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Abstract

Purpose – The purpose of this paper is to investigate the vehicle-based sensor effect and pavement
temperature on road condition assessment, as well as to compute a threshold value for the classification of
pavement conditions.
Design/methodology/approach – Four sensorswere placed on the vehicle’s control arms and one inside the
vehicle to collect vibration acceleration data for analysis. The Analysis of Variance (ANOVA) tests were
performed to diagnose the effect of the vehicle-based sensors’ placement in the field. To classify road conditions
and identify pavement distress (point of interest), the probability distribution was applied based on the
magnitude values of vibration data.
Findings – Results from ANOVA indicate that pavement sensing patterns from the sensors placed on the
front control arms were statistically significant, and there is no difference between the sensors placed on
the same side of the vehicle (e.g., left or right side). A reference threshold (i.e., 1.7 g) was computed from the
distribution fitting method to classify road conditions and identify the road distress based on the magnitude
values that combine all acceleration along three axes. In addition, the pavement temperature was found to be
highly correlated with the sensing patterns, which is noteworthy for future projects.
Originality/value – The paper investigates the effect of pavement sensors’ placement in assessing road
conditions, emphasizing the implications for future road condition assessment projects. A threshold value for
classifying road conditions was proposed and applied in class assignments (I-17 highway projects).

Keywords Road condition assessment, ANOVA, Pavement sensing patterns

Paper type Research paper

1. Introduction
Pavement distress assessment is crucial as it addresses issues caused by various factors,
including traffic loading, materials and environmental conditions. This is vital for
enhancing the driving experience and reducing traffic accidents. Poor road conditions and
anomalies pose a risk of damage and can lead to serious traffic incidents. Consequently,
timely pavement maintenance is essential for improving ride quality and transportation
safety. The international roughness index (IRI) is typically used as a standard parameter in
pavement evaluation, with higher IRI values indicating rougher road conditions (Du et al.,
2014; Arhin et al., 2015). However, road condition assessments are challenging for road
agencies and institutions due to heavy traffic, high labor and equipment costs, and weather
conditions. Nowadays, scholars have employed multiple approaches to detect and assess
pavement conditions, including mathematical methods, statistical analysis and machine
learning techniques (Li et al., 2019; Yan et al., 2014; Zhao and Nagayama, 2017; Campillo,
2018; Ho et al., 2020). These are based on data collected from mobile applications installed
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on smartphones or from self-developed sensors to save costs (Wang et al., 2020; Bhatt et al.,
2017). The equipment used for data collection is normally placed inside of the vehicle, and
the pavement sensing data include vibration accelerations, time, speed and Global
Positioning System (GPS) coordinates. A study by Douangphachanh and Oneyama (2013)
demonstrated a linear relationship between vibration acceleration and road roughness.
Furthermore, Ho et al. (2020) and Chen et al. (2019) have shown that acceleration data
collected from both smartphone and vehicle-based sensors can be used to detect pavement
distress (e.g., cracks) through mathematic algorithms. Therefore, monitoring road
conditions using acceleration data has become a popular and common method among
road agencies and institutions.

In this paper, we present themethods for assessing pavement conditions based on sensing
patterns. The objectives of the paper are (1) to investigate the effect of vehicle-based sensor
placement and pavement temperature in pavement distress detection and (2) to determine the
threshold values for the identification of pavement conditions.

2. Literature review
Different approaches have been applied to assess road conditions based on acceleration data.
For instance, Bridgelall used mathematical methodologies such as derivative and integral to
analyze acceleration, velocity and displacement to evaluate pavement roughness. Yan et al.
(2018) used vertical acceleration signals to determine the crack damage through fast Fourier
transform analysis. Similarly, Ye et al. (2018) proposed a numerical model based on vertical
acceleration that determines potential road conditions through acceleration extrema and
frequency distribution. Vertical acceleration has been primarily analyzed when assessing
pavement conditions. Harikrishnan and Gopi (2017) proposed a method to monitor the road
surface based on vertical acceleration using the Gaussianmodel. In their study, a smartphone
was placed on the vehicle’s dashboard at the center, and they found that the threshold for
identifying an abnormal event (i.e., pavement distress) varied by speed. Loprencipe et al.
(2019) conducted a study comparing three approaches to assess pavement roughness: the IRI,
road profile classification and vertical acceleration. Their results indicated that the vertical
acceleration signal can be used to locate the pavement distress alongside the longitudinal
profile.

The combination of statistical models (Bayesian, time series and Markov chain Monte
Carlo) andmachine learning techniques has garnered attention among scholars for assessing
pavement conditions (Hong and Prozzi, 2006; Hunt and Bunker, 2003). Gao et al. (2021)
presented a series of computational analysis based on the measurement of vertical
acceleration using machine learning technology to classify the level of pavement distress.
Additionally, an appropriate numerical model can help scholars in making prediction and
identifying potential road deterioration. For example, Sandamal and Pasindu (2022) used the
acceleration data to generate IRI values for specific pavement distress (e.g., bumps), where the
data were collected from a smartphone-based application. The results showed that the
proposed method was validated by comparison with real results from the conventional
roughness measurement methods. Moreover, vertical acceleration data collected from vehicle
response can be applied to predict road roughness through multivariate linear regression
model (Wang et al., 2020). Furthermore, Padarthy et al. (2020) developed a model to process
lateral accelerations and speeds to determine potholes and identify the road anomalies. This
model was validated in real-world conditions.

Variousmethodologies were applied in assessing pavement conditions, most of them used
the measurement of acceleration response from single axis (i.e., vertical acceleration).
However, when encountering pavement distress (e.g., cracks), the vehicle’s response is
affected by multiple directions. Therefore, the acceleration data of all three axes should be
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considered, whether collected from smartphone application or self-developed sensors.
According to the literature review, no study has established a reference threshold for
identifying road deterioration using acceleration data. There is a clear need to systematically
determine a threshold value to effectively facilitate road condition assessment. While
previous studies have indicated that speed may influence the results of classifying pavement
conditions, none have addressed how pavement temperature might affect the assessment of
road conditions. Additionally, determining adequate threshold values for pavement
condition assessments based on acceleration data remains a challenge. There is a need to
systematically determine a range of threshold values to adequately support road condition
assessment using vibration data and discuss the impact of sensor placement in the pavement
condition surveys.

3. Materials and methods
The project collected pavement sensing patterns using a university-owned vehicle traveling
along the I-10 corridors in Phoenix, Arizona, from March 2017 to February 2018. Data were
collected monthly from two testing road sections, each approximately 3 miles in length. Four
self-developed sensors (named M1, M2, M3 and M4) were placed on top of the control arms:
M1 andM2 sensors on top of the front control arms of the vehicle, andM3 andM4 on top of the
rear control arms of the vehicle. An additional sensor (M5) was placed on top of the cap inside
of the vehicle. The vehicle-based sensor system consists of sensor boxes, an ADXL335
accelerometer, an Ada-fruit GPS and a TP-LINK 3G router. During the field test, pavement
sensing patternswere captured by a sensor box, which included accelerometers andGPS, and
transmitted to a laptop via the router. Concurrently, a GoPro camerawas attached to the front
of the vehicle to validate the occurrence of cracks, construction joints or road reflectors in the
pavement signal data. Road temperature was recorded with an infrared thermometer before
driving on the target road sections, and the vehicle’s speed was maintained at 60 miles per
hour (95 km/hour). The details about vehicle-based sensors and data collection were
explained in the reference by Ho et al. (2020). In their paper, Ho et al. describe the entire
development process of vehicle-based sensors and their configuration. The ArcGIS software
was applied after the data collection to ensure that all pavement signals were displayed and
matched the target road sections (i.e., I-10 corridors) on the GIS map as shown in Figure 1.
However, due to unexpected technical issues (a temporary sensor deficiency andmalfunction
sensing signals attributed to extreme heat in Phoenix), the data from July 2017 had an error
(Ho et al., 2020). Considering that Phoenix’s high temperatures do not fluctuate substantially
during the summer months (i.e., July to September), the July data were omitted from
subsequent analysis.

During the field test, the acceleration data along three axes were captured from the
pavement sensing patterns and wirelessly transferred to the computer server. The z-axis is
directly used to detect anomalies such as cracks or bumps in the road condition assessment
(Ye et al., 2018), while the magnitude of the x-axis and y-axis represent vehicle maneuvers
such as turning and acceleration-stop events (Hsiao et al., 2012). This paper proposes a
comprehensive approach that considers a resultant vector derived from all three axes to
represent pavement conditions more accurately. The variable of “M” is named as total
magnitude and is expressed as follows (Zhao and Nagayama, 2017; Ho et al., 2020):

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
(1)

where x, y and z represent the vibration along three axes of x, y and z. The higher magnitude
indicates more significant pavement deterioration and brings immediate attention to road
agencies and engineers.
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As previously mentioned, sensors M1 to M4 were placed on the control arms, while M5 was
placed on the dashboard of the vehicle. The time lag can be determined based on the driving
speed and vehicle specifications, and it needs to be minimized to ensure that the vibration
responses from all sensors reflect the exact location. To optimize the use of vehicle-based
sensors, ANOVA tests were conducted to ascertain whether using a single sensor or all five
sensors is appropriate. Before the statistical analysis, it is also essential to check the
assumptions of the ANOVA tests, including normality, equal variance, and independence
using visualization and statistical tests. Figure 2 illustrates themagnitude values from all five
sensors exhibit a right-skewed distribution by the boxplot visualization, and a data
transformation is expected to normalize the distribution and meet the assumptions such as
normality. In cases where the data display a positive skew, several transformation methods
can be applied, including square root, logarithm and Box–Cox Power (Olivier and Norberg,

Figure 1.
Testing sections on the
I-10 corridor in
Phoenix, AZ

Figure 2.
Boxplots of magnitude
values from two road
sections
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2010). In this paper, all magnitude values were transformed to a logarithmic scale before
conducting the ANOVA test as expressed as follows:

f ðMÞ ¼ logðMÞ (2)

where M is the total magnitude and f(M) is a function to transform M values into a
logarithmic scale. The transformation aims to meet the normality assumptions of ANOVA
tests and reduces the skewness to ensure the results can be statistically significant.

3.1 Sensor placement
To diagnose the effect of vehicle-based sensor placement in the field, the ANOVA tests were
conducted utilizing a cell means model. For instance, if the difference between either M1 and
M3 (sensors placed on the left front and rear control arms, respectively) or M2 and M4
(sensors placed on the right front and rear control arms, respectively) is statistically
insignificant through the tests, then it is sufficient to place selected sensors on either the left or
right control arms at the front and rear of the vehicle. The cell means model is described by
Kuehl (2000) and is structured as follows:

yij ¼ μi þ eij (3)

where i ¼ 1; 2; . . . ; t and j ¼ 1; 2; . . . ; r. yij is vibration data of the jth months from the ith

sensors, μi is the mean magnitude for all acceleration from the ith sensor, eij is a random error,
which should be independent and identically distributed to a normal distribution with zero
mean and a constant variance. An expression for the hypothesis test is shown below:

H0 : μi ¼ μj;where i≠ j (4)

Ha : not all the μi are equal (5)

Test statistics : F ¼ MST

MSE
(6)

where MST is the mean square of treatment, and MSE is the mean square of error. μi; μj are
defined the same as shown in Eq. 3.

The post-hoc procedures are indeed conducted after theANOVAwhen the null hypothesis
has been rejected to determinewhich specific groups have statistically significant differences.
The Bonferroni correction is suggested for pairwise comparisons to control the family-wise
error rate due to multiple comparisons. The small p-value (i.e., <0.05) would indicate that
there is a significant difference between the groups. Conversely, if the p-value is large (i.e.,
p-value > 0.05), it implies that any one of the five sensors may be sufficiently reliable for
exclusive use in pavement condition assessments.

3.2 Distribution fitting analysis
The paper notes that pavement distress is a point of interest (POI), with the concept of
identifying POIs and classifying road conditions based on probability distributions. For
instance, it fits all magnitude values of vibration data to various probability distributions,
from which a specified percentile can estimate a critical threshold value for classifying
pavement conditions. The distribution fitting approach involves selecting an appropriate
probability distribution according to the magnitude values. The package fitdistrplus in R is
utilized to fit multiple parametric distributions, with the best-fit models determined by
comparing Akaike Information Criterion (AIC) scores and estimators of distribution
parameters, as described by Gareth et al. (2013).
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AIC ¼ −2lnðbθÞ þ 2p (7)

where lnðbθÞ represents the maximum value of the log-likelihood function for the model, and p
denotes the number of parameters. Moreover, various plots are generated from the fitdistplus
package such as the histogram and theoretical densities plot, probability-probability (P-P)
plot, quantile-quantile (Q-Q) plot and cumulative distribution function (CDF) plot, which
assists in refining the fitting process and selecting the most appropriate model. After
computing the 99th percentile from the fitted models, the corresponding magnitude values
are set as the threshold for classifying pavement conditions. The top one percent of the
magnitude values may suggest deteriorated pavement surfaces, referred to as POIs in
the paper.

4. Results
4.1 Sensor placement in the field test
To satisfy the assumptions required for statistical tests such as ANOVA, the magnitude
values were transformed into a logarithmic scale by equation (2) before performing ANOVA
tests. In the context of the experimental setup, the confounding variable identified was
pavement temperature, which correlates with both the sensors and the pavement sensing
patterns. To mitigate the impact of this confounding variable, the study employed
randomization tests to evaluate the mean differences. The cell means models (2) were
constructed with pavement sensing data collected from the same road segment by all five
sensors. In this scenario, the control variable is M5, which is the sensor placed inside the
vehicle during the experiment. The results of the ANOVA (Table 1) indicate that the p-values
are less than the significance level of 0.05 for both sections, and it suggests that the means of
the five sensors differ on a logarithmic scale, as expressed in equations (3)-(5). Implying that
each sensor plays a distinct role in collecting pavement sensing patterns. The results for
checking assumptions are shown in Table 2, which indicates that the assumptions have not
been violated. Skewness and kurtosis are used to determine if the normality assumption is

df Sum of squares Mean square F-value p-value

Analysis of variance table: Section 1 (51st Ave. through 27th Ave.)
Sensor 4 0.010 0.024 13.42 0.0004
Error 10 0.018 0.002

Analysis of variance table: Section 2 (Baseline Rd. through Chandler Blvd)
Sensor 4 0.048 0.012 5.74 0.011
Error 10 0.021 0.002

Road section 1 Road section 2
p-value Decision p-value Decision

Global stat 0.84 Assumptions acceptable 0.89 Assumptions acceptable
Skewness 0.57 Assumptions acceptable 0.88 Assumptions acceptable
Kurtosis 0.82 Assumptions acceptable 0.93 Assumptions acceptable
Link Function 1.00 Assumptions acceptable 1.00 Assumptions acceptable
Heteroscedasticity 0.30 Assumptions acceptable 0.26 Assumptions acceptable

Table 1.
Results of ANOVA
tests for two road
sections

Table 2.
Results of ANOVA
assumptions
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violated, and heteroscedasticity indicates equal variance. The results of these assumptions
suggest that all assumptions are acceptable.

Further analysis to identify which sensor(s) might account for the significant
difference in pavement condition assessments is presented in Table 3 with the Bonferroni
correction applied. The error rate for the Bonferroni correction is 5%, and the adjusted
p-value is 0.005 (5%/10 comparisons). According to Table 3, sensor 5 (M5) placed inside
the vehicle reveals a significant difference (adjust p-value <0.001) among the other four
sensors (M1–M4) placed on the control arms of the vehicle. Consequently, the ANOVA
results and Bonferroni correction strongly suggest that the fifth sensor (inside the
vehicle) should not be used for pavement detection due to its significantly different
vibration magnitudes.

It is also worth investigating whether the sensors could be placed on either side (left or
right) or on the front and rear control arms of the vehicle (e.g., M1 and M2). The ANOVA and
Bonferroni correction results as shown in Table 4 and Table 5 indicate that the means of
magnitudes among the sensors placed on the front wheels differ in log scale. The result shows
there is no significant difference between the sensors that are placed on the same side of the

Mixing comparison Road section 1 p-value Road section 2 p-value

M1–M2 0.073 0.005
M1–M3 0.010 0.009
M1–M4 0.910 0.600
M1–M5 <0.001 <0.001
M2–M3 0.722 0.097
M2–M4 0.980 0.099
M2–M5 <0.001 <0.001
M3–M4 0.403 0.078
M3–M5 <0.001 <0.001
M4–M5 <0.001 <0.001

df Sum square Mean square F-value p-value

Analysis of variance table: Section 1 (51st Ave. through 27th Ave.)
Sensor 3 0.014 0.005 5.31 0.016
Error 8 0.007 0.001

Analysis of variance table: Section 2 (Baseline Rd. through Chandler Blvd)
Sensor 3 0.015 0.005 5.44 0.025
Error 8 0.007 0.000

Mixing comparison Road section 1 Road section 2

M1–M2 0.003 0.005
M1–M3 0.033 0.054
M1–M4 0.145 0.065
M2–M3 0.209 0.977
M2–M4 0.901 0.993
M3–M4 0.401 0.999

Table 3.
Bonferroni correction

for pairwise
comparison among five

sensors

Table 4.
Results of ANOVA

tests for sensors placed
on control arms

(M1–M4)

Table 5.
Bonferroni correction

for pairwise
comparison among

four sensors (M1 toM4)
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vehicle, such as left and right (e.g., M1 and M3, M2 and M4). Additionally, sensor M5
significantly caused differences among all comparisons. Therefore, in combination with
results from Table 2 to Table 5, the evidence supports the use of just two sensors placed on
the front control arms of the vehicle for data collection, and M5 should be used individually
for data analysis purposes. The findings suggest that utilizing two sensors, as opposed to
multiple sensors as in previous work, would be sufficient for assessing pavement conditions
in future projects.

4.2 Pavement condition classification
An example calculation usingmagnitude values fromM1 (the sensor on the left front wheel)
collected in March 2017 is detailed in Table 6. The fitted lognormal distribution emerged as
the better model over the gamma distribution due to its lower AIC score. This is further
supported by Figure 3, where the histogram, theoretical density plot, CDF, Q-Q plot and P-P
plot all favor the lognormal distribution as a more suitable fit for M1’s data. Subsequently,
the estimated parameters of mean and standard deviations from the lognormal distribution
are determined (Table 6). With these parameters, a new distribution model was built. After
computing the 99th percentile from the fitted model, the corresponding magnitude (critical)
value is determined as a threshold value for road condition classification. This procedure

Fitted “lognormal” distribution by maximum likelihood
Log-likelihood 74.09 AIC: �144.19
Estimator meanlog: �1.066 sdlog: 0.575
Fitted “Gamma” distribution by maximum likelihood
Log-likelihood 17.79 AIC: �31.58
Estimator shape: 3.177 rate: 7.817

Table 6.
An example of
pavement estimation
results from fitted
distribution models

Figure 3.
Plot of fitted
distribution model for
M1 in March
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was repeated and applied in the other sensors for all datasets collected from 11 months.
Eachmonth, all threshold values computed from the fittedmodels are shown in Figure 4. As
shown in Figure 4, sensor 5 has the lowest threshold since it was placed inside the vehicle
rather than on the top control arms in the field test. These threshold values fluctuate
monthly, correlatingwith the pavement temperature changes, as illustrated in Figure 4. It is
expected that higher magnitude values will be observed in road condition assessments
during the summer compared to the winter. However, this does not imply that roads are
rougher in summer than in winter. To further determine a threshold as a reference line to be
used in the determination of POIs, all threshold values except for M5 were averaged over
11 months and are summarized in Table 7. It shows the average threshold value for
11 months obtained from sensors M1–M4. The selection of these values is due to the biased
results caused by using thresholds from either the front or rear control arms (e.g., 1.8 and
1.6) in the GIS software. Therefore, a threshold of 1.7 was chosen to facilitate the
determination of pavement conditions (i.e., POIs), which addresses the objective of
determining a threshold value for identifying road conditions.

Figure 4.
Threshold values of

road condition
classification

Distribution
fitting and

ANOVA test



4.2.1 Temperature effect on pavement performance. The paper aims to investigate the
impact of sensor placement and threshold determination for pavement condition
assessments by also considering the impact of extreme heat events. A year-long data
collection in Phoenix, AZ, was analyzed, and a threshold value of 1.7 g was used to
determine POIs. To quantify the influence of pavement temperature on road conditions, two
scatted plots were constructed and annotated with their R-squared value, as shown in
Figure 5. It shows that the number of identified POIs, which signify pavement distress,
varies with changes in pavement temperature. The data exhibit a strong correlation
between pavement temperature and the frequency of POIs, with an 83% R-squared value
for road section 1 and 70% for road section 2. This substantial correlation underscores
temperature’s significant effect on the quantity of POIs. It is also notable that the number of
POIs increases as the pavement temperature rises. The pattern suggests that travelers on
the I-10 corridor are more likely to encounter uncomfortable conditions during the summer
months. Consequently, highway agencies are advised to intensify their monitoring efforts
of pavement conditions throughout this period and ensure a comfortable and safe riding
experience.

4.3 Comparison of POIs and IRI
To further corroborate the accuracy of the findings, georeferenced POIs obtained from
the proposed method depicted in Figure 6 were cross-referenced with the IRI data
obtained from the Arizona Department of Transportation (ADOT). The poor pavement
conditions of IRI were related to IRI values >95 inches/mile. Since the IRI evaluation was
performed in the winter, POIs from October through December were extracted and
plotted on a GIS map for comparison. As seen in Figure 6, there is a direct accuracy
comparison between the POIs and IRI data in the four segments, indicating that the
adoption of 1.7 g as a threshold is justified. In previous work (Ho et al., 2020), a threshold
value of 2.5 g was used to identify pavement deterioration and the results were
underestimated. It is also noted that some POIs appear on the map without corresponding
IRI segments, this discrepancy occurs because IRI values are derived from averaging

Average threshold obtained from four sensors (M1 to M4)
Road M1 M2 M3 M4 Average

Section 1 1.80 2.08 1.59 1.75 1.80
Section 2 1.54 1.98 1.52 1.56 1.65
Average 1.73

Table 7.
Threshold values for
pavement condition
classification obtained
from different groups

Figure 5.
Pavement temperature
and identified POIs in
two road sections
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readings across a segment, which may not capture individual instances of the pavement
distress. However, the sensing method studied in the paper employs sensors attached to
the control arms, which are capable of detecting such localized distress (POIs), thereby
providing a detailed survey of pavement conditions.

5. Discussion
The use of vibration acceleration data from smartphones and sensors to assess pavement
conditions has been investigated by numerous scholars and agencies. However, the
impact of sensor or smartphone location within a vehicle on the accuracy of pavement
condition assessment has not been thoroughly discussed by all researchers. This paper
used multiple sensors to collect acceleration data over a year-long period. It investigated
the effect of sensor placements in predicting pavement conditions using statistical
analysis (i.e., ANOVA test and Bonferroni correction). According to the results, sensor
placement on the front control arms significantly influences data accuracy, while the
precise side of the vehicle (left or right) where the sensors are mounted does not. If only
one sensor is available for data collection, it is recommended to place the sensor inside the
vehicle.

Furthermore, the study computed a constant threshold value of 1.7 g for pavement
distress (POIs) identification, calculated using distribution fitting and percentile methods.
The selected POIs were subsequently validated using a GIS map. The previous studies
have yet to fully explore the effects of pavement temperature on pavement condition
assessments, and the gap is addressed in the paper, potentially guiding future research in
this area. For a new project, a threshold value of 1.7 g could serve as a reference for
assessing road conditions.

The sensing technology introduced in the paper offers a cost-effective alternative for
highway agencies, engineers and third-party entities needing pavement condition
assessment but is constrained by budget limitations. These findings not only enhance the
sensor selection and placement process for field testing but also highlight the appropriate
timing for pavement condition monitoring, thereby attracting the attention of highway
agencies interested in optimizing their maintenance strategies.

Figure 6.
Verification of POIs
with IRI segments in

GIS map

Distribution
fitting and

ANOVA test



6. Conclusions
Through statistical analyses of pavement sensing patterns, the paper has the following
conclusions:

(1) ANOVA results indicate significant differences in the logarithmic mean magnitude
values across all five sensors (M1–M5), with all assumptions being met. This means
that each of the five sensors plays a distinct role in the assessment of road conditions.
The Bonferroni correction was further performed which showed there were no
significant differences between sensors positioned on the same side of the vehicle’s
top control arms (e.g., M1 and M3, or M2 and M4).

(2) For future road condition assessments, the pair of sensors M1 and M2 is
recommended. Utilizing this specific pair of sensors can help reduce the workload
while still yielding accurate results. Therefore, the M1 and M2 sensor pair are
highly recommended for use in future projects aimed at assessing pavement
conditions.

(3) The sensor placed on top of the dashboard inside the vehicle (M5) should be excluded
from analyses that combine data from sensors on the vehicle’s front or rear control
arms to prevent biased results. Data from M5 should be analyzed separately.

(4) Lognormal distributions fitting the magnitude values from each sensor have been
validated, with the 99th percentile leading to the establishment of a 1.7 g threshold.
This threshold is deemed reasonable for classifying poor pavement conditions
when cross-referenced with IRI segments provided by ADOT in a GIS map. This
threshold value would be a reference in a new project for pavement condition
assessment.

(5) Statistical analysis confirms a significant impact of pavement temperature on
pavement condition prediction.

While the study gathered year-long pavement sensing data, it was limited to a single vehicle
type used in the field test. Consequently, the computed threshold may not be universally
applicable across different vehicle types. The determined threshold values should serve as a
reference point for future research, such as employing machine learning techniques to
classify and predict pavement distress based on acceleration data. This threshold could
facilitate feature extraction in the training of machine learning models to identify cracks and
bumps. Looking ahead, the authors anticipate the application of machine learning techniques
to enhance predictions of pavement distress.
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