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Abstract

Purpose – Cotton soliton is a newly introduced notion in the field of Riemannian manifolds. The object of this
article is to study the properties of this soliton on certain contact metric manifolds.
Design/methodology/approach – The authors consider the notion of Cotton soliton on almost Kenmotsu
3-manifolds. The authors use a local basis of the manifold that helps to study this notion in terms of partial
differential equations.
Findings – First the authors consider that the potential vector field is pointwise collinear with the Reeb vector
field and prove a non-existence of such Cotton soliton. Next the authors assume that the potential vector field is
orthogonal to the Reeb vector field. It is proved that such a Cotton soliton on a non-Kenmotsu almost Kenmotsu
3-h-manifold such that the Reeb vector field is an eigen vector of the Ricci operator is steady and themanifold is
locally isometric to.
Originality/value –The results of this paper are new and interesting. Also, the Proposition 3.2 will be helpful
in further study of this space.
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1. Introduction
An almost contact metric manifold is an odd dimensional differentiable manifold M2nþ1

together with a structure (w, ξ, η, g) satisfying ([1, 2])

w2X ¼ −X þ ηðXÞξ; ηðξÞ ¼ 1; (1.1)

gðwX ;wY Þ ¼ gðX ;Y Þ � ηðXÞηðY Þ (1.2)

for all vector fieldsX,Y onM2nþ1, where g is the Riemannian metric,w is a (1, 1)-tensor field, ξ
is a unit vector field called the Reeb vector field and η is a 1-form defined by η(X) 5 g(X, ξ).
Here alsofξ5 0 and η 8f5 0; both can be derived from (1.1) easily. The fundamental 2-form
Φ on an almost contactmetricmanifold is defined byΦ(X,Y)5 g(X,wY) for all vector fieldsX,
Y onM2nþ1. The condition for an almost contact metric manifold being normal is equivalent
to vanishing of the (1, 2)-type torsion tensorNw, defined byNw5 [w,w]þ 2dη⊗ ξ, where [w,w]
is the Nijenhuis tensor of w [1]. An almost contact metric manifold such that η is closed and
dΦ 5 2η ∧Φ is called almost Kenmotsu manifold (see [3, 4]). Obviously, a normal almost
Kenmotsu manifold is a Kenmotsu manifold. Also Kenmotsu manifolds can be characterized
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by (∇Xw)Y5 g(wX, Y)ξ� η(Y)wX, for any vector fields X, Y onM2nþ1. For further details on
Kenmotsu manifolds we refer the reader to go through the references ([5, 6]).

The Weyl tensor on an n-dimensional Riemannian manifold is defined as.

CðX ;Y ÞZ ¼ RðX ;Y ÞZ þ r

ðn� 1Þðn� 2Þ ½gðY ; ZÞX � gðX ; ZÞY �

� 1

n� 2
½SðY ; ZÞX � SðX ; ZÞY þ gðY ; ZÞQX � gðX ; ZÞQY �;

whereR is the curvature tensor, S denotes the Ricci tensor,Q stands for Ricci operator and r is
the scalar curvature.

A (0, 3)-Cotton tensor of a 3-dimensional Riemannianmanifold (M3, g) is defined as (see [7])

CðX ;Y ; ZÞ ¼ ð∇XSÞðY ; ZÞ � ð∇YSÞðX ; ZÞ

�1

4
½XðrÞgðY ; ZÞ � Y ðrÞgðX ; ZÞ�;

(1.3)

where S is the Ricci tensor and r is the scalar curvature of M3. The Cotton tensor is
skew-symmetric in first two indices and totally trace free. It is well known that for n ≥ 4, an
n-dimensional Riemannian manifold is conformally flat if the Weyl tensor vanishes. For
n 5 3, the Weyl tensor always vanishes but the Cotton tensor does not vanish in general.

In 2008, Kicisel, Sario�glu and Tekin [8] introduced the notion of Cotton flow as an analogy
of the Ricci flow. The Cotton flow is based on the conformally invariant Cotton tensor and
defined exclusively for 3-dimension as

vg

vt
¼ C;

whereC is the (0, 2)-Cotton tensor of g. From the Cotton flow, they defined the notion of Cotton
soliton as follows:

Definition 1.1. ACotton soliton is a metric g defined on 3-dimensional smooth manifoldM3

such that the following equation

ðLVgÞðX ;Y Þ þ CðX ;Y Þ � σgðX ;Y Þ ¼ 0; (1.4)

holds for a constant σ and a vector field V, called the potential vector field, whereLV denotes the
Lie derivative along V and C is the (0, 2)-Cotton tensor defined by

Cij ¼ 1

2
ffiffiffi
g

p Cnmie
nmlglj (1.5)

in a local frame ofM3, where g5 det(gij), Cijk is the (0, 3)-Cotton tensor and e is a tensor density.

In an orthonormal frame, e123 5 1. Also exchange of any two indices will give rise to minus
sign and it will be zero if there has two same indices. For example, e231 5 � e213 and
e112 5 e122 5 e223 5 0. Cotton solitons are fixed points of the Cotton flow up to
diffeomorphisms and rescaling. The Cotton soliton is said to be shrinking, steady or
expanding according as σ is positive, zero or negative respectively. As far as we know, the
Cotton solitonwas studied by Chen [9] on certain almost contact metric manifold, precisely on
almost coK€ahler 3-manifolds. Motivated by the study of Chen [9], we consider the notion of
Cotton soliton on an almost Kenmotsu 3-h-manifold and prove some related results.
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2. Almost Kenmotsu 3-h-manifolds
Let (M3, w, ξ, η, g) be a 3-dimensional almost Kenmotsu manifold. We denote by l5 R($, ξ)ξ,
h ¼ 1

2Lξw and h0 5 h 8w onM3, whereR is the Riemannian curvature tensor. The tensor fields
l and h are symmetric operators and satisfy the following relations ([3, 4]):

hξ ¼ 0; lξ ¼ 0; trðhÞ ¼ 0; trðhwÞ ¼ 0; hw þ wh ¼ 0; (2.1)

∇Xξ ¼ X � ηðXÞξ� whXð0∇ξξ ¼ 0Þ; (2.2)

∇ξh ¼ −w � 2h� wh2 � wl: (2.3)

Definition 2.1. [10] A 3-dimensional almost Kenmotsu manifold is called an almost
Kenmotsu 3-h-manifold if it satisfies ∇ξh 5 0.

Let U1 be the maximal open subset of a 3-dimensional almost Kenmotsu manifold M3 such
that h ≠ 0 and U2 be the maximal open subset on which h 5 0. Then U1∪U2 is an open and
dense subset of M3. Then U1 is non-empty and there is a local orthonormal basis {e1 5 ξ,
e2 5 e, e3 5 we} on U1 such that he 5 λe and hwe 5 � λwe for some positive function λ.

Lemma 2.2. [11] On U1,

∇ξξ ¼ 0; ∇ξe ¼ awe; ∇ξwe ¼ −ae;

∇eξ ¼ e� λwe; ∇ee ¼ −ξ� bwe; ∇ewe ¼ λξþ be;

∇weξ ¼ −λeþ we; ∇wee ¼ λξþ cwe; ∇wewe ¼ −ξ� ce;

where a, b and c are smooth functions.

Since∇ξh5 0 for an almost Kenmotsu 3-h-manifold, then using Lemma 2.2 and (2.3), a direct
calculation gives ξ(λ)5 a5 0. Therefore, Lemma 2.2 can be rewritten for an almost Kenmotsu
3-h-manifold as.

Lemma2.3. OnU1, the coefficients of the Riemannian connection∇ of an almost Kenmotsu
3-h-manifold with respect to a local orthonormal basis {ξ, e, we} is given by

∇ξξ ¼ 0; ∇ξe ¼ 0; ∇ξfe ¼ 0;

∇eξ ¼ e� λwe; ∇ee ¼ −ξ� bwe; ∇ewe ¼ λξþ be;

∇weξ ¼ −λeþ we; ∇wee ¼ λξþ cwe; ∇wewe ¼ −ξ� ce;

where b and c are smooth functions.

From Lemma 2.3, the Lie brackets can be calculated as follows:

½e; ξ� ¼ e� λwe; ½e;we� ¼ be� cwe and ½we; ξ� ¼ −λeþ we: (2.4)

In [12], Wang obtained the components of the Ricci operator Q for an almost Kenmotsu 3-
manifold on U1 as follows:

Qξ ¼ −2
�
λ2 þ 1

�
ξ� σðeÞe� σðweÞwe;

Qe ¼ −σðeÞξ� ðf þ 2λaÞeþ ðξðλÞ þ 2λÞwe;
Qwe ¼ −σðweÞξþ ðξðλÞ þ 2λÞe� ðf � 2λaÞwe;

Cotton solitons



where f5 e(c)þ we(b)þ b2þ c2þ 2 and σ($)5� g(Qξ, $). Now, we write the components of
the Ricci operator Q for an almost Kenmotsu 3-h-manifold as follows:

Lemma2.4. OnU1, the Ricci operator of an almost Kenmotsu 3-h-manifold with respect to a
local orthonormal basis {ξ, e, we} is given by

Qξ ¼ −2
�
λ2 þ 1

�
ξ� ½weðλÞ þ 2λb�e� ½eðλÞ þ 2λc�we;

Qe ¼ −½weðλÞ þ 2λb�ξ� feþ 2λwe;

Qwe ¼ −½eðλÞ þ 2λc�ξþ 2λe� fwe;

where f 5 e(c) þ we(b) þ b2 þ c2 þ 2.

The scalar curvature r of an almost Kenmotsu 3-h-manifold is given by

r ¼ gðQei; eiÞ ¼ −2
�
λ2 þ 1

�� 2f : (2.5)

Using Lemma 2.4, we obtain

Sðξ; ξÞ ¼ −2
�
λ2 þ 1

�
; Sðξ; eÞ ¼ −½weðλÞ þ 2λb�;

Sðξ;weÞ ¼ −½eðλÞ þ 2λc�; Sðe; eÞ ¼ −f ;
Sðe;weÞ ¼ 2λ; Sðwe;weÞ ¼ −f :

8<
: (2.6)

It is well known that an almost Kenmotsu 3-manifold is Kenmotsu if and only if h 5 0.
Thus a Kenmotsu metric always admits an almost Kenmotsu 3-h-metric structure. We
now close this section by providing an example of a non-Kenmotsu almost Kenmotsu
3-h-manifold.

Example 2.5. [13] LetM3 be a 3-dimensional non-unimodular Lie group with a left invariant
local orthonormal frame {e1, e2, e3} satisfying

½e1; e2� ¼ αe2 þ βe3; ½e2; e3� ¼ 0 and ½e1; e3� ¼ βe2 þ ð2� αÞe3
for α; β∈R. If either α ≠ 1 or β ≠ 0, then M3 admits a non-Kenmotsu almost Kenmotsu
3-h-metric structure.

We now close this section by recalling an important result of Cho [14].

Theorem2.6. A non-Kenmotsu almost Kenmotsu 3-manifoldM3 is locally symmetric if and
only if M3 is locally isometric to the product space H2ð−4Þ3R.

3. Cotton soliton
In this section, we consider the notion of Cotton soliton within the framework of almost
Kenmotsu 3-h-manifolds. To study the notion of Cotton soliton, we need to compute the
components of the (0, 2)-Cotton tensor. In this regard, we prove the following Lemma:

Lemma 3.1. The components of the (0, 2)-Cotton tensor C with respect to an orthonormal
frame {ξ, e, we} of a non-Kenmotsu almost Kenmotsu 3-h-manifold M3 can be expressed as
follows:

C11 ¼ Cðξ; ξÞ ¼ b½weðλÞ þ 2λb� � c½eðλÞ þ 2λc�
�eðeðλÞ þ 2λcÞ þ weðweðλÞ þ 2λbÞ; (3.1)
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C12 ¼ Cðξ; eÞ ¼ 2
�
eðλÞ � 3λweðλÞ þ 2λc� 2λ2b

�

þξðeðλÞ þ 2λcÞ � 1

4
weðrÞ;

(3.2)

C13 ¼ Cðξ;weÞ ¼ −2
�
weðλÞ � 3λeðλÞ þ 2λb� 2λ2c

�

�ξðweðλÞ þ 2λbÞ þ 1

4
eðrÞ;

(3.3)

C22 ¼ Cðe; eÞ ¼ 2λ3 � f λþ c½eðλÞ þ 2λc� � weðweðλÞ þ 2λbÞ; (3.4)

C23 ¼ Cðe;weÞ ¼ −ξðf Þ � f þ 2þ eðweðλÞ þ 2λbÞ þ b½eðλÞ þ 2λc� � 1

4
ξðrÞ; (3.5)

C33 ¼ Cðwe;weÞ ¼ −2λ3 þ f λ� b½weðλÞ þ 2λb� þ eðeðλÞ þ 2λcÞ: (3.6)

Proof. The components of the metric tensor g with respect to an orthonormal frame
{ξ, e, we} of a non-Kenmotsu almost Kenmotsu 3-h-manifold M3 is given by

�
gij
� ¼ 1 0 0

0 1 0
0 0 1

0
@

1
A

and hence det(gij) 5 1. Therefore, Eqn (1.5) reduces to

Cij ¼ 1

2
Cnmie

nmj; i; j ¼ 1; 2; 3;

where Cijk 5 C(ei, ej, ek). Also, Cijk 5 � Cjik and Ciik 5 0 for all i, j, k5 1, 2, 3. It can be easily
obtained that (see [9])

C11 ¼ C231; C12 ¼ C311; C13 ¼ C121; C22 ¼ C312; C23 ¼ C122; C33 ¼ C123:

Making use of (1.3), we get the following:

C11 ¼ C231 ¼ Cðe;we; ξÞ ¼ ð∇eSÞðwe; ξÞ � ð∇weSÞðe; ξÞ; (3.7)

C12 ¼ Cðwe; ξ; ξÞ ¼ ð∇weSÞðξ; ξÞ � ð∇ξSÞðwe; ξÞ � 1

4
weðrÞ; (3.8)

C13 ¼ Cðξ; e; ξÞ ¼ ð∇ξSÞðe; ξÞ � ð∇eSÞðξ; ξÞ þ 1

4
eðrÞ; (3.9)

C22 ¼ Cðwe; ξ; eÞ ¼ ð∇weSÞðξ; eÞ � ð∇ξSÞðwe; eÞ; (3.10)

C23 ¼ Cðξ; e; eÞ ¼ ð∇ξSÞðe; eÞ � ð∇eSÞðξ; eÞ � 1

4
ξðrÞ; (3.11)

C33 ¼ Cðξ; e;weÞ ¼ ð∇ξSÞðe;weÞ � ð∇eSÞðξ;weÞ: (3.12)

Using (2.6), Lemma 2.3 and ξ(λ) 5 0, we now obtain the following:
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ð∇eSÞðwe; ξÞ ¼ 2λ3 � f λþ b½weðλÞ þ 2λb� � eðeðλÞ þ 2λcÞ;
ð∇weSÞðe; ξÞ ¼ 2λ3 � f λþ c½eðλÞ þ 2λc� � weðweðλÞ þ 2λbÞ:

�
(3.13)

ð∇weSÞðξ; ξÞ ¼ 2
�
eðλÞ � 3λweðλÞ þ 2λc� 2λ2b

�
;

ð∇ξSÞðwe; ξÞ ¼ −ξðeðλÞ þ 2λcÞ:
�

(3.14)

ð∇ξSÞðe; ξÞ ¼ −ξðweðλÞ þ 2λbÞ;
ð∇eSÞðξ; ξÞ ¼ 2

�
weðλÞ � 3λeðλÞ þ 2λb� 2λ2c

�
:

�
(3.15)

ð∇weSÞðξ; eÞ ¼ 2λ3 � f λþ c½eðλÞ þ 2λc� � weðweðλÞ þ 2λbÞ;
ð∇ξSÞðwe; eÞ ¼ 0:

�
(3.16)

ð∇ξSÞðe; eÞ ¼ −ξðf Þ;
ð∇eSÞðξ; eÞ ¼ f � 2� eðweðλÞ þ 2λbÞ � b½eðλÞ þ 2λc�:

�
(3.17)

ð∇ξSÞðe;weÞ ¼ 0;
ð∇eSÞðξ;weÞ ¼ 2λ3 � f λþ b½weðλÞ þ 2λb� � eðeðλÞ þ 2λcÞ:

�
(3.18)

We now complete the proof by substituting Eqs (3.13)-(3.18) in Eqs (3.7)-(3.12) respectively.,

Proposition 3.2. If the Reeb vector field of a non-Kenmotsu almost Kenmotsu 3-h-manifold
M3 is an eigen vector of the Ricci operator, then M3 is locally isometric to a non-unimodular Lie
group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure.

Proof. Since ξ is an eigen vector of Q, then Lemma 2.4 implies

weðλÞ þ 2λb ¼ 0;
eðλÞ þ 2λc ¼ 0:

�
(3.19)

It is well known that

1

2
XðrÞ ¼ ðdivQÞX ¼

X3

i¼1
g
��
∇eiQ

�
X ; ei

�
:

From the preceding equation, we can write

1

2
XðrÞ ¼ ð∇ξSÞðX ; ξÞ þ ð∇eSÞðX ; eÞ þ ð∇weSÞðX ;weÞ: (3.20)

Making use of (2.6), (3.19) and ξ(λ) 5 0, we obtain the following:

ð∇ξSÞðξ; ξÞ ¼ 0; ð∇eSÞðξ; eÞ ¼ f � 2; ð∇weSÞðξ;weÞ ¼ f � 2; (3.21)

ð∇ξSÞðe; ξÞ ¼ 0; ð∇eSÞðe; eÞ ¼ 4λb� eðf Þ; ð∇weSÞðe;weÞ ¼ −4λb; (3.22)

ð∇ξSÞðwe; ξÞ ¼ 0; ð∇eSÞðwe; eÞ ¼ −4λc; ð∇weSÞðwe;weÞ ¼ 4λc� weðf Þ: (3.23)

Now, substituting X5 ξ, e and we in (3.20) and then using (3.21), (3.22) and (3.23) respectively,
we obtain

ξðrÞ ¼ 4ðf � 2Þ; eðrÞ ¼ −2eðf Þ; weðrÞ ¼ −2weðf Þ: (3.24)
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Using (3.19) and ξ(λ) 5 0, we get from (2.5)

ξðrÞ ¼ −2ξðf Þ; eðrÞ ¼ −2eðf Þ þ 8λ2c; weðrÞ ¼ −2weðf Þ þ 8λ2b: (3.25)

Since λ is a positive function, then the second and third equations of (3.24) and (3.25) implies
b 5 c 5 0. From Lemma 2.4, we get f 5 2. Also from (3.19), we get e(λ) 5 we(λ) 5 0 and
therefore λ is a constant. Now, the Lie brackets given in (2.4) reduces to

½e; ξ� ¼ e� λwe; ½e;we� ¼ 0 and ½we; ξ� ¼ −λeþ we:

Therefore, according to Milnor (Page 309, Lemma 4.10 [15]),M3 is locally isometric to a non-
unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu
structure. ,

Combining Lemma 3.1 and Proposition 3.2, the components of the Cotton tensor described as:

Corollary 3.3. If the Reeb vector field of a non-Kenmotsu almostKenmotsu 3-h-manifoldM3

is an eigen vector of the Ricci operator, then the components of the (0, 2)-Cotton tensor C with
respect to an orthonormal frame {ξ, e, we} on M3 can be expressed as follows:

C11 ¼ Cðξ; ξÞ ¼ 0; C12 ¼ Cðξ; eÞ ¼ 0; C13 ¼ Cðξ;weÞ ¼ 0;

C22 ¼ Cðe; eÞ ¼ 2λ3 � 2λ; C23 ¼ Cðe;weÞ ¼ 0; C33 ¼ Cðwe;weÞ ¼ −2λ3 þ 2λ:

We first consider the Cotton soliton with potential vector field V pointwise collinear with the
Reeb vector field. In this regard, we prove the following non-existing result.

Theorem3.4. On a non-Kenmotsu almost Kenmotsu 3-h-manifold such that the Reeb vector
field is an eigen vector of the Ricci operator, there exist no Cotton soliton with potential vector
field pointwise collinear with the Reeb vector field.

Proof. Suppose that the potential vector field V is pointwise collinear with the Reeb vector
field ξ. Then there exist a non-zero smooth functionα onM3 such thatV5αξ. Now, substituting
X5 e and Y5 we in (1.4) and using Lemma 2.3 and Corollary 3.3, we get 2λα5 0. This gives
either λ 5 0 or α 5 0. In either cases, we get a contradiction. This completes the proof. ,

From Theorem 3.4 and Proposition 3.2, we have.

Corollary 3.5. On a 3-dimensional non-unimodular Lie group equipped with a left invariant
non-Kenmotsu almost Kenmotsu structure, there exist no Cotton soliton with potential vector
field pointwise collinear with the Reeb vector field.

It is now quite tempting to consider the potential vector field V as orthogonal to the Reeb
vector field. In this setting, we prove the following:

Theorem 3.6. Let (M3, g) be a non-Kenmotsu almost Kenmotsu 3-h-manifold such that the
Reeb vector field is an eigen vector of the Ricci operator. If g is a Cotton soliton with potential
vector field orthogonal to the Reeb vector field, then M3 is locally isometric toH2ð−4Þ3R and
the Cotton soliton is steady.

Proof. For a non-Kenmotsu almost Kenmotsu 3-h-manifold such that the Reeb vector field
is an eigen vector of the Ricci operator, Proposition 3.2 gives b5 c5 0, f5 2, λ5 constant and
r5 constant. Since V is orthogonal to ξ, then there exist two smooth functions α1 and α2 on
M3 such thatV5 α1eþ α2we. With the help of Lemma 2.3, we now obtain the components of
LVg as follows:

Cotton solitons



ðLVgÞðξ; ξÞ ¼ 0; ðLVgÞðξ; eÞ ¼ ξðα1Þ � α1 þ λα2;
ðLVgÞðξ;weÞ ¼ ξðα2Þ � α2 þ λα1; ðLVgÞðe; eÞ ¼ 2eðα1Þ;
ðLVgÞðe;weÞ ¼ eðα2Þ þ weðα1Þ; ðLVgÞðwe;weÞ ¼ 2weðα2Þ:

8<
: (3.26)

We now use Corollary 3.3 and (3.26). SubstitutingX5Y5 ξ in (1.4), we get σ5 0. This shows
that the Cotton soliton is steady. Now, substitution of X 5 ξ, Y 5 e in (1.4) yields

ξðα1Þ � α1 þ λα2 ¼ 0: (3.27)

Replacing X by ξ and Y by we in (1.4), we get

ξðα2Þ � α2 þ λα1 ¼ 0: (3.28)

Putting X 5 Y 5 e in (1.4), we obtain

2eðα1Þ þ 2λ3 � 2λ ¼ 0: (3.29)

Substitution of X 5 e and Y 5 we in (1.4) yields

eðα2Þ þ weðα1Þ ¼ 0: (3.30)

Putting X 5 Y 5 we in (1.4), we infer

2weðα2Þ � 2λ3 þ 2λ ¼ 0: (3.31)

Since b 5 c 5 0, the Lie brackets given in (2.4) reduces to

½e; ξ� ¼ e� λwe; ½e;we� ¼ 0 and ½we; ξ� ¼ −λeþ we: (3.32)

Since λ is a positive constant, then from (3.27) and (3.29), we obtain

eðξðα1ÞÞ ¼ eðα1Þ � λeðα2Þ and ξðeðα1ÞÞ ¼ 0:

Applying the first Lie bracket of (3.32) in the preceding equation, we getwe(α1)5 e(α2). Hence,
equation (3.30) implieswe(α1)5 e(α2)5 0. Now, from (3.28), we get e(ξ(α2))5� λe(α1). Also, we
have ξ(e(α2))5 0. Again, using these two in the first Lie bracket of (3.32) yields we(α2)5 e(α1).
Applying (3.29) and (3.31) in the preceding relation and using the fact that λ is a positive
function, we obtain λ 5 1. Now, it is easy to check that ∇Q 5 0. Notice that, a Riemannian
3-manifold is Ricci parallel if and only if it is locally symmetric. The rest of the proof follows
from Theorem 2.6. ,

As a combination of Proposition 3.2 and Theorem 3.6, we have the following:

Corollary 3.7. If g is a Cotton soliton with potential vector field orthogonal to the Reeb vector
field on a 3-dimensional non-unimodular Lie group M3 equipped with a left invariant non-
Kenmotsu almost Kenmotsu structure, then M3 is locally isometric to H2ð−4Þ3R and the
Cotton soliton is steady.

4. Example of an almost Kenmotsu 3-h-manifold
Consider M ¼ R3. Let us choose a local orthonormal frame {e1, e2, e3} in such a way that it
satisfies the following:
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½e1; e2� ¼ e3 � e2; ½e2; e3� ¼ 0 and ½e3; e1� ¼ −e2 þ e3:

We define the Riemannian metric g by
g(e1, e1) 5 g(e2, e2) 5 g(e3, e3) 5 1 and g(ei, ej) 5 0 for i ≠ j; i, j 5 1, 2, 3.

Consider e15 ξ. We define the 1-form η be by η(Z)5 g(Z, e1) for any smooth vector field Z
on M.

Let us define the (1, 1)-tensor fields w and h by

wðe1Þ ¼ 0; wðe2Þ ¼ e3 and wðe3Þ ¼ −e2:

hðe1Þ ¼ 0; hðe2Þ ¼ e2 and hðe3Þ ¼ −e3:

Using the linearity of w and g, we have

ηðe1Þ ¼ 1;

w2ðZÞ ¼ −Z þ ηðZÞe1
and gðwZ ;wUÞ ¼ gðZ ;UÞ � ηðZÞηðUÞ

for any smooth vector field Z, U on M.
The Levi-Civita connection ∇ of the metric tensor g is given by Koszul’s formula:

2gð∇XY ; ZÞ ¼ XgðY ; ZÞ þ YgðZ ;XÞ � ZgðX ;Y Þ
�gðX ; ½Y ; Z �Þ � gðY ; ½X ; Z �Þ þ gðZ ; ½X ;Y �Þ:

Using the above Koszul’s formula, we now calculate the components of the Levi-Civita
connection ∇ as follows:

�
∇eiej

� ¼ 0 0 0
e2 � e3 �e1 e1
�e2 þ e3 e1 �e1

0
@

1
A:

Now, any vector field X on M can be expressed as X 5 c1e1 þ c2e2c3e3 for some smooth
functions c1, c2 and c3 on M. One can easily verify that the relation

∇Xe1 ¼ X � ηðXÞe1 � whX

holds for any smooth vector field X on M. Therefore, (M, w, ξ, η, g) is an almost Kenmotsu
3-manifold.

Now it can be easily checked that ð∇e1hÞX ¼ 0 for any smooth vector fieldX onM. Hence,
M is an almost Kenmotsu 3-h-manifold.

Here e15 ξ, e25 e and e35 we. Comparing the obtained components of∇eiejwith Lemma
2.3, we get a5 b5 c5 0, λ5 1, f5 2 and r5� 6. Then from Lemma 2.4, we can see that ξ is
an eigenvector of the Ricci operator Q.

LetV5 αe2þ βe3, where α; β∈R. ThenV is orthogonal to ξ. Now, the components ofLVg
can be obtained as follows:

ðLVgÞðe1; e1Þ ¼ 0; ðLVgÞðe2; e2Þ ¼ 0; ðLVgÞðe3; e3Þ ¼ 0;

ðLVgÞðe1; e2Þ ¼ −αþ β; ðLVgÞðe2; e3Þ ¼ 0 and ðLVgÞðe3; e1Þ ¼ α� β:

With the help of equation (1.4), one can verify that g is a steady cotton soliton with potential
vector field V 5 αe2 þ αe3 for any real number α.

Cotton solitons



Also, one can check that ∇Q5 0 holds good (see page 5 [12]). Then ∇R5 0. Hence from
Theorem 2.6, we can say that M is locally isometric to the product space H2ð−4Þ3R. This
verifies our Theorem 3.6.
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