figure 4
over time Source: Authors’ own work
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Figure 7 exemplarily shows the plot generated by the method plot_
temperature_at_position.

5.3 Customized example
In the third example, no predefined problem class is used. A field-circuit coupled problem with a
magnetoquasistatic field problem is considered (Figure 8). It consists of an electrical circuit [see
Figure 8(a)] with a transformer that is represented by a field model [see Figure 8(b)]. The lumped
elements in the circuit are R ¼ 1X; RL ¼ 10X and C ¼ 0.1mF. The voltage source is
Vs ¼ V̂ ssin vtð Þ, with V̂ s ¼ 1V, the angular frequency v ¼ 2pf , the frequency f ¼ 3 kHz and
the time variable t. The field model of the transformer uses a stranded conductor model for both
coils (De Gersem et al., 2004a). The primary coil (teal) and the secondary coil (orange) have 300 and
500 turns, respectively.

In the following, one system for the magnetoquasistatics and one for the circuit is built in
the frequency domain. These are then coupled with field-circuit couplingmatrices.

The geometry and the mesh of this example were generated and exported to Pyrit with
the Gmsh Python API. Because the focus of this example is on the field-circuit coupling,
these steps are not shown here. We start with an object on which the shape functions, the
mesh and thematerials and boundary conditions already exist:

Now, the right-hand side vector and the FE matrices are retrieved from the shape function
object and combined into the system of equations of themagnetoquasistatic formulation:

Figure 8.
Configuration of the
third example. The
circuit for the field-
circuit coupling (a)
with a transformer
resolved in a field

model (b). The
transformer is
described in

axisymmetric
coordinates and

consists of a highly
permeable yoke

(gray) and a primary
windings (teal) and
secondary windings

(orange)
Source: Authors’ own work

(a) (b)
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The system representing the circuit [see Figure 8(a)] is built with the values of the lumped
elements:

The coupling matrices from the field-circuit coupling are generated by a class that
represents stranded conductors:

Inserting the boundary conditions with the method yields the system matrix and the system
vector. With these, the new system is given by:

Figure 9.
Absolute values of
the magnetic flux
density at phase 0 in
the transformer
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Finally, we insert the circuit system:

After solving the system, the circuit solution consists of the voltages and currents at the
transformer. The boundary conditions are integrated into the field solution that is then
evaluatedwith a predefined solution class for magnetoquasistatic problems:

The object provides post-processing routines:

The plot of the magnetic flux density at a phase of 0, generated by the method, is shown in
Figure 9.

6. Conclusion
Pyrit is a FE software environment for simulating EM and thermal field problems of any
time dependence (static, transient or harmonic). Its software structure is based on an
engineering workflow for solving a field problem numerically, i.e., problem definition,
problem solution and post-processing. Pyrit allows to solve field problems in a template-
based workflow. Furthermore, full access to the FE core supports research and development
on numerical techniques. Three examples showed how users can define, solve and post-
process a field problem in an easy and general way.

Notes

1. Pyrit’s public wiki: https://git.rwth-aachen.de/jonas.bundschuh/pyrit-wiki

2. Python website: www.python.org/

3. https://docs.scipy.org/doc/scipy/reference/sparse.linalg.html

4. www.intel.com/content/www/us/en/docs/onemkl/developer-reference-fortran/2023-0/onemkl-
pardiso-parallel-direct-sparse-solver-iface.html
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5. Git website: https://git-scm.com/

6. Docker website: www.docker.com/
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