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Abstract

Purpose – The aim of this paper is to investigate the relationship between the ring structure of the twisted
partial skew generalized power series ring RG;≤;Θ

� �� �
and the corresponding structure of its zero-divisor

graph Γ RG;≤;Θ
� �� �

.
Design/methodology/approach – The authors first introduce the history and motivation of this paper.
Secondly, the authors give a brief exposition of twisted partial skew generalized power series ring, in addition
to presenting some properties of such structure, for instance, a-rigid ring, a-compatible ring and (G,a)-McCoy
ring. Finally, the study’s main results are stated and proved.
Findings – The authors establish the relation between the diameter and girth of the zero-divisor graph of
twisted partial skew generalized power series ring RG;≤;Θ

� �� �
and the zero-divisor graph of the ground ring R.

The authors also provide counterexamples to demonstrate that some conditions of the results are not
redundant. As well the authors indicate that some conditions of recent results can be omitted.
Originality/value – The results of the twisted partial skew generalized power series ring embrace a wide
range of results of classical ring theoretic extensions, including Laurent (skew Laurent) polynomial ring,
Laurent (skew Laurent) power series ring and group (skew group) ring and of course their partial skew
versions.
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1. Introduction
During the last decades, several papers have studied the relation between the algebraic
structure of rings and their related graphs. Perhaps one of the first papers connecting the
graphs to rings dates back to 1963 when R. Swan [1] gave an elegant proof to a well-known
theorem by Amitsur and Levitzki [2] that “the ring of all n 3 n matrices Mn Rð Þ over a
commutative ring R satisfies the standard polynomial identity S2n xð Þ ¼ 0.” Swan’s proof is
based completely on the use of graph theory. Also this connection was pointed out by C. Chao
and M. Schutzenberger (see [3], p. 167]).

Recently, Beck’s results on coloring of a commutative ring attract the interest of many
mathematicians to explore the structure of rings through their zero-divisor graph [4]. Beck
considered a commutative ring R as a simple graph whose vertices are all elements ofR, such
that two different vertices x, y ∈ R are adjacent if and only if xy5 0. Beck’s investigation of
colorings was then continued by Anderson and Naseer in [5]. Anderson and Livingston

redefined Beck’s graph of a commutative ringR by restricting the vertices to be the set Z* Rð Þ
that consists of nonzero zero divisors ofR and called such graph a zero-divisor graph ofR (see
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[6]). Thereafter, Redmond extended this concept to noncommutative case, and he gave two
different ways to define zero-divisor graph of a noncommutative ring R. The first is directed
and denoted by Γ Rð Þ such that x→ y is an edge between distinct vertices x and y if and only if
xy5 0. The second graph is undirected and denoted byΓ Rð Þsuch that two different vertices x
and y are adjacent if and only if xy 5 0 or yx 5 0 (see [7, 8]).

Afterward, many authors studied the relationship between zero-divisor graph of a ring R
and zero-divisor graph of some of its extensions, for example, polynomial ring R x½ �, formal
power series ringR x½ �½ �and skewgeneralized power series ringR S; σ½ � (see for example [9–11]).

In this paper, we consider the (undirected) zero-divisor graph Γ Rð Þ of a ring R. For two
distinct vertices x and y inΓ Rð Þ the distance between x and y, denoted by d(x, y), constitute the
length of the shortest path connecting x and y, if such a path exists; otherwise d(x, y)d∞. The
diameter of a graph Γ Rð Þdiam Γ Rð Þ� �

dsup dðx; yÞj xf and y are distinct vertices of Γ Rð Þ� if

Γ Rð Þhas more than one vertex, and it is zero otherwise. A graph Γ Rð Þ is called complete if all
of its vertices are adjacent. The girth Γ Rð Þ, denoted by gr Γ Rð Þ� �

, is the length of the shortest

cycle in Γ Rð Þ, provided Γ Rð Þ contains a cycle; otherwise gr Γ Rð Þ� �
d∞. Redmond in [8]

proved that Γ Rð Þ for any ring R is connected with diam Γ Rð Þ� �
≤ 3 and if Γ Rð Þ contains a

cycle then gr Γ Rð Þ� � ¼ 3 or 4.
The proof of many theorems is based on the following result given by Akbari and

Mohammadian in [9].

Theorem 1.1. Let R be a ring. Then ΓðRÞ is a complete graph if and only if either
R≅Z2 3Z2 or Z(R)

25 {0}. Moreover, in the latter case, Z(R) is an ideal of R.

Axtell et al. in [10] proved that if R is a commutative ring with identity and not isomorphic to
Z2 3Z2, then having any one ofΓ(R),Γ(R[X]) orΓ(R[[X]]) complete is enough to imply all three
are complete. Using Theorem 1.1, Akbari andMohammadian in [9] generalized Axtell’s result
for any arbitrary ring R. For skew generalized power series ring R[[S, ω]], Moussavi and
Paykan in [11] proved the following theorem.

Theorem1.2. [11, Theorem 3.3] Let RmZ2 3Z2 be a ring, S an a.n.u.p. monoid andω: S→
End(R) a monoid homomorphism. Assume that R is S � compatible. Then

ΓðRÞ is complete if and only if ΓðR½½S;ω��Þ is complete.

According to [12], a twisted partial skew generalized power series ring RG;6;Θ
� �� �

embraces
a wide range of classical ring theoretic extensions, including Laurent (skew Laurent)
polynomial ringRCxD (RCx; σD), Laurent (skew Laurent) power series ringRCCxDD (RCCx; σDD) and
group (skew group) ring R G½ � (R G; σ½ �) and of course their partial skew versions. Our purpose
of this paper is to continue study the relationship between zero-divisor graph of a ring R and
zero-divisor graph of twisted partial skew generalized power series ring RG;6;Θ

� �� �
.

In the following section, we give a brief exposition of twisted partial skew generalized
power series ring RG;6;Θ

� �� �
, in addition to presenting some properties of such structure, for

instance, α � rigid ring, α � compatible ring and G; αð Þ−McCoy ring.
In Section 3, our main results are stated and proved.We establish the relation between the

diameter and girth of zero-divisor graph of twisted partial skew generalized power series ring
RG;6;Θ
� �� �

and zero-divisor graph of the ground ringR.We also provide counterexamples to
demonstrate that some conditions of the results are not redundant. As well we indicate that
some conditions of recent results can be omitted.

2. Twisted partial skew generalized power series ring
The action of groups on sets is one of the crucial tools in study theory of representations and
the algebraic structures of groups and rings. Partial action of groups on sets has been raised
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in functional analysis (see for instance [13, 14]), then it was studied from a purely algebraic
point of view. In [15], Dokuchaev and Exel defined partial skew group rings and proved that,
under some assumptions, it is an associative ring. As a parallel case of partial skew group
ring, Cortes and Ferrero defined partial skew polynomial rings and studied its prime and
maximal ideals [16]. Thereafter many contemporaneous researchers were interested in
studying the transfer of a lot of properties such as right Goldie, Baer, ACC on right
annihilators, right p.p. and right zip properties between partial skew polynomial rings, partial
skewLaurent polynomial rings and their ground ring (see for instance [17, 18]). Fahmy et al. in
[19] studied the transfer of right (left) zip property between the partial skew generalized
power series ring RG;≤; α

� �� �
and its ground ring R. The twisted partial skew version was

defined and studied in [12, 20].
Let us first recall the definition of an idempotent (unital) twisted partial action, which is

inspired by [21, Example 2.1], [22, Section 4] and suits Definition 2.1 of [23].

Definition 2.1. An idempotent twisted partial action of a group G on a ring R is a triple
Θ ¼ D; α; τð Þ, where D ¼ Dsj Ds is a two� sided ideal inR; s∈Gf g, α
¼ αsj αsf is a ring isomorphism from Ds−1 to Ds, s∈Gg, and τ is a twisted
map from G3 G toU Rð Þ, the group of units of R, satisfying the following
postulates, for all u, v and w in G:

ið Þ Du is generated by a central idempotent 1u;

ðiiÞ D1G ¼ R and α1G is the identity map of R;

ðiiiÞ α−1v Dv \ Du−1ð Þ ¼ Dv−1 \ D
uvð Þ−1;

ivð Þ τ 1G; uð Þ ¼ τ u; 1Gð Þ ¼ 1R;

vð Þ αu αv að Þð Þ ¼ τ u; vð Þαuv að Þτ u; vð Þ−1 for each a∈Dv−1 \ D
uvð Þ−1;

við Þ αu aτ v;wð Þð Þτ u; vwð Þ ¼ αu að Þτ u; vð Þτ uv;wð Þ for each a∈Du−1 \ Dv \ Dvw.

An ordered group G; $;6ð Þ is called a strictly ordered group if it is satisfying the condition, if
u, v,w∈G and ua v, then uwa vw andwuawv. A subsetX of G; $;6ð Þ is said to beArtinian
if every strictly decreasing sequence of elements of X is finite and that X is narrow if every
subset of pairwise order-incomparable elements of X is finite.

The twisted partial skew generalized power series ring was introduced in [12, Definition
1.2] as follows.

Definition 2.2. Let R be a ring, G;6ð Þ a strictly ordered group and Θ an idempotent
twisted partial action of G on R. The twisted partial skew
generalized power series ring A ¼ RG;6;Θ

� �� �
is the ring of all maps f:

G → R, where f sð Þ belongs to the corresponding ideal Ds such that
supp fð Þ ¼ s∈Gj f sð Þ≠ 0f g is Artinian and narrow subset of G,
with pointwise addition, and the product operation is defined by

ðfgÞðsÞ ¼
X

ðu;vÞ∈Xsðf ;gÞ
αuðαu−1ðf ðuÞÞgðvÞÞτðu; vÞ

and fgð Þ sð Þ ¼ 0 if Xs f ; gð Þ ¼ ∅ for each f, g ∈ A, where

Xsðf ; gÞ ¼ ðu; vÞ∈G3G : uv ¼ s; u∈ suppðf Þ; v∈ suppðgÞf g:

According to Krempa [24], an endomorphism σ of a ring R is said to be rigid if aσ að Þ ¼ 0
implies a 5 0 for a ∈ R. If there exists a rigid endomorphism σ of R, then R is said to be
σ � rigid. In [25], Hashemi and Moussavi generalized σ � rigid rings by introducing
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σ� compatible rings. A ringR is called σ� compatible if for each a, b∈R, ab5 0 if and only if
aσ(b) 5 0. If R is a ring, (S, 6) a strictly ordered monoid and ω: S → End(R) a monoid
homomorphism, Marks et al. in [26] extended such concepts to S� compatible and S� rigid
rings. A ring R is said to be S � compatible (respectively S � rigid) if ωs is compatible
(respectively rigid) for every s ∈ S. The partial version of such concepts can be given as
follows:

Definition 2.3. Let R be a ring, G;6ð Þ a strictly ordered group and Θ an idempotent
twisted partial action ofG onR. The ringR is called partial α� compatible
if whenever s ∈ G, a ∈ Ds, b ∈ R; ab 5 0 if and only if αs−1 að Þb ¼ 0.

According to Cortes [17] we adopt the following definition.

Definition 2.4. Let R be a ring, G;6ð Þ a strictly ordered group and Θ an idempotent
twisted partial action ofG onR. The ringR is called partial α� rigid if a∈
Ds for s ∈ G such that αs−1 að Þa ¼ 0, then a 5 0.

A ring R is called Armendariz if whenever the polynomials f xð Þ ¼ Σm
i¼0aix

i and
g xð Þ ¼ Σn

j¼0bjx
j in the polynomial ring R x½ �, satisfy f xð Þg xð Þ ¼ 0 implies that aibj 5 0 for

all 0≤ i≤m and 0≤ j≤ n. In [19], the partial skew version of Armendariz rings was defined
as a natural extension of Definition 2 in [17]. In the light of the above definitions, we get the
following:

Definition 2.5. Let R be a ring, G;6ð Þ a strictly ordered group and Θ an idempotent
twisted partial action ofG onR. The ringR is called G; αð Þ−Armendariz if
for any f ; g ∈A ¼ RG;6;Θ

� �� �
such that fg5 0, then αu−1 f uð Þð Þg vð Þ ¼ 0

for each u∈ supp fð Þ and v∈ supp gð Þ.
Similar to [27, Definition 3.11] a ring R is called right (G, α) � McCoy if whenever nonzero
elements f, g of RG;6;Θ

� �� �
satisfy fg5 0, then there exists 0≠ r∈R such that fr5 0. Left (G,

α)�McCoy rings is defined analogously. If R is both left and right (G, α)�McCoy, then we
say R is (G, α) � McCoy ring.

Recall that amonoid S (resp. a groupG) is called a unique product monoid (u.p., for short) if
for any two nonempty finite subsetsX,Y⊆ S (resp.G) there exist x∈X and y∈Y such that xy
≠ x0y0 for every (x0, y0) ∈ X 3 Y \{(x, y)}, the element xy is called a u.p. element of XY5 {st:
s ∈ X, t ∈ Y}. The class of u.p. monoids (resp. groups) includes the right and the left totally
ordered monoids (resp. groups), for more details see [28].

Definition 2.6. [26, Definition 4.11] Let (S,6) be an ordered monoid. Then (S,6) is called
an Artinian narrow unique product monoid (or simply an a.n.u.p. monoid)
if for every two Artinian and narrow subsets X and Y of S, there exists a
u.p. element in the product XY.

3. Main results
In the following lemma, Z*l Rð Þ (Z*r Rð Þ) denote to the set of nonzero left (right) zero divisors of
a ring R.

Lemma 3.1. Let R be a ring, G;6ð Þ a strictly ordered a.n.u.p. group and Θ ¼ D; α; τð Þ an
idempotent twisted partial action of the group G on the ring R.

ið Þ If f ∈ Z*l RG;6;Θ
� �� �

and R is partial α � compatible, then f sð Þ∈ Z*l Rð Þ for some
s∈ supp fð Þ.
iið Þ If f ∈ Z*r RG;6;Θ

� �� �
, then f sð Þ∈ Z*r Rð Þ for some s∈ supp fð Þ.
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Proof. ið Þ Let f ∈ Z*l RG;6;Θ
� �� �

. Then there exists a nonzero element g ∈ RG;6;Θ
� �� �

such that fg 5 0. Since G is a.n.u.p., there exist s∈ supp fð Þ and t ∈ supp gð Þ such
that st is u.p. of supp fð Þ$supp gð Þ. Thus 0 ¼ fgð Þ stð Þ ¼ αs αs−1 f sð Þð Þg tð Þð Þτ s; tð Þ.
Since R is partial α � compatible, it follows that f(s)g(t) 5 0. Hence f sð Þ∈ Z*l Rð Þ.

iið ÞLet f ∈ Z*r RG;6;Θ
� �� �

. Then there exists a nonzero element g ∈ RG;6;Θ
� �� �

such that
gf 5 0. Since G is a.n.u.p., there exist t ∈ supp gð Þ and s∈ supp fð Þ such that ts is u.p. of
supp gð Þ$supp fð Þ. Therefore, 0 ¼ gfð Þ tsð Þ ¼ αs αs−1 g tð Þð Þf sð Þð Þτ t; sð Þ. It follows directly
that f sð Þ∈ Z*r Rð Þ. ,

The following example shows that the partial α � compatibility condition for the ring R in
part ið Þ of the previous lemma is not superfluous.

Example 3.2. LetR be the infinite direct product of copies of a ringA and G;6ð Þ the group
of integers Zwith the trivial order. For each positive integer i, consider the
isomorphisms αi:D�i→Di, whereDi is the ideal of R consists of all elements
of Rwith zero in the first i components, that is, if a ∈ Di then a is of the form

ð0; 0; 0; . . . ; 0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}i components

; aiþ1; aiþ2; . . .Þ

and D�i 5 R such that

αiða1; a2; a3; . . . Þ ¼ ð0; 0; 0; . . . ; 0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}i components

; a1; a2; a3; . . . :Þ

By adding the identity automorphism α0 of the ring R, we get a construction of a twisted
partial skew generalized power series ring RG;6;Θ

� �� �
with trivial twisting, where

D ¼ Dij for each i∈Zf g and α ¼ αij α−i ¼ α−1i for each i∈Z
� �

. We see that the ring R is not

partial α� compatible, since 1; 0; 0; 0; . . .ð Þ2 ≠ 0R while α1 1; 0; 0; 0; . . .ð Þð Þ 1; 0; 0; 0; . . .ð Þ ¼ 0R.

Now, consider the element f ∈ RG;6;Θ
� �� �

defined by f −1ð Þ ¼ 1; 1; 1; . . .ð Þ and f ið Þ ¼ 0R for

all i∈Zn −1f g and the element g∈ RG;6;Θ
� �� �

defined by g 0ð Þ ¼ 1; 0; 0; 0; . . .ð Þ and

g ið Þ ¼ 0R for all i∈Z*. Therefore, fg5 0, but f sð Þ∉ Z* Rð Þ for all s∈ supp fð Þ.
Lemma 3.3. Let R be a ring, G;6ð Þ a strictly ordered a.n.u.p. group and Θ ¼ D; α; τð Þ an

idempotent twisted partial action of the group G on the ring R. Assume Ds5 R

whenever Ds−1 ¼ R, for any s∈G. If f ∈ Z* RG;6;Θ
� �� �

, then f sð Þ∈ Z* Rð Þ for
some s∈ supp fð Þ.

Proof. Let f ∈ Z* RG;6;Θ
� �� �

. From Lemma 3.1 iið Þ, it is sufficient that to study the case
fg 5 0 for some nonzero element g ∈ RG;6;Θ

� �� �
. Since G is a.n.u.p., there exist

s∈ supp fð Þ and t ∈ supp gð Þ such that st is u.p. of supp fð Þ$supp gð Þ. Therefore,
0 ¼ fgð Þ stð Þ ¼ αs αs−1 f sð Þð Þg tð Þð Þτ s; tð Þ. It follows that αs−1 f sð Þð Þg tð Þ ¼ 0, that is,

αs−1 f sð Þð Þ∈ Z* Rð Þ. Using our assumption, we have either αs−1 is an automorphism of

R, therefore f sð Þ∈ Z* Rð Þ, or we have 1s ≠ 1R, hence f sð Þ 1s − 1Rð Þ ¼ 0 and

f sð Þ∈ Z* Rð Þ. ,
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Lemma 3.4. Let R be a ring, G;6ð Þ a strictly ordered a.n.u.p. group and Θ ¼ D; α; τð Þ an
idempotent twisted partial action of the groupG on the ring R. If Z Rð Þ is an ideal
of R, then RG;6;Θ

� �� �
= Z Rð Þð ÞG;6;Θ
h ih i

is a domain.

Proof. First observe that any nonzero element in RG;6;Θ
� �� �

= Z Rð Þð ÞG;6;Θ
h ih i

can be

represented as an element f where f sð Þ∉ Z Rð Þ for all s∈ supp fð Þ. Now, let f ; g be non
zero elements in RG;6;Θ

� �� �
= Z Rð Þð ÞG;6;Θ
h ih i

such that f g ¼ fg ¼ 0. Then

fg ∈ Z Rð Þð ÞG;6;Θ
h ih i

. Since G is a.n.u.p., there exist s∈ supp fð Þ and t ∈ supp gð Þ
such that st is u.p. of supp fð Þ$supp gð Þ. Therefore, fgð Þ stð Þ ¼ αs αs−1 f sð Þð Þg tð Þð Þτ
s; tð Þ∈ Z Rð Þ. Since Z Rð Þ is an ideal, it follows that R has no nontrivial idempotents and
αs is an isomorphismofR for all s∈G. Henceαs−1 f sð Þð Þg tð Þ∈ Z Rð Þ, so either f sð Þor g tð Þ
is nonzero zero divisors, a contradiction. ,

Theorem 3.5. Let RmZ2 3Z2 be a ring, G;6ð Þ a strictly ordered a.n.u.p. group and
Θ ¼ D; α; τð Þan idempotent twisted partial action of the group G on the ring

R. Then Γ Rð Þ is complete if and only if Γ RG;6;Θ
� �� �

is complete.

Proof. Adopting the proof of Theorem 3.3 in [11]. Suppose that Γ Rð Þ is complete. Since
RmZ2 3Z2, it follows by [9, Theorem 5] that Z Rð Þ is an ideal of R. So, R=Z Rð Þ is a
domain and α is a global action of G on R.

Suppose that f ∈ Z RG;6;Θ
� �� �n Z Rð ÞG;6;Θ

h ih i
, then there exists a nonzero element

g ∈ RG;6;Θ
� �� �

such that fg 5 0 (or gf 5 0). Since f ∉ Z Rð ÞG;6;Θ
h ih i

, f is a nonzero

element in the domain RG;6;Θ
� �� �

= Z Rð ÞG;6;Θ
h ih i

and f g ¼ 0. We conclude that

g ∈ Z Rð ÞG;6;Θ
h ih i

. On other hand, consider the set H ¼ s∈ supp fð Þj f sð Þ∈ Z Rð Þf g.
By Lemma 3.3, H is nonempty; so we can write f as a sum of two maps h and k, where

h sð Þ ¼ f sð Þ; s∈H

0; s∉H

	
and k sð Þ ¼ f sð Þ; s∉H

0; s∈H

	
. Since supp hð Þ ¼ H ⊆ supp fð Þ and

supp kð Þ ¼ Hc \ supp fð Þ⊆ supp fð Þ, it follows that h; k∈ RG;6;Θ
� �� �

. Therefore, we have

0 ¼ fg ¼ hþ kð Þg ¼ hg þ kg. Since h; g ∈ Z Rð ÞG;6;Θ
h ih i

, Z Rð Þ2 ¼ 0, by [9, Theorem 5],

and α is a global action, it follows that hg 5 0. Hence kg 5 0, which contradicts Lemma 3.3,

where k sð Þ∉ Z Rð Þ for each s∈ supp kð Þ. Therefore Z RG;6;Θ
� �� �

⊆ Z Rð ÞG;6;Θ
h ih i

.

Now, let f ; g∈ Z RG;6;Θ
� �� �

⊆ Z Rð ÞG;6;Θ
h ih i

. Then f sð Þg tð Þ ¼ 0 for each s, t∈G. Since

α is a global action, αs αs−1 f sð Þð Þg tð Þð Þτ s; tð Þ ¼ 0for each s, t∈G. So, fg5 0 and Γ RG;6;Θ
� �� �

is complete.
The converse is clear, since Γ Rð Þ is induced subgraph of Γ RG;6;Θ

� �� �
. ,

The following example explains why the case of R≅Z2 3Z2 is excluded in
Theorem 3.5.

Example 3.6. Let R ¼ Z2 x½ �=Cx2 þ xD and G;6ð Þ the group of integers Z with the

trivial order. Let D0 5 R, D1 ¼ C1þ xD, D−1 ¼ CxD and Di ¼ C0D for
each i∈Zn 0;±1f g. Consider the identity automorphism α0 of

R and the isomorphism α1: D�1 → D1 defined by α1 xð Þ ¼ 1þ x. Then
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RG;6;Θ
� �� �

≅ fP
i

aiy
ij ai ∈Di for each i∈Zgwith pointwise addition, and

the product operation is defined by

aiy
i

� �
ajy

j
� � ¼ αiðα−iðaiÞajÞyiþj:

We conclude that

Z RG;6;Θ
� �� � ¼ a0 þ aiy

ij a0 ∈ Z Rð Þ; ai ∈Di; i∈Z
� �

∪ xy−1 þ 1þ 1þ x
� �

y
� �

and Γ RG;6;Θ
� �� �

is given by the following planar graph.

Before continuing, it worth mention here that accurate tracking of the proof of Proposition
3.21 in [11] shows that the condition on S to be a.n.u.p. is superfluous. Therefore, we can give
the following:

Proposition 1. Let R be a ring that is not a domain, S a nontrivial monoid andω: S→End(R)
amonoid homomorphism. Assume that R is S� compatible andR S;ω½ �½ � the
skew generalized power series ring. Then gr Γ R S;ω½ �½ �ð Þ� �

is either 3 or 4 . In

particular, if R is not reduced, then gr Γ R S;ω½ �½ �ð Þ� � ¼ 3.

Proof. We have two cases:

Case 1: If Z Rð Þj j > 2. Let ab 5 0 for distinct elements a; b∈ Z* Rð Þ. Using the S �
compatibility of R, we find that ca cb caes cbes ca

� �
is a 4 � cycle in

Γ R S;ω½ �½ �ð Þ for any s∈ Sn 1f g.
Case 2: If Z Rð Þj j ¼ 2. Let a2 5 0 for the nonzero element a∈ Z Rð Þ. Using the S �
compatibility of R, we find that ca caes ca þ caesð Þ ca

� �
is a 3 � cycle in

Γ R S;ω½ �½ �ð Þ for any s∈ Sn 1f g. ,

Unfortunately, the following example shows that the twisted partial skew version of
Proposition 1 is not true.

Example 3.7. Let R ¼ Z2 3Z2 ¼ 0 ¼ 0; 0ð Þ; a ¼ 1; 0ð Þ; b ¼ 0; 1ð Þ; 1 ¼ 1; 1ð Þf g, G ¼
1; sj s2 ¼ 1

� �
, D1 5 R, Ds ¼ CaD, and αu be the identity automorphism of

Du, u ∈ G. Then the twisted partial skew generalized power series ring
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RG;6;Θ
� �� �

with trivial twisting map is isomorphic to 0; 1; a; b; as; 1þf
as; aþ as; bþ asg, which is a subring of the group ring R G½ �. Consequently,
gr Γ RG;6;Θ

� �� �� � ¼ ∞ and Γ RG;6;Θ
� �� �

is the following tree

Proposition 2. Let R be a ring, G a nontrivial group, and RG;6;Θ
� �� �

a twisted partial skew
generalized power series ring. If R is partial α � compatible and a ∈ Du,
b ∈ Dv are nonzero elements such that ab 5 0 where u; v∈Gn 1f g, then
Γ RG;6;Θ
� �� �

contains a cycle. In particular, if a is nilpotent,

then gr Γ RG;6;Θ
� �� �� � ¼ 3.

Proof. Let a ∈ Du, b ∈ Dv be nonzero distinct elements such that ab5 0, where u; v∈Gn 1f g.
Using the partial α � compatibility of R, we find that
ca cb caeu cbev ca
� �

is a 4� cycle inΓ RG;6;Θ
� �� �

. In particular, if

a5 b, then ca caeu ca þ caeuð Þ ca
� �

is a 3� cycle in Γ RG;6;Θ
� �� �

.,

Remark 3.8. By [8, Theorem 3.3], we note that if R is partial α� compatible, G a nontrivial
group and a ∈ Du, b ∈ Dv are nonzero elements such that ab 5 0 where
u; v∈Gn 1f g then gr Γ RG;6;Θ

� �� �� �
is either 3 or 4.

Theorem 3.9. Let R be a ring, G a nontrivial a.n.u.p. group, and RG;6;Θ
� �� �

a twisted

partial skew generalized power series ring. If R is partial α� rigid and Γ Rð Þ
contains a cycle, then gr Γ Rð Þ� � ¼ gr Γ RG;6;Θ

� �� �� �
.

Proof. The proof is similar to the proof of Theorem 3.22 in [11]. ,

The next example shows that the a.n.u.p. condition in Theorem 3.9 is not superfluous.

Example 3.10. Let R ¼ Z3 3Z3, G ¼ 1; sj s2 ¼ 1
� �

, D1 5 R, Ds ¼ C 1; 0ð ÞD, and αu be the
identity automorphism of Du, u ∈ G. Then the twisted partial skew
generalized power series ring RG;6;Θ

� �� �
with trivial twisting map is

isomorphic to aþ bsj a∈R; b∈Dsf g, which is a subring of the group
ring R G½ �. Since 1; 0ð Þ þ 1; 0ð Þs½ �; 1; 0ð Þ þ 2; 0ð Þs½ �; 0; 1ð Þ þ 0; 1ð Þs½ �∈ R½½
G;6;Θ�� consist a three-cycle, gr RG;6;Θ

� �� �� � ¼ 3. However gr Γ Rð Þ� � ¼ 4,

since Γ Rð Þ is the following four-cycle
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