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Abstract

Purpose –The choice of crops to produce at a location depends to a large degree on the climate. As the climate
changes and food demand evolves, farmers may need to produce a different mix of crops. This study assesses
how much cropland may be subject to such upheavals at the global scale, and then focuses on China as a case
study to examine how spatial heterogeneity informs different contexts for adaptation within a country.
Design/methodology/approach – A global agricultural economic model is linked to a cropland allocation
algorithm to generatemaps of cropland distribution under historical and future conditions. Themix of crops at
each location is examined to determine whether it is likely to experience a major shift.
Findings – Two-thirds of rainfed cropland and half of irrigated cropland are likely to experience substantial
upheaval of some kind.
Originality/value –This analysis helps establish a global context for the local changes that producers might
face under future climate and socioeconomic changes. The scale of the challenge means that the agricultural
sector needs to prepare for these widespread and diverse upheavals.
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1. Introduction
Land use changes are intrinsically linked to human activity and to economic development.
They are the outcome of an adaptation process responding to a variety of socioeconomic and
agroecological drivers, including climate, that determine the location, magnitude, and
direction of change (Foley et al., 2005).When projecting into the future, the movement of
temperature gradients and precipitation distributions away from historical patterns is
expected to affect the suitability of existing areas for growing key crop commodities (Ceglar
et al., 2021; Gao et al., 2021) resulting in the spatial relocation of crop production (Sloat et al.,
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2020). Land use will be further influenced by population and economic growth which will
modify and increase food demand, requiring more land to be brought into cultivation and
altering the mixture of crops across all cropland. These changes will not only affect crop
diversity and richness, but theywill also reveal how resilient local food systems are in the face
of biophysical and socioeconomic shocks (Birthal and Hazrana, 2019).

The spatial reshuffling of crops can also have deep ecological, economic, social and
political implications. Some research suggests that agricultural concentration is more likely
to lead to conflicts (Vesco et al., 2021). Political and social tensions may be exacerbated by the
potential increase in demand for resources in regions already poorly endowed, and where
crop production is projected to become more specialized and require higher input use,
particularly water (Unfried et al., 2022). Understanding the potential extent and nature of
these changes will help prepare producers, and other stakeholders to adapt, seize new
opportunities, and deal with challenges.

Due to each region’s distinct combination of agroecological features, natural landscapes,
as well as the historical practices of agricultural activities, substantial spatial heterogeneity is
expected in the way land use changes manifest (Xin et al., 2013). Heterogeneity poses
particular challenges because it means that planning for adaptation will require more
localized analysis and tailored policy support. For this reason, mapping out land use
trajectories under projected socioeconomic and climatic changes, and across different spatial
scales, is critical in the design of interventions and policies that can minimize the potential
disruption to agricultural production and to people’s livelihoods. Such knowledge is also
important when planning for future transportation, processing capacity, and the supporting
physical infrastructure that goeswith, and connects different economic activities (Attavanich
et al., 2013), as well as when planning for investments in extension services, and in
reorganizing food supply chains.

Reflecting its importance, research on future land use at the global scale has a long history.
A stream of the literature has attempted to understand its change dynamics. Several spatial
modeling approaches have been used, ranging from regression to integrated assessment
models (IAMs) combining biophysical, land use and economic sub-models. However, most of
these approaches are concerned primarily with broad patterns in land cover (Mendelsohn
et al., 2016; Thiam et al., 2022) while a few studies have explored how cropmixes have already
changed in response to specific climate variables like temperature and precipitation change,
or how they may change in the future (Cho and McCarl, 2017; Ghahramani et al., 2020; Sloat
et al., 2020; Nainggolan et al., 2023). More importantly, existing studies do not always consider
how these patterns respond to climate in combination with broad socioeconomic trends, like
population or economic growth. Crop yields and prices are often assumed to be fixed, and
therefore are not included in studies using regression methods to estimate the impact of
climatic, and other variables on crop shares. Among the different approaches to land use
modeling, IAMs have the capacity, to varying degrees, to simulate changes in land use
patterns, while accounting for socioeconomic drivers of change. However, when IAMs are
used to simulate changes in agricultural land use, this is generally performed as a quick
steppingstone towards other research objectives like calculating carbon emissions, or climate
change mitigation measures (Hasegawa et al., 2017; van der Hilst et al., 2018; Fujimori et al.,
2022), or evaluating changes in biodiversity (Lecl�ere et al., 2020).

There is a clear value, then, to understanding the future geographical relocation of crops
and the possible change in their global and regional distribution as the result of both climate
and socioeconomic changes, simultaneously. Accordingly, the objective of this paper is to
estimate potential shifts in cropland patterns between 2005 and 2050. Acknowledging that
changes do not happen evenly in terms of magnitude, direction, or across geographies, we
first investigate changes at the global scale, and then use China as a case study to examine
how spatial heterogeneity may create different contexts for adaptation within a country.
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The analysis is based on a newly developed cropland allocation/land use model which
estimates the distribution of a set of crops at pixel level by downscaling future global and
national projections for cropland expansion to 2050 generated by the IMPACT partial
equilibrium model (Robinson et al., 2015). IMPACT simulates how production and supply of
agricultural commodities respond to exogenous drivers like climate and population growth to
achieve a market equilibrium. As such, its results also indicate the level of change to the
structure of the agricultural sector (i.e. crop mixes, area expansion or contraction) required to
adapt to climate shocks. Spontaneous adaptation (expressed through changes simulated by
the model) is always accompanied by challenges in the form of transaction costs borne by
farmers and other stakeholders. The premise underpinning this exercise is that the various
levels of projected notable change in the mix of crops, what we call “upheaval”, are indicative
of the effort, including costs, required for adaptation (whether spontaneous or planned).

2. Materials and methods
The goal of this investigation is to assess howmuch area will experience a major upheaval in
the shares of crops represented and where. We do this by comparing raster maps of
individual crop shares between 2005 and 2050. The maps are generated by taking area
projections of total cropland from a global economic model and linking them to a crop
allocation algorithm to spread that area out to particular locations (pixels).

2.1 Regional-level cropland totals
While at the local level it may appear that the demand for cropland is infinite, global demand
for agricultural products restricts the total amount of cropland that can be consistently
profitable. Our source for future cultivated area projections is the IMPACT suite of models
(Robinson et al., 2015). At its center is a multi-market, partial equilibrium model of the
agricultural sector (Figure 1) that spatially disaggregates the world into 320 food production
units (FPUs). The FPUs comprise 159 countries (or groupings of countries) with the larger

Figure 1.
IMPACT modeling
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ones further divided into major river basins to facilitate links to hydrological and water
resources management models, which are also part of the modeling suite. Agricultural
production and demand, as well as trade, are modeled for 62 separate commodities. Crop
production from rainfed and irrigated systems have separate supply functions which are
built up from area and yield responses to both economic drivers and climate conditions
affecting productivity.

In this study, socioeconomic drivers follow the economic and demographic trends of the
Intergovernmental Panel on Climate Change (IPCC) middle of the road GDP and population
scenario (SSP2) (O’Neill et al., 2014). Projections for gross domestic product, and population
are derived from the OECD (Dellink et al., 2017) and from IIASA (IIASA, 2013).

In order to explore some of the uncertainty inherent in climate change projections, the
climate drivers for IMPACT are based on five general circulation models (GCMs): GFDL-
ESM2M, HadGEM2-ES, IPSL-CM5A, MIROC-ESM-CHEM, and NorESM1-M run under the
8.5 Representative Concentration Pathway (RCP) (Riahi et al., 2011), and processed according
to ISIMIP protocols (Muller and Robertson, 2014). Climate is used as an input for process-
based crop models to determine yields under the different climate scenarios. In turn, those
yields are used to compute shifters and adjust the supply curves to reflect the changes in
productivity caused by climate. In our analysis we do not include the effects of CO2
fertilization. Although important steps have been taken to clarify the effects of CO2 especially
on global primary production (Chen et al., 2022), its role in shifting cropland distribution is
uncertain and likely to be confounded by the interactionwithmultiple other factors, including
locally generated climates and other conditions (Wang et al., 2020).

Central to this investigation are the area simulations from IMPACT for 2005 and 2050. For
each FPU, we obtain rainfed and irrigated area projected for five major crops, maize, rice,
sorghum, soybeans, and wheat. Together, they account for 50% of the physical cultivated
area (36% as rainfed and 14% as irrigated). The other half of cultivated area is placed into a
composite “all other crops” category, with the rainfed portion occupying 38% and the
remaining 12% being irrigated. The challenge is to convert the twelve FPU-level values (6
rainfed, 6 irrigated) into twelve rastermaps showing howmuch area in each pixel is dedicated
to each crop.

2.2 Allocation algorithm
The allocation algorithm assigns portions of crop area to specific locations (in our case, half-
degree pixels that are roughly 3,000 square kilometers near the equator) in a way that “adds
up” to the appropriate FPU-level totals from IMPACT, while also producing plausible
geographic distributions (See Supplementary Information S1). While not a pure optimization
approach in a mathematical sense, the algorithm can be thought of as a step-by-step
optimization of the location of each crop, since it attempts to generate themost plausible pixel-
level distribution of the total cropland areas estimated by IMPACT. We apply our algorithm
for both the beginning period of IMPACT simulations (2005), and for the ending period (2050).
Changes in cropland use are determined by comparing the allocation results between these
two periods.

The allocation begins by trying to assign cropland to the “best” pixels, subject to
constraints that promote mixing and limit the degree of concentration. To determine the best
locations, we construct “attractiveness indices” for each rainfed and irrigated crop in each
pixel. These indices are the weighted sums of four sub-indices, each representing a key
influence on land use. The first captures how much time it takes to travel from the potential
cropland location to the nearest city (Nelson, 2008). This is a proxy for the complicated effect
of distance on the realized crop price; overall, being closer to a city is more attractive than
being farther. We do not attempt to predict where new cities may appear in the future, so
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these values are the same for both the starting and ending periods (2005 and 2050). The
second sub-index is the amount of variation in elevation that occurs within the half-degree
pixel (Globe Task Team, 1999). This provides an assessment of how flat the pixel is and thus
how difficult cultivation might be from a terrain perspective: lower terrain diversity makes
the location more attractive. The last two sub-indices depend directly on climate. One is a
measure of how similar the climate of the pixel is to the climates that have historically been
associated with large scale crop cultivation. The more similar the climate, the easier it should
be to apply existing technologies and hence the more attractive for cropland. The fourth and
last measure is the potential yield that the crop may be expected to achieve if grown in that
pixel with that climate. We use the DSSAT crop modeling framework to simulate the
potential yield (Jones et al., 2003; Robertson, 2017; Hoogenboom et al., 2019). The higher the
yield, the more attractive the pixel is for that crop.

The algorithm is structured to avoid concentrating each crop in the narrow geographical
area that is most “attractive” by allocating a very small amount of land in each step and
imposing several constraints. The core of the allocation proceeds by assigning only a small
amount of the total FPU cropland area at a time, and rotating which crop is being allocated.
Take rainfedmaize as an example. The algorithm looks for the pixel that ismost attractive for
rainfedmaize (based on the index) and allocates a small amount ofmaize area to that pixel: the
pixel’s maize area is increased and the total maize area remaining to be allocated (from the
IMPACT totals) is decreased by the same amount. Then, a second crop, such as wheat, is
considered in the sameway, and so on until all the crops have been considered, at which point
the process repeats until all the necessary cropland has been found. The goal of this iterative
procedure is to allow for more than one crop to claim land in the same pixel as well as to make
the arbitrary order of the assignment rotation unimportant. We chose to assign no more than
1%of the total amount of area available for cropland at a time; therefore, it would take at least
100 iterations before a pixel can no longer accept cropland.

While this process allows for a mixture of crops within a single pixel, by itself, it will still
tend to place crops in the few “best” locations (usually, the highest yielding for each crop).
Several constraints discourage excessive concentration. First, no more physical area can be
assigned than the size of the pixel itself. We further refine this by setting an upper bound on
how much of the pixel is available for cropland. Irrigated crops are allocated first. Irrigated
areas are restricted by the amount of area in the pixel thought to be equipped for irrigation,
defined by the Global Map of Irrigation Areas (Siebert et al., 2013). Within that equipped area,
the fraction available for cultivation is assumed to be capped at 90%. If there is not enough
irrigated area available (at the pixel level) to accommodate the total area from IMPACT, the
irrigation cap is raised to provide additional area. When even a 100% cap is insufficient, the
irrigation area is expanded within pixels already having some area equipped for irrigation.
Failing that, an additional fraction of each remaining pixel is made available until enough
area is secured. That is, we impose no firm preference about where the new, last resort
irrigated area will arise and so it is spread out evenly.

Rainfed cultivation proceeds in a similarmanner, but only after all the irrigated areas have
been allocated. The area available for rainfed cultivation is the pixel’s physical area, minus
any water bodies, minus the allocated irrigated areas and plus any unused irrigated area. A
cap also applies to the non-irrigation-equipped areas (set at 67%, roughly two-thirds). Again,
if the cap proves too restrictive, it is raised until enough area is available. In the extreme case,
when IMPACT is indicating a need for more physical area than actually exists, we maximize
the available area in the pixels and then reduce the target amount to be allocated to match.

Two more constraints encourage multiple crops within pixels. First, if, after an iteration,
the share of an allocated crop exceeds 65% of the area of a specific pixel, then the pixel is
considered ineligible for that crop until other crops claim enough area to push that fraction
below 65%. The rule is automatically relaxedwhen themost common crop in the region is the
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only one left with area to be allocated. The second limitation is that no more than 50% of the
available cropland area can be allocated to a single crop within a pixel unless there are no
other crops with area left to allocate. The final result of the allocation process is a stack of
maps showing how much area for each crop is represented in each pixel.

2.3 Validating cropland allocation
The parameters and constraints described above are intended to enable our allocation
algorithm to extend historical patterns of cropland expansion and distribution into the future.
To validate the ability of the allocation algorithm to properly reproduce global patterns of
cropland, we compare our estimates for the year 2005 to data from three different sources of
global land cover data: MODIS (covering 2001–2012) (Friedl et al., 2010; Channan et al., 2014),
GLC2000 (targeting 2000) (Bartholom�e and Belward, 2005), and Globcover (targeting 2005)
(Bicheron et al., 2008).

It is difficult to quantify and accurately locate cropland in the three datasets because it is
distributed across “mixed categories”, where it coexists with different types of natural
vegetation. These categories are broadly defined and provide only a range of area that can be
covered by crops. For example, the mosaic vegetation category in Globcover can contain
between 20 and 50%of croplandwhileMODIS cropland/natural vegetationmosaics category
can contain between 40 and 60% of small-scale cultivation. Given the high degree of
uncertainty, if the model’s results indicate the presence of cropland in a pixel that has been
classified in the datasets as a category that could contain cropland, we consider that
prediction adequately correct. Based on this approach the allocation of cropland appears to be
in good agreement with the location of cropland reported by the three datasets. Of the pixels
with cropland allocated by our model, 80%, 87%, and 89% of them are also identified as
containing cropland by MODIS, GLC2000 and GlobCover, respectively.

2.4 Assessing the amount of upheaval
Within the context of this exercise, if between 2005 and 2050 the proportion of crops grown in
a specific pixel are sufficiently different, the interpretation is that farmers will experience
upheaval and likely incur costs to adapt to the new climatic circumstances and socioeconomic
pressures.

Upheaval, in this context of the mixture of crops, can occur in several ways. The concept
we use is based on the relative share of area that each crop occupies with respect to the total
cropland area. We are not primarily concerned with whether the total amount of cropland or
the total number of crops in the pixel is increasing or decreasing, but rather with changes to
themixture of crops. Of course, if any crop’s relative share increases, there is at least one other
crop whose share decreases and vice versa (except in the case of the entirety of cropland
appearing in a new pixel, or crops disappearing from an old one); so the question becomes
what size and types of changes are important.

We consider four fundamental types of outcomes to characterize upheavals. It could
happen that the cropmixture in the future is similar to the cropmixture in the past so that the
cropmixture is stable. It could also be that one ormore crops are burgeoning. By this, wemean
that at least one crop has a large increase in its relative share whenmoving from the past crop
mixture to the futuremixture. The opposite case is when one ormore crops are dwindling, that
is, have a large decrease in their relative share. However, the additional shares for the
burgeoning crops could be built up from small declines in the other crops, so none qualify as
dwindling. Using the same logic in the other direction, there can be dwindling without any
crops burgeoning. And finally, the two can occur at the same time: churning. These latter three
situations (when the relative share of at least one crop changes by a large amount) indicate a
large upheaval. Producers will need to adjust to an unfamiliar situation which will impose
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costs on them. These may be learning and investment to take advantage of new
opportunities, or they may simply mean that farmers are no longer able to profitably
produce what they were accustomed to.

Operationalizing these concepts within our framework requires handling the directly
modeled crops separately from the composite “all others” crop. “All others” will mean
different things in different places (e.g. millet or palm plantations), but, on average, it
represents about half of cropland area. Therefore, changes in “all others” usually represent
more upheaval than similarly-sized changes involving any single specific crop. However,
since it is a composite, we cannot directly identify any churning occurring within “all others”.
Thus, we are limited to interpreting the share changes for “all others” to burgeoning,
dwindling, or stability.

For the simulated crops, assessing upheaval begins by comparing the mix of crops at the
beginning and ending time periods (2005 vs 2050). This is done separately for rainfed and
irrigated crops. The relative share of each individual crop is determined by dividing the area
of the crop by the total amount of the appropriate type of cropland (excluding “all others”) in
the pixel. If there is no irrigated cropland in the pixel, all irrigated crops are considered to have
zero share and similarly for rainfed. We chose a 20-percentage point change as the threshold
that indicates a large enough upheaval to qualify as burgeoning or dwindling. Hence, if all
cropland is lost in the future and some crop had at least a 20% share, it will be classified as
dwindling. In the opposite case, going from no cropland to some cropland, if some crop will
have at least a 20% share, it will be classified as burgeoning.

As a result of assessing the directly modeled crops and “all others” separately, there are
twelve possible combinations, summarized in Table 1 which can be grouped together into the
original four overall types of upheaval.

3. Results
We first explore global changes by looking at results for all five GCMs. We then take a closer
look into the underlying spatial heterogeneity, both at global scale and for China in particular,
focusing on results from the Geophysical Fluid Dynamics Laboratory GCM (GFDL) (Dunne
et al., 2013). We chose GFDL because it is one of the leading climate models used in several
assessment reports of the IPCC, and because, among the GCMs used in this study, it tends to
produce the most conservative results and, therefore, it provides a lower bound of possible
crop mix changes in the future. We focus on China because of its climatic conditions that
range from tropical to subarctic (Xin et al., 2013) which often result in highly heterogeneous
patterns of crop cultivation (Zhou et al., 2017).

3.1 Overall global areas affected by upheaval
Simulation results indicate that large areas across the globe may experience substantial
changes in the mix of cultivated crops. Some of this follows directly from IMPACT
projections, which show a 16% expansion in rainfed physical cropland area between 2005
and 2050 globally and irrigated physical area growing by 26%. Any new area drawn from
previously uncultivated pixels will, by definition, experience a large upheaval. Climate
change will alter which locations will be most attractive for each crop, over and above
changes induced by diet shifts, trade effects, and cropland expansion.

Under pressure from broad socioeconomic drivers and climate change, large areas of
cropland will experience changes in crop shares of more than 20% and thereby experience
upheaval by 2050. The global level results are very similar across all the different GCM
projections for future climates. Half of total irrigated area exhibits stability in its croplandmix
(the bottom/blue segment of the bar graph in Figure 2); the other half splits almost evenly
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Upheaval types Simplified groupings

1 1þ burgeoning (share of at least one crop
increases >20%)
1þ dwindling (share of at least one crop
decreases >20%)
All others burgeoning (share of other crop
increases >20%)

Churning (Both major increases and major decreases in
the crop shares)

2 1þ burgeoning (share of at least one crop
increases >20%)
1þ dwindling (share of at least one crop
decreases >20%)
All others stable (changes of other crop <20%)

3 1þ burgeoning (share of at least one crop
increases >20%)
1þ dwindling (share of at least one crop
decreases >20%)
All others dwindling (% of other crop decreases
>20%)

4 1þ burgeoning (share of at least one crop
increases >20%)
0 dwindling (no crop of which the share
decreases >20%)
All others dwindling (share of other crop
decreases >20%)

5 0 burgeoning (no crop of which the share
increases >20%)
1þ dwindling (share of at least one crop
decreases >20%)
All others burgeoning (share of other crop
increases >20%)

6 1þ burgeoning (share of at least one crop
increases >20%)
0 dwindling (no crop of which the share
decreases >20%)
All others burgeoning (share of other crop
increases >20%)

Burgeoning (Major increases in the share of at least one
crop)

7 1þ burgeoning (share of at least one crop
increases >20%)
0 dwindling (no crop of which the share
decreases >20%)
All others stable (changes of other crop <20%)

8 0 burgeoning (no crop of which the share
increases >20%)
0 dwindling (no crop of which the share
decreases >20%)
All others burgeoning (share of other crop
increases >20%)

(continued )

Table 1.
Types of upheaval
related to changes in
crop mix
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Upheaval types Simplified groupings

9 0 burgeoning (no crop of which the share
increases >20%)
1þ dwindling (share of at least one crop
decreases >20%)
All others stable (changes of other crop <20%)

Dwindling (Major decreases in the share of at least one
crop)

10 0 burgeoning (no crop of which the share
increases >20%)
1þ dwindling (share of at least one crop
decreases >20%)
All others dwindling (share of other crop
decreases >20%)

11 0 burgeoning (no crop of which the share
increases >20%)
0 dwindling (no crop of which the share
decreases >20%)
All others dwindling (share of other crop
decreases >20%)

12 0 burgeoning (no crop of which the share
increases >20%)
0 dwindling (no crop of which the share
decreases >20%)
All others stable (changes of other crop <20%)

Stability (No major increasing nor decreasing shares of
any crop)

Source(s): Authors Table 1.

Figure 2.
Share of irrigated (left)
and rainfed cropland
(right) under the four
upheaval categories

in 2050
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between burgeoning, dwindling, and churning. With more cropland in the future, it is not
surprising that burgeoning (major increase in the share of at least one crop) has a slightly
disproportionate share. Rainfed production will be more affected than irrigated across all
regions: approximately two-thirds of rainfed areas will experience upheaval. And again,
burgeoning is the most important type of upheaval observed.

Every region experiences some level of upheaval, and climate change drives most of it. By
considering a “no climate change” case (wherein productivity maintains historical patterns), we
can assess the amount of upheaval due to non-climate factors. Overall, the share of global rainfed
cropland experiencing upheaval from purely socioeconomic factors is 25.8% while climate
change pushes that to as much as 64.2%. This is shown in Figure 3, broken out by regions. The
effects of socioeconomic trends (as isolated in the no climate change case) appear to be stronger
across South Asia and South America. The factors that may cause such shifts range from
cropland expansion to diet changes. IMPACT projections show a large change in diet
composition for South Asia, especially affecting consumption of cereals and fruits and
vegetables (Supplementary Figure S1). The Latin America and Caribbean region shows a
smaller effect on diets, but a large increase in harvested area (SupplementaryFigures S1 and S2).

3.2 Geographic heterogeneity
Global and regionally aggregated results are useful to highlight major trends, but they hide
the finer details of the shifts happening over almost two-thirds of the global production area.
To understand this, we map the full set of twelve upheaval categories from Table 1.

Figure 3.
Share of rainfed
cropland under the four
categories in 2050, by
region
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Irrigated production systems tend to be focused on specific crops, with the purpose of
overcoming water constraints. As a result, they show a limited degree of change in crop
composition, compared to rainfed systems. The “all other crops” composite is largely stable,
except for a few scattered pixels in India and China (Figure 4). The high plains of North
America, on the entire latitudinal gradient, show occurrences of churning among the five
directly modeled crops (black color). A similar geographical north-south arc is visible across
the agricultural areas of Argentina and Brazil, in South America. In terms of major
geographical movements, we can observe again some dwindling in the High Plains of North
America and southward movement across Central Asia.

As evidenced by the global totals, rainfed cropland shows a greater variety of upheaval
types. The geographic distribution of these types is displayed in Figure 5. Some types show
up in widely dispersed locations, especially cases with a simple burgeoning or dwindling of a
single major crop. Others show a higher degree of clustering. One example is West Africa,
where the increase in food demand interacts with the variety of crops to show burgeoning for
“all other crops”. Similarly, in Indonesia and Malaysia, the expansion of oil palm falls under
“all other crops” in what would otherwise seem to be a stable mix of crops. Dwindling of “all
other crops” is concentrated in India. Areas exhibiting churning of major crops appear to be
concentrated in the Indo-Gangetic plain and the Corn Belt of North America (black, Figure 5).
Several small pockets of relative stability exist on each continent.

3.3 China case study: sub-national perspective on cropland distribution under future
conditions
The global cropland analysis reveals substantial variations in upheaval across and within
countries. For example, from Figure 5,West Africa demonstrates a rather uniform increase in

Figure 4.
Upheaval types for
irrigated cropland:
2005–2050 (GFDL/

RCP 8.5)
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the area share for “all other crops”, whereas East Asia, especially China, is expected to
experience more heterogeneous types of changes in crop mix patterns. Heterogeneity in the
spatial distribution of cropland at subnational levels can bring about challenges for the
design of agricultural policies aiming at transformational adaptation, since different
interventions need to be designed according to local conditions.

In this case study, we follow the same approach used for the global analysis and explore
the changing spatial pattern of crop mixtures in China for a particular climate projection
(GFDL). We use this climate projection in order to maintain quantitative consistency with the
global assessment. Qualitatively, we observe similar geographic patterns for the other GCMs.
From 2005 to 2050, the crop mixture on irrigated cropland (Figure 6 left panel) in China is
likely to remain stable, except in southwest Sichuan and northern Guangxi where
agricultural cultivation is historically characterized by diverse crops, intensive land use,
extensive terracing, irrigation, and crop rotation.

Rainfed cropland (Figure 6 right panel) is anticipated to experience substantial upheaval,
especially in the major maize production regions in the north. Major increases in the shares of
at least one crop (burgeoning) are projected for 27.8% of total rainfed cropland, with the bulk
expected in northern Anhui, which is predominantly engaged in rice and wheat production.
Dwindling (major decreases in a crop share) is expected for 25% of total rainfed area, mainly
located in the major production areas of Hubei and Jiang-Huai Regions. Interestingly, major
upheavals are expected to occur at the border between different crop production regions. For
example, burgeoning is projected for the mid-lower Yangtze River and middle Huai River
Valley, which are at the transition between rice-dominated and wheat-dominated farming

Figure 5.
Upheaval types for
rainfed cropland:
2005–2050 (GFDL/
RCP 8.5)
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Figure 6.
Upheaval types for
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systems or have been historically accustomed to different crop cultivations (Detailed results
of all 12 upheaval types are provided in Figure S3 in the Supplementary Information)

4. Discussion and conclusions
Pressure from climate change and from continued growth in population and income are
expected to fuel the appetite for more cropland while also changing the composition of the
commodities being demanded. Our global modeling exercise shows that these changes will
not only drive cropland extensification, but they will also lead to some crop migration and
changes in the mix of crops grown in any particular location. The majority of cropland will
experience some level of upheaval by 2050 by having at least one crop changing its relative
share by 20% or more, compared to 2005. We find that adaptation to climate change is
responsible for the largest share of these shifts across all regions of the world. On average,
this spontaneous adaptation will entail some combination of crop migration or reshuffling
over roughly 50% of global irrigated cropland, and 65% of rainfed cropland.

There is already evidence that changes in climate across the last few decades have altered
the distribution of cropland considerably (Reilly et al., 2003; Cho and McCarl, 2017; Leng and
Huang, 2017; Wang and Hijmans, 2019; Nainggolan et al., 2023), and that some of the most
damaging impacts of warming on major crops (rice, wheat, maize) have been moderated by
geographical migration of these crops over time (Sloat et al., 2020). As noted by Nainggolan
et al. (2023), areas where large changes in crop mix patterns are observed reveal either a large
potential for adaptation and/or starting conditions with especially low resilience. Regional
differences notwithstanding, the magnitude of the challenge across the next few decades
appear dauting andwill require massive resourcemobilization. Although rapid and deep cuts
in greenhouse gas emissions may prevent global warming of 1.5 8C or 2 8C during the 21st
century, global surface temperatures are projected to continue increase until at least mid-
century (IPCC, 2021). Investments in planned adaptation are therefore crucial to avoid the
harsh human and economic toll of climate impacts even over the relatively short term
(IPCC, 2022).

Our results suggest that while some producers may not need to substantially change their
production system for the time being, the majority will need to. Of those facing large
upheaval, some will be able to adapt on their own; others will require some form of support.
Even though the model allocates cropland in a way corresponding to spontaneous
adaptation, the scale of upheaval revealed is so large that such spontaneity is unlikely to be
successful without planned adaptation. Such support will require cooperation between a
network of different actors. For example, in China, some radical changes are anticipated to
occur across administrative units, highlighting the need for cooperative efforts among local
governments.

Support for adaptation needs to take many forms. Farmers often require the assistance of
government and international agencies to adopt appropriate farming practices.
Transnational agreements and targeted trade policies may at times be necessary to
preserve livelihoods as cropland expands and producers switch to new crop mixes. Rural
extension services and agricultural trainingmay improve awareness of the potential benefits
of change and diversification (Tacconi et al., 2022). Extension offers technical knowledge and
skills, aswell as access to new plantingmaterial, information about new technologies and risk
management strategies. Markets are a key source of opportunity (and risk) for farmers. As
production patterns shift, value chains (storage, transportation, transformation, and
marketing systems) will need to adjust to properly connect producers to markets and to
the cities where consumers reside. This changewill require not just financial investments, but
long-term planning and anticipatory action to overcome the inertia that makes institutions
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and infrastructure slow to respond to the challenges brought about by climate change (World
Bank, 2009).

Recommendations and assistance should be localized, but also responsive to continued
research and development. These will refine our understanding of what changes are in store
and what kinds of solutions may be more suitable and can be made available in a timely
fashion. For instance, while crop-specific breeding programs and research are necessary, a
narrow focus of both policies and agricultural research on only few dominant crops may
create lock-in conditions which delay and hamper the adoption of new crops and more
diversified systems (Meynard et al., 2018; Roesch-McNally et al., 2018).

Agriculture is a major driver of habitat and biodiversity loss. The future expansion of
agricultural land, as well as changes in its distribution and the ensuing land cover patterns
may have further dire effects on carbon storage, water quality and the overall resilience of
natural habitats (Foley et al., 2011; Tilman et al., 2011; Tilman and Clark, 2014; Green et al.,
2019; IPBES, 2019). However, it is unclear what the resulting effects may be across all those
dimensions as climate change will reshuffle the distribution of cropland, while also
reorganizing the future size and pattern of all ecosystems (Pe~nuelas et al., 2013; Han et al.,
2018; Garc�ıa Criado et al., 2020; Rees et al., 2020; Ruiz-P�erez andVico, 2020). Opportunities and
co-benefits from the projected changes should not be discounted. For example, changes in
crop mixes may lead to improvements in agricultural biodiversity, with significant potential
positive feedback on production systems (Tacconi et al., 2022).

Overall, our results suggest that a successful worldwide effort to adapt to climate change,
along with demand pressures from a more crowded and richer planet, would entail a
significant redistribution of cropland use patterns and crop mixes. As described above, such
a reorganization of crop production is dependent on many political, socio-economic,
behavioral, and environmental factors. Our current modeling construct is able to represent
and reproduce some of them. Nonetheless, simulating agricultural futures through the
IMPACT model and our allocation algorithm requires significant assumptions about
producers’ and consumers’ behavior that drive demand and supply of food products. Both
IMPACT simulations and the validation of the cropland allocation algorithm rely on existing
global datasets, which come with their own limitations. Still, sensitivity analysis can be
conducted to test the robustness of modeling projections; we have done so for future climate
conditions by using multiple GCMs, and for the allocation itself by comparing results against
three remotely sensed land datasets. Possibly the main limitation of the current approach is
the lack of a feedback mechanism whereby the IMPACT economic model can refine its
simulations based on the consequences of cropland redistribution. Such a link could enable a
more complete investigation of the consequences of policies meant to alter cropping patterns.

This analysis should serve as a starting point for further investigations, to confirm or
invalidate its conclusions. We note that our study relies on a partial-equilibrium economic
model and a heuristically based allocation algorithm, and that a similar technique could be
applied to the results of other global models of cropland distribution (which employ different
mechanisms) to examine the consequences of those assumptions on changes in crop
mixtures.
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