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Abstract

Purpose — The paper aims to build the relationship between an entire function of restricted hyper-order with
its linear c-shift operator.

Design/methodology/approach — Standard methodology for papers in difference and shift operators and
value distribution theory have been used.

Findings — Therelation between an entire function of restricted hyper-order with its linear c-shift operator was
found under the periphery of sharing a set of two small functions IM (ignoring multiplicities) when exponent of
convergence of zeros is strictly less than its order. This research work is an improvement and extension of two
previous papers.
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1. Introduction

By a meromorphic function £, we always mean that it is defined on C. For such a meromorphic
function, we recall some basic terminologies of value distribution theory such as the
Nevanlinna characteristic function 717, ), the proximity function (7, f) and the counting
function (reduced counting function) of a-points of / N(r, fla) N(r,a;f) (N(r, 7= A=

N(r,a;f)). For a = oo, we use N(r,f) = N(r,00;f) (N(r,f) = N(r,00;f)) to denote
counting (reduced counting) function of poles of f (see [1]). With the help of the standard
notations, we also would like to recall the following useful terms, namely exponent of
convergence of zeros, order and hyper-order of f respectively defined as follows:

log (1.2 g T(r.f) loglog7
o logN(ry) i sup 281087 (f)
Af) =limsup— =2 p(f) = llrpj}p gy And palf) =limsup =R
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Usually, S(, /) denotes any quantity satisfying S(, /) = o(T(r, f)) for all » outside of a possible
exceptional set of finite linear measure. We denote by S(f) the set of all meromorphic functions
a(z) such that 7T(r, a(z)) = S(r, f) and a(z) is called small function compared to f(z). Let a(z) € S
and S be a subset of S{f) U{oo} and EAS) = Ugpesiz: flz) — alz) = 0}, where each zero is
counted according to its multiplicity. If we do not count the multiplicity, then the set U,¢)esiz:
fle) — a(z) = 0} is denoted by £¢(S).

If EAS) = ELS) (Ef(S) = E,(S)) we say that f and g share the set S CM or counting
multiplicities (IM or ignoring multiplicities).

For a nonzero complex constant c, the shift operator of f(z) is denoted by fiz + ¢). The terms
A f and A*f will be used to denote the difference and -th order difference operators of f(z),
defined respectively as

Af(2) = fz+0) —f(2), Aif(2) = A& (2)), kEN, k2.

We introduce the more generalized linear c-shift operator L.f by
k

Lf = L)) = > af(z+je) (£0),

=0

whereq;eCforj =0,1,2,...,kwitha, #0 (& > 1).

The uniqueness problem of entire functions sharing set with their derivatives, shifts,
different types of difference operators has been developed as an interesting direction of
research in the realm of value distribution theory. In 1999, Li-Yang [2] made a pioneer work by
considering the relation between an entire function and its derivative sharing a set with two
elements. Following their footsteps, in 2005, Li [3] investigated the same type of problem for
linear differential operator. Four years later, Liu [4] exhibited a similar result for an entire
function f and its shift sharing a set with two small functions.

Let us start the discussion with another result of Liu [4] concerning difference operator.

Theorem A. [4]Let fbe a transcendental entive function of finite ovder, and let a be a nonzero
finite constant. If f and A f share the set {a, —a} CM, then A f = f.

After that Liu [4] posed a significant question:

Question 1.1. What happens if {a, —a} is replaced by {az), bz)} in the above theorem, where
a(z), bz) € S are nonvanishing periodic entive functions with period c?

Being motivated by this question, Li [5] investigated the following theorem in a different
direction that evolved as a new trend. Actually, Li [5] first diverted the attention of the
research germinated from Question 1.1, in terms of relation between exponent of convergence
of zero and order. We recall the theorem by Li [5].

Theorem B. [5]Let f be a nonconstant entire function such that A(f) < p() < oo, p(H # 1, a, b
be respectively two distinct entive functions such that p(a) < p(f) and p(b) < p(f). If f and A f share
the set {a, b} CM, then A f = f for allz€ C.

By an example we can show that the restriction p(f) # 1 in Theorem B can be removed.

zlog2

Example 1.1. Let f(z) = e < . Then obviously A f = f. Clearly f and A f share the set {a, b}
CM for two distinct entire functions a, b respectively such that p(a) < p(f) and p(b) < p(f) and
also 0 = AH) < p(f) = L

After publication of Li’s [5] result, there was a long gap in research in this direction. Recently in
2019, concerning finite-order entire function, Qi-Wang-Gu [6] removed the restriction p(f) # 1 in
Theorem B. Not only that, they also ensured the particular form of fin the following manner:




Theorem C. [6] Let f be a nonconstant entire function with Af) < p(f) < oo, let a, b be
respectively two distinct entive functions such that p(a) < p(f), p(b) < p(f). If fand A f share the set
{a, b} CM, then fiz) = Ae'?, where A, u are two nonzero constants satisfying e = 2.
Furthermore, Af = f.

2. Main results
In our paper, we have extended and improved Theorem C in the following three directions:

(1) We replace the difference operator by its linear ¢-shift operator to accommodate a
larger class of operators, namely L.f that includes difference operator.

(2) We consider an entire function of ps(f) < 1 instead of considering the same of finite
order.

(3) We relax the nature of the shared set {a, b} from CM to IM.

Thus, the following assertion extends and improves Theorem C in the way described above,
and in fact it represents our main result in this paper.

Theorem 2.1. Let fbe a nonconstant entire function such that Af) < p(f) with po(f) < 1 and let
a, b be two distinct entire functions such that p(a) < p(f) and p(b) < p(f). Let f and L.f (¥0) share
the set {a, b} IM, then L.f = f. In addition, if b = —a, then L.f = —f. In both cases f takes the

Jorm fiz) = Ah(z)e!?, where A is a nonzero constant, h(z) is a polynomial and u is a nonzero

constant satisfying Z]}?:Oaje’“f = 1 and — 1 respectively. Furthermore,

1) when L.f = f, then one of the following can occur:
o Ifag=1, thenk > 2 and deg(h) < (k — 2);
o Ifag#1, then deg(h) < (k — 1).

2) When L.f = —f, then one of the following occur:
o ifayg= —1, then k > 2 and deg(h) < (k — 2),
o ifag# — 1, then degh) < (k — 1).

Remark 2.1. In the above theorem, if we choose L.f = Af, thenk =1, a1 = 1 and ay = —1.
Therefore conclusion (2) that means A f = —fis not possible. Thus from conclusion (1) we only

have the form of the function as fiz) = Aé'?, where A and p are nonzero constants satisfying
e = 2 and also Af = f holds.

The following examples will successively show that in the above theorem, respectively for the
cases k = 1,k = 2 and k = 3, all possible forms of the function exist.

First we consider the case # = 1.
Example 2.1. Let f = Aet?, A # 0. Choosing coefficients of L .f fork =1 as a; = 1;w”° and
ay # 1 we have L.f = f and Z}:Oajeﬂcf = 1. Next, choosing coefficients as a; = _le;[“‘) and
ay# — 1 we see that Lof = —f and Z}:Oaje’”f =-1

Next we shall show that for 2 = 2, the forms of the function can be obtained.

Example 2.2. Let f = (Az + B)¢?, A # 0. Choosing coefficients of LS for k = 2 as

a) = _(lez;c%)) a = 2(18;”0), one can eastly check that L.f = f and E]?:Oaje/“j = 1 On the other
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hand, choosing coefficients as a; = lfff’, a; =

and 37 jaje'? = —1.

Example 2. 3 Consider the function fin Example 2.1. Choose coefficients of L.f for k = 2 as
as = ezﬂ,, am = e,,(, = 2, then we have L.f = fand ZJ Oa]e/“f 1. Next, choosing coefficients
asas =38 a1 = ,,[, = 2, we see that L,f = —f and Z Oa]e’” =-1

ez;w

—2(1+ay)
o o

we easily can obtain Lf = —f

For k = 3, all poss1ble forms of the function are shown below.
Example 2.4. Let f = (42> + Bz + O¢*?, A # 0. Choosing coefficients of Lj fork =3 as

a3 = 1€3%‘f“, a = 3%;, w) gy =30 W“O), one can easily check that L.f = f and Z et = 1.
Also, choosing coefficients as a3 = 13#6“0, as = il 621%( “”), a; = 3= l}w “0), one can eastly check

that Lf = —f and Z?;odje’“f -1

Example 2.5. Consider the Sfunction f as in Example 2.2 and choosz'ng the coefficients of L.f
as az = %, as = ezj’a s == ag = 2, we can have L.f = f and Z Oaje”"f =1 On the other
hand, choosing coefficients as as = 3 a2 =55 a1 =2 ag = 2, we can get Lf = —f

oHo
and Zfzoaje”q =-1

Example 2.6. Consider the Sfunction fin Example 2.1. Choosing coefficients of L.f for k = 3
as a3 = 35 Gy = 4 a1 = 55 ag = 2, clearly L.f = fand Z * 0@;e"9 = 1. On the other hand,
choosing coefficients as as =5t ay =45 a1 =55 ao = 2, we easily get Lf = —f

3 oM —
and ) ;_oaie'? = -1

eyu

ey r:

63/‘"’

Similar examples can be constructed for the case & > 4 also.

Remark 2.2. In Examples 2.4, 2.5, let us take L.f = A?f. Choosing ¢"° = 2 we see that
though Zfzoaje”ff = (e — 1)3 =1 but Aff £f. In a similar manner, for the function in
Examples 2.4, 2.5, choosing e = 3+T‘/§” we get Z?:()(ljeﬂcj = (&' — 1)3 = —1but Aff + —f.
But in Example 2.6, choosing ¢ such that ijoaje’”f = 1or — 1, we automatically have the

respective conclusions Af f =for Af 'f = —f. From this observation naturally one can infer that

the case L.f = Af 'f needs special attention. In fact, we can conjecture that the degree of h could
be zero that means h will be a nonzero constant.

In this respect, in Theorem 2.1 replacing L./ by Aff we can get the next corollary.

Corollary 2.1. Under the same assumptions of Theorem 2.1 for the operator Af 'f we have
Aff = f. In addition, if b = —a and k > 2, then Aff = —f. In both cases f takes the form

flz) = B, where B and p are nonzero constants and y satisfies Z]]?:O (—1)k = (f) et = 1and
— 1 respectively.

Next we provide two examples to show that p, < 1 is sharp.

Example 2.7. Let f = e%eé% Here Af) < p(f) and p(f) = 1. For a suitable choices of

coefficients one can obtain L. = ", For example, for even integer k, choose
ap+ -+ as+a=0and ar_1 + -+ + az + a1 = 1. Clearly f and L.f share the set
{a, —a} CM, where a is an entive function such that p(a) < p(f). Though L.f = —f, the form of
f does not satisfy the conclusion of our theorem.



Example 2.8. Letf = e"% Here A(f) < p(f) and po(f) = 1. For a suitable choices of coefficients,

one can easily obtain L.f = e, For example, for eveninteger k, choose a,+ - - - +as+ap =10
and ap_, + - + a3 + a, = 1. Clearly f and L f share the set {/a + /b, \Ja —v/b} CM,
where a, b are two complex constants such that a — b = 1. Then neither L.f = +fnor the form of
f satisfies the conclusion of our theovem.

3. Preparatory lemmas
In this section, some useful lemmas are quoted from references [1, 7, 9-12], which will be
needed in the sequel.

Lemma 3.1. [9]Let T:[0, + oo0) = [0, + o0) be a nondecreasing continuous function, and let
s € (0, + o). If the hyper-order of T is strictly less than 1,that is,
lim supM =p, <1,
ogr

r—o0 1

and 5 € (0,1 — po), then

T(r+5)=T(r) +o (T(”> ,

79

where r runs to infinity outside of a set of finite logarithmic measures.
Lemma 3.2. [9] Let f(z) be a meromorphic function of po(f) < 1 and c € C\{0}. Then

o 520) (122,

Using the above two basic lemmas due to [9], we have the next lemma.
Lemma 3.3. Let fiz) be a meromorphic function of po(f) < 1 and c € C\{0}. Then for any

e>0,
()~ ()

Using Lemma 3.1, by a simple alteration of the result for finite-order meromorphic functions
in [8], one can have the following lemma.

Lemma 3.4. Let fiz) be a meromorphic function of ps(f) < 1, then we have
N@,f(z+c¢)) =N(r,f)+ S, f)
and

T(r,f(z4c¢)=T(@,f)+ S, f).

Lemma 3.5. [7] Let f be a transcendental meromorphic function in the plane of order less
than 1. Let h > 0. Then there exists an e-set E such that

g(z+c¢)
g(z)

—1, when z—> oo in C\E,
uniformly in c for |c| < h.
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Lemma 3.6. [1, 10] Let fiz) be a transcendental meromorphic solution of equation
Az, f) = Bz.f),

where Az, f), Bz, f) are polynomials in f and its derivatives with meromorphic
coefficients, say {a;. A € I}, such that m(, a;) = S, f) for all A € L If the total degree of

Bz, /) is < n, then

m(r,A(z,f)) = S(r.f).

Lemma 3.7. (see[12], Theorem 1.51) Suppose that fAz) ¢ = 1,2,...,n)andg2) i =1,2,. ..,
n) (n > 2) are entive functz'ons satisfying

O YiLifi)e =
(2 gi) — gie) are not constants for 1 <j <k <n,
B forl<i<m1<k<i<n,

T(r.fi) =of{T(r,e®*)} (r—>o0,7¢E).

Then fi2)=06=1,2, ..., n).

Now we recall the following lemma due to Lu-Lu-Li-Xu (see [11], Corollary 3.2).
Lemma 3.8. [11]Let g (%£0) be a nonconstant meromorphic solution of the linear difference
equation

k
> big(z +ic) = R(z), (3.1).

=0

where RR) is a polynomial and bis for i = 0, 1, ...k are complex constants with bpby # 0,
c€ C\{0} and k€ N. Then either p(g) > 1 or g is a polynomial. In particular if by, # + by,
then p(g) > 1.

4. Proof of the main theorem

Proof of Theorem 2.1. According to our assumption A(f) < p() and by Hadamard
factorization theorem, let us assume that Az) = (z)e"®, where h(z) (20) is an entire function
and 7(z) is a nonconstant entire function satisfying

M) =ph) <p(f), ple")=p(f), pn)=pse') =p(f) <1
Therefore T(r, h) = S(, /) and S@r, €") = S(r, f) = S(r). Here,

T(r,f)<T(r,h) + T(r,e") <T(r,e") + S(r). @.1)

Let q(z) = Le—{ Clearly ¢ # 0. Then placing fz) = h(z)¢"®, in view of Lemma 3.4, we can
deduce that



i n(z) k )
T(y’ q) — M/l(;/7 q) =m (7’ %) — m (7’ Z a]]/l(z +jc)eﬂ(z+]f>_’7(2)>

Since g and  are not equivalent to zero, one can easily write

(@~ g —5) _ (¢ =5) (=) 2
(he" —a)(het —b) — R2(en — %) (en — 1) :

h

Applying the Second Fundamental Theorem for small functions [1] on ¢" and then applying
the First Fundamental Theorem [1] on ¢” — @, we can obtain that

T(r,e") = N(r, o ! ) + S(r), 4.3)

where @ (#0) is a small function of ¢”.

Here a % b. Without loss of generality, let us assume that a # 0. Let z, be a zero of ¢" — ¢ but
q(z0) # 0. Since fand LJ that means /¢" and ge” share the set {a, b} IM, so in view of (4.2), zpis a
zero of ¢l —4 0r e -2 Let us denote by N (7, 0; ¢ — el — —) the reduced counting function of
those Common Zeros of " —%and ¢ -2 Wthh are not zeros of ¢. Similarly, we denote by

N(r,0;¢" -4, ¢" — —) the reduced countmg function of those common zeros of 7 —¢and ¢ — ¢
which are not zeros of q. Therefore from (4.3) we have,

T(r,e") =N(V eﬂl ) +S(7)
=N(7r,0;¢ A rOe”—g e”—é +S(7)
Woooq Woooq ’
which shows that either N(n 0;e" -4, e’i—;—‘) #S(r) or N(V 0;e" -4, e”——) #S(7).

Otherwise T(r, €’) = S(). This is not possible because in view of (4.1), we can draw a
contradiction. Now, we consider two cases:

Case 1. Suppose N (7, 0;¢"—4,¢"— g) # S(7). For sake of convenience, we resolve the case
step by step.

Step 1. In this step we will show that L.f = f.

Let z1 is a zero of €' — ¢ and ¢ — Q It is obvious that z, is a zero of § 2 If ;—Zsé 0, then

N(rOe—ge”——><N ald = S(r),

which is a contradiction. Therefore & = ¢ that implies L.f = f.

functions of
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Step 2. In this step we show that 7(z) is a polynomial.

Expanding L.f = f we can write

b
> ah(z +jo)e" ) = h(z)e"). 4.4)

7=0

Choosing b; = a;h(z + jc) for j = ., kand by = (ag — 1)h(z) we get Z obie" (etie) — (),
Clearly p(b;) plhiz + k) = (h) < p for all/=0,1,... k So, b/s are flnlte order entire
functions. We claim that p(e® = ©71€ +79) < o, for at least one pair of 7, ], such that
0 <i<j <k.Onthe contrary, let us suppose, for all 0 <i <j < k, (g€ * 91 +”) = 00. Then
T, b) = o{T(r eleHio—ne+ion for () <l/<kand0<i<j <k Hence by Lemma 3.7, b;= 0 for
alll=0,1, ...,k which is not possible. Thereby p(e¢ - e+ 9) < 0o implies that n(z +1ic) —
Nz + je) is a polynomlal Let the degree of 11(2 + ic) — nz + jc) be m. So, n”" Ve + ic) —

7"z 4 jc) = 0 that means # G 4 de) 1s perlodlc entire function of period (j — 7)c. If

(’”“)(z + ic) is nonconstant, then obviously p(;” @ + ic) > 1, which yields

pn) = plniz +ic) = p(rl(’”“)(z +ic)) > 1. But p(y) < 1, a contradiction. Hence 7" + i)
is a constant and so 7" *Y(z) is constant, which 1mp11es 1(z) is polynomial.

Step 3. In this step we wish to show that the degree of (z) is 1.

On the contrary, suppose the deg(r](z)) =n(say) > 2. Thenforj =12, ...k,

ol (z-+jc)—n(z e]mcnz” 1 +Q;(z )

where Qjz) is a (n — 2)-th degree polynomial and ¢, is the leading coefficient of 7(z). Let
g=e"""" So,forj=1,2,..., k @716 = gie%® Clearly T\(r,e% %) = S(r,g) for all
7=12..,k—1land T(r,e Q’f) = S(7,9). Here we will draw a contradiction by deducing
1@, g) = S@, g). Rewriting (4.4) we have

k

Z +]C = l—do.

j=1

ie.

l—ay hz) g hz+jc v ;
k=ly 0 o) J Q(2)—-Q(2) 4
A Y Ay § g. 4.5)

As 75(z) is a polynomial, so po(h) < pa(€”) = py) = 0, which implies py() = 0. Since
ph) — 1 <p(f) =1 =pE") —1=n—1 = p(g), so by Lemma 3.3, for any € > 0,
m(r, 1];((223) = O(T,(f’f“) =S(r,g),7=0,1,..,k—1.

Let H(z,g) = Z]k 1Cg/, where G = Z; ,’;@“‘))e@ 9@ for j = 1,2, ..,k — 1 and
G = 1;;“ h(ZfZC) ~@:@_ Thus, (4.5) can be written as " '¢g = H, g). Clearly total degree of
H, g)isatmost k — 1and m(r, C) = Sir,g) forj = 0,1, ... k — 1. Hence by Lemma 3.6, m(r,
g) = S(r, g) that means 717, g) = S(r, g), a contradiction. Therefore deg(#(z)) = 1. Let us assume
that n(z) = pz + C, where u and C be two nonzero constants.

Step 4. In this step we deduce a necessary condition and actual form of the function.



Putting 7(z) = puz + Cinfig) = h(z)e"®, we have fiz) = Ah(z)e*, where A = ¢“ is a nonzero
constant. Now, applying this, (4.4) can be written as

Xk: aih(z + jc) (€Y = h(z). 4.6)

le.
Z h(z + ]c) 1
j=0

Since p(h) < p(f) = p("“) = 1, so by Lemma 3.5, there exist e-set E, as z ¢ £ and z — oo, such
that h(;g)c) — 1. Thereby,

k
> aed =1. @7
j=0

Since p(h) < 1, so by Lemma 3.8, we know that /4(z) is a polynomial. Let us assume that
W) =cd +c 12"+ + 1z + ¢ Putting it into (4.6) and then comparing coefficients and
doing a simple calculation, we have (4.7) and

k k
1y jae =0,  (1-1)) Faed =0,
=

j=1
k k
(-2 Ffge? =0, ... ;==Y faed =0
j=1

=1

Without loss of generality, we assume thatall ¢/ s fori =1, 2, . . ., k are nonzero. Now, the
above system of equations can be written as

A X =B, 4.8)
1 1 1...1 a e 1-ay
1 2 3...k axe*” 0
where A, = | 12 22 32.. .12 X = | aze™ andB=| 0
120 3% ) e @™ | 0 /=

Let Cbe the corresponding augmented matrix. It is obvious that 7ank(4,) = min{/ + 1, k}.
Clearly 7ank(C) = min{l + 1, k + 1}.

Suppose ag # 1. So the nonhomogeneous system (4.8) has unique solution when /=% — 1,
infinitely many solutions when / < 2 — 1 and no solutions when / > 2 — 1. Hence
deg(h) < (k — 1).

Next suppose @y = 1. Then for £ = 1, L.f = fand (4.7) both implies @; = 0, which is not
possible. So in this case obviously 2 > 2. Now, the homogeneous system A;X = 0 has
solutions when / < k£ — 2. Thus, we have our desired Conclusion 1.

Case 2. Suppose N (7,0: e—14 ¢ ’7——) #S(r). Let 23 is a zero of ¢’ —% and e”—— Itis
obvious that z, is a zero of ¢ — 2 If a_ —$ 0, then
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N(r,O;e”—%,e”—S) SN(V, ig) = S(r),
q

which is a contradiction. Therefore

IR

4.9)

Since a#0, therefore b # 0. Let z3be a zero of e — @but q(zo) # 0. Since he” and ¢é" share the
set {a, b} IM, sozzis a zero of ¢! — gor enr—2 Let us denote by N(r,0;¢" — ,—, e — “) the reduced

counting function of those common zeros of ¢" -7 b and e —¢ Wthh are not zeros of q.

similarly, we denote by N (7, 0; e’ — ,—ﬁ, e — —) the reduced Countmg function of those common

zeros of e — % and ¢ — g, which are not zeros of g. Therefore from (4.3) we have,
T(r,e") = N(r, enlb> +S(@r)
T
b b b
_ _ S o2 Z
N<rOe Ak q)—i—N(rOe Ak q)—i—S(r),

h
Otherwise T(r, €") = S(»), which is not possible in view of (4.1). Now, we consider two
subcases:

which shows that either N(r, 0;e" =L ¢ —g) #S(r) or N(r 0;e" =1L e — —) #S(7).

Subase 2.1. Suppose N (r 0;e"—7 e” - —) # S(7). Then proceeding in a similar manner as

used in starting portion of Case 2, we have 2 = Z. In view of (4.9) we get, a® = b% As a#b, so

obviously b = —a. Therefore we must have ¢ = —/ that implies L./ = —f. Further following
the same steps as done in Case 1, we can have the form of the function as fiz) = Ah(z)e’”
satisfying

k
> ged =-1. (4.10)
j=0

Next adopting the similar calculations as done in Step 4, for ag # — 1, we have deg(h) < (k. — 1)
and for ay = —1, we have & > 2 and deg(%) < (¢ — 2). Thus, we have corresponding desired
conclusion (2).

Subcase 2.2. Suppose N (r, 0;e"—2 ¢ — f;) # S(r), which is similar to the Case 1 and so,
we get the desired result.

Hence the proof is completed. O

Proof of Corollary 2.1. To prove this corollary, it is sufficient to prove that deg(%) = 0,
where h(z) = ¢ + 12 1+ - + a1z + ¢o ( < k — 1), ¢; # 0. We know for the operator Aff,
aj = (-1 (f), wherej =0,1,..., k.

From conclusion 1. of Theorem 2.1 we have, Af 'f = f and f takes the form f = Ah(z)e"?, where
A is a nonzero constant, /(z) is a polynomial and u is a nonzero constant satisfying

Zfzo(—l)k_j (f)e”‘f =1, that is, (¢*—1)=1 Now putting f = A(cZ + ¢_12 "

+ -+ 12 + o) into Af 'f = f and then comparing coefficient of 2!, we have



Asc#0,¢#0and (¢ —1)" = 1and also we knowj(f) k(f 11) so we get

zz —fk( l)eﬂff =0

LSyt (T e po 1y —
> (1) i)e =0= e -1)""=0.
Jj=0

@11)

Clearly in view of (e# — l)k =1, /must be 0.

From conclusion 2. of Theorem 2.1 we have, b = —a, Aff = —f and f takes the form
f = Ahz)e"?, where A is a nonzero constant, /(z) is a polynomial and g is a nonzero constant
satisfying Zfzo(—l)k_j (f) e'9 = —1, that is, (¢*—1)F = —1. Here obviously & > 2.
Proceeding in a similar manner as in above, again we can have (4.11) and in view of

(e — 1)k = —1, we can conclude/ = 0. So in both cases / = 0 that means deg(/) = 0. Hence the
corollary is proved. O

5. Observation and an open question

As we know A(f) < p(f) and since throughout the paper we have dealt with the case A(f) < p(f), it
will be interesting to inspect whether the same conclusions hold for the case A(f) = p(f). In the
next two examples we point out the fact that when A(f) = p(f), the conclusion of Theorem 2.1
ceases to hold.

Example 5.1. Letf = (% + 1). Choose ¢ = rii and for even integer b, a, + - - - + as+ ag = 0
and ap_1+ - +as+a, = 1. Then AP = p(f) = 1 and L .f = —e*(* + 1). Clearly L.f and f
share the set {a, —a} CM, where a is an entire function such that p(a) < p(f). Though L.f = —f,
the form of f does not satisfy the conclusion of Theorem 2.1.

Example 5.2. Let f = —¢° + 3 and (¢° —1)2 = =1 Then Aff =& and Mf) = p(f) = 1.
Clearly A%f and f share the set {1, 2} CM but A*f # +f.

In view of the above two examples, we can conclude that in Theorem 2.1, A(f) < p(f) is sharp,
but the conclusion of the same theorem under the case A(f) = p(f) is still an enigma. So we place
it as an open question:

Question 5.1. Under the hypothesis A(f) = p(f), what will be the answer of the Question 1.1
concerming Af 'f or even L.f?
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