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Abstract

Purpose – The paper aims to build the relationship between an entire function of restricted hyper-order with
its linear c-shift operator.
Design/methodology/approach – Standard methodology for papers in difference and shift operators and
value distribution theory have been used.
Findings –The relation between an entire function of restricted hyper-orderwith its linear c-shift operatorwas
found under the periphery of sharing a set of two small functions IM (ignoringmultiplicities) when exponent of
convergence of zeros is strictly less than its order. This research work is an improvement and extension of two
previous papers.
Originality/value – This is an original research work.
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1. Introduction
By ameromorphic function f, we alwaysmean that it is defined onC. For such ameromorphic
function, we recall some basic terminologies of value distribution theory such as the
Nevanlinna characteristic function T(r, f), the proximity function m(r, f) and the counting

function (reduced counting function) of a-points of f Nðr; 1
f − a

Þ ¼ Nðr; a; f Þ (Nðr; 1
f − a

Þ ¼
Nðr; a; f Þ). For a 5 ∞, we use Nðr; f Þ ¼ Nðr;∞; f Þ Nðr; f Þ ¼ Nðr;∞; f Þ� �

to denote
counting (reduced counting) function of poles of f (see [1]). With the help of the standard
notations, we also would like to recall the following useful terms, namely exponent of
convergence of zeros, order and hyper-order of f respectively defined as follows:

λðf Þ¼ lim sup
r→∞

logN r; 1
f

� �
logr

; ρðf Þ¼ lim sup
r→∞

logTðr; f Þ
logr

and ρ2ðf Þ¼ lim sup
r→∞

loglogTðr; f Þ
logr

:
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Usually, S(r, f) denotes any quantity satisfying S(r, f)5 o(T(r, f)) for all r outside of a possible
exceptional set of finite linearmeasure.We denote by S(f) the set of all meromorphic functions
a(z) such that T(r, a(z))5 S(r, f) and a(z) is called small function compared to f(z). Let a(z) ∈ S
and S be a subset of S(f) ∪{∞} and Ef(S) 5 ∪a(z)∈S{z: f(z) � a(z) 5 0}, where each zero is
counted according to its multiplicity. If we do not count the multiplicity, then the set∪a(z)∈S{z:
f(z) � a(z) 5 0} is denoted by Ef ðSÞ.

If Ef(S) 5 Eg(S) (Ef ðSÞ ¼ EgðSÞ) we say that f and g share the set S CM or counting
multiplicities (IM or ignoring multiplicities).

For a nonzero complex constant c, the shift operator of f(z) is denoted by f(zþ c). The terms
Δcf and Δk

c f will be used to denote the difference and k-th order difference operators of f(z),
defined respectively as

Δcf ðzÞ ¼ f ðzþ cÞ � f ðzÞ; Δk
c f ðzÞ ¼ ΔcðΔk−1

c f ðzÞÞ; k∈N; k≥ 2:

We introduce the more generalized linear c-shift operator Lcf by

Lcf ¼ Lcðf ÞðzÞ ¼
Xk
j¼0

ajf ðzþ jcÞ ðu0Þ;

where aj ∈C for j 5 0, 1, 2, . . ., k with ak ≠ 0 (k ≥ 1).
The uniqueness problem of entire functions sharing set with their derivatives, shifts,

different types of difference operators has been developed as an interesting direction of
research in the realm of value distribution theory. In 1999, Li-Yang [2]made a pioneerwork by
considering the relation between an entire function and its derivative sharing a set with two
elements. Following their footsteps, in 2005, Li [3] investigated the same type of problem for
linear differential operator. Four years later, Liu [4] exhibited a similar result for an entire
function f and its shift sharing a set with two small functions.

Let us start the discussion with another result of Liu [4] concerning difference operator.

TheoremA. [4]Let f be a transcendental entire function of finite order, and let a be a nonzero
finite constant. If f and Δcf share the set {a, �a} CM, then Δcf 5 f.

After that Liu [4] posed a significant question:

Question 1.1. What happens if {a,�a} is replaced by {a(z), b(z)} in the above theorem, where
a(z), b(z) ∈ S(f) are nonvanishing periodic entire functions with period c?

Being motivated by this question, Li [5] investigated the following theorem in a different
direction that evolved as a new trend. Actually, Li [5] first diverted the attention of the
research germinated fromQuestion 1.1, in terms of relation between exponent of convergence
of zero and order. We recall the theorem by Li [5].

TheoremB. [5] Let f be a nonconstant entire function such that λ(f) < ρ(f) <∞, ρ(f) ≠ 1, a, b
be respectively two distinct entire functions such that ρ(a) < ρ(f) and ρ(b) < ρ(f). If f andΔcf share
the set {a, b} CM, then Δcf 5 f for all z∈C.

By an example we can show that the restriction ρ(f) ≠ 1 in Theorem B can be removed.

Example 1.1. Let f ðzÞ ¼ e
z log 2

c . Then obviouslyΔcf5 f. Clearly f and Δcf share the set {a, b}
CM for two distinct entire functions a, b respectively such that ρ(a) < ρ(f) and ρ(b) < ρ(f) and
also 0 5 λ(f) < ρ(f) 5 1.

After publication of Li’s [5] result, there was a long gap in research in this direction. Recently in
2019, concerning finite-order entire function, Qi-Wang-Gu [6] removed the restriction ρ(f) ≠ 1 in
Theorem B. Not only that, they also ensured the particular form of f in the following manner:
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Theorem C. [6] Let f be a nonconstant entire function with λ(f) < ρ(f) < ∞, let a, b be
respectively two distinct entire functions such that ρ(a) < ρ(f), ρ(b) < ρ(f). If f andΔcf share the set
{a, b} CM, then f(z) 5 Aeμz, where A, μ are two nonzero constants satisfying eμc 5 2.
Furthermore, Δcf 5 f.

2. Main results
In our paper, we have extended and improved Theorem C in the following three directions:

(1) We replace the difference operator by its linear c-shift operator to accommodate a
larger class of operators, namely Lcf that includes difference operator.

(2) We consider an entire function of ρ2(f) < 1 instead of considering the same of finite
order.

(3) We relax the nature of the shared set {a, b} from CM to IM.

Thus, the following assertion extends and improves Theorem C in the way described above,
and in fact it represents our main result in this paper.

Theorem2.1. Let f be a nonconstant entire function such that λ(f) < ρ(f)with ρ2(f) < 1 and let
a, b be two distinct entire functions such that ρ(a) < ρ(f) and ρ(b) < ρ(f). Let f and Lcf (u0) share
the set {a, b} IM, then Lcf5 f. In addition, if b5 �a, then Lcf5 �f. In both cases f takes the
form f(z) 5 Ah(z)eμz, where A is a nonzero constant, h(z) is a polynomial and μ is a nonzero

constant satisfying
Pk

j¼0aje
μcj ¼ 1 and � 1 respectively. Furthermore,

(1) when Lcf 5 f, then one of the following can occur:

� If a0 5 1, then k ≥ 2 and deg(h) ≤ (k � 2);

� If a0 ≠ 1, then deg(h) ≤ (k � 1).

(2) When Lcf 5 �f, then one of the following occur:

� if a0 5 �1, then k ≥ 2 and deg(h) ≤ (k � 2);

� if a0 ≠ � 1, then deg(h) ≤ (k � 1).

Remark 2.1. In the above theorem, if we choose Lcf5Δcf, then k5 1, a15 1 and a05�1.
Therefore conclusion (2) that meansΔcf5�f is not possible. Thus from conclusion (1) we only
have the form of the function as f(z) 5 Aeμz, where A and μ are nonzero constants satisfying
eμc 5 2 and also Δcf 5 f holds.

The following exampleswill successively show that in the above theorem, respectively for the
cases k 5 1, k 5 2 and k 5 3, all possible forms of the function exist.

First we consider the case k 5 1.

Example 2.1. Let f 5 Aeμz, A ≠ 0. Choosing coefficients of Lcf for k 5 1 as a1 ¼ 1− a0
eμc

and

a0 ≠ 1 we have Lcf 5 f and
P1

j¼0aje
μcj ¼ 1. Next, choosing coefficients as a1 ¼ −1− a0

eμc
and

a0 ≠ � 1 we see that Lcf 5 �f and
P1

j¼0aje
μcj ¼ −1.

Next we shall show that for k 5 2, the forms of the function can be obtained.

Example 2.2. Let f 5 (Az þ B)eμz, A ≠ 0. Choosing coefficients of Lcf for k 5 2 as

a2 ¼ −ð1− a0Þ
e2μc

, a1 ¼ 2ð1− a0Þ
eμc

, one can easily check that Lcf 5 f and
P2

j¼0aje
μcj ¼ 1. On the other
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hand, choosing coefficients as a2 ¼ 1þa0
e2μc

, a1 ¼ −2ð1þa0Þ
eμc

, we easily can obtain Lcf 5 �f

and
P2

j¼0aje
μcj ¼ −1.

Example 2.3. Consider the function f in Example 2.1. Choose coefficients of Lcf for k5 2 as

a2 ¼ −4
e2μc
, a1 ¼ 3

eμc
, a05 2, then we have Lcf5 f and

P2
j¼0aje

μcj ¼ 1. Next, choosing coefficients

as a2 ¼ −6
e2μc
, a1 ¼ 3

eμc
, a0 5 2, we see that Lcf 5 �f and

P2
j¼0aje

μcj ¼ −1.

For k 5 3, all possible forms of the function are shown below.

Example 2.4. Let f 5 (Az2 þ Bz þ C)eμz, A ≠ 0. Choosing coefficients of Lcf for k 5 3 as

a3 ¼ 1− a0
e3μc

, a2 ¼ −3ð1− a0Þ
e2μc

, a1 ¼ 3ð1− a0Þ
eμc

, one can easily check that Lcf 5 f and
P3

j¼0aje
μcj ¼ 1.

Also, choosing coefficients as a3 ¼ −1− a0
e3μc

, a2 ¼ −3ð−1− a0Þ
e2μc

, a1 ¼ 3ð−1− a0Þ
eμc

, one can easily check

that Lcf 5 �f and
P3

j¼0aje
μcj ¼ −1.

Example 2.5. Consider the function f as in Example 2.2 and choosing the coefficients of Lcf

as a3 ¼ 5
e3μc
, a2 ¼ −9

e2μc
, a1 ¼ 3

eμc
, a0 5 2, we can have Lcf 5 f and

P3
j¼0aje

μcj ¼ 1. On the other

hand, choosing coefficients as a3 ¼ 9
e3μc
, a2 ¼ −15

e2μc
, a1 ¼ 3

eμc
, a0 5 2, we can get Lcf 5 �f

and
P3

j¼0aje
μcj ¼ −1.

Example 2.6. Consider the function f in Example 2.1. Choosing coefficients of Lcf for k5 3

as a3 ¼ −2
e3μc
, a2 ¼ 4

e2μc
, a1 ¼ −3

eμc
, a0 5 2, clearly Lcf 5 f and

P3
j¼0aje

μcj ¼ 1. On the other hand,

choosing coefficients as a3 ¼ −4
e3μc
, a2 ¼ 4

e2μc
, a1 ¼ −3

eμc
, a0 5 2, we easily get Lcf 5 �f

and
P3

j¼0aje
μcj ¼ −1.

Similar examples can be constructed for the case k ≥ 4 also.

Remark 2.2. In Examples 2.4, 2.5, let us take Lcf ¼ Δ3
c f . Choosing eμc 5 2 we see that

though
P3

j¼0aje
μcj ¼ ðeμc − 1Þ3 ¼ 1 but Δ3

c f ≠ f . In a similar manner, for the function in

Examples 2.4, 2.5, choosing eμc ¼ 3þ
ffiffi
3

p
i

2 we get
P3

j¼0aje
μcj ¼ ðeμc − 1Þ3 ¼ −1 but Δ3

c f ≠ − f .

But in Example 2.6, choosing eμc such that
P3

j¼0aje
μcj ¼ 1 or � 1, we automatically have the

respective conclusionsΔ3
c f ¼ f orΔ3

c f ¼ −f . From this observation naturally one can infer that

the case Lcf ¼ Δk
c f needs special attention. In fact, we can conjecture that the degree of h could

be zero that means h will be a nonzero constant.

In this respect, in Theorem 2.1 replacing Lcf by Δk
c f we can get the next corollary.

Corollary 2.1. Under the same assumptions of Theorem 2.1 for the operator Δk
c f we have

Δk
c f ¼ f . In addition, if b 5 �a and k ≥ 2, then Δk

c f ¼ −f . In both cases f takes the form

f(z)5 Beμz, where B and μ are nonzero constants and μ satisfies
Pk

j¼0ð−1Þk−j k
j

� �
eμcj ¼ 1 and

� 1 respectively.

Next we provide two examples to show that ρ2 < 1 is sharp.

Example 2.7. Let f ¼ e
πiz
c ee

2πiz
c . Here λ(f) < ρ(f) and ρ2(f) 5 1. For a suitable choices of

coefficients one can obtain Lcf ¼ −e
πiz
c ee

2πiz
c . For example, for even integer k, choose

ak þ � � � þ a2 þ a0 5 0 and ak�1 þ � � � þ a3 þ a1 5 1. Clearly f and Lcf share the set
{a,�a} CM, where a is an entire function such that ρ(a) < ρ(f). Though Lcf5�f, the form of
f does not satisfy the conclusion of our theorem.
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Example 2.8. Let f ¼ ee
πiz
c . Here λ(f) < ρ(f) and ρ2(f)5 1. For a suitable choices of coefficients,

one can easily obtain Lcf ¼ e−e
πiz
c . For example, for even integer k, choose akþ � � � þ a2þ a05 0

and ak�1 þ � � � þ a3 þ a1 5 1. Clearly f and Lcf share the set f
ffiffiffi
a

p þ ffiffiffi
b

p
;
ffiffiffi
a

p
−

ffiffiffi
b

p g CM,
where a, b are two complex constants such that a� b5 1. Then neither Lcf5±f nor the form of
f satisfies the conclusion of our theorem.

3. Preparatory lemmas
In this section, some useful lemmas are quoted from references [1, 7, 9–12], which will be
needed in the sequel.

Lemma 3.1. [9] Let T: [0,þ∞)→ [0,þ∞) be a nondecreasing continuous function, and let
s ∈ (0, þ ∞). If the hyper-order of T is strictly less than 1,that is,

lim sup
r→∞

log logTðrÞ
log r

¼ ρ2 < 1;

and δ ∈ (0, 1 � ρ2), then

Tðr þ sÞ ¼ TðrÞ þ o
TðrÞ
rδ

� �
;

where r runs to infinity outside of a set of finite logarithmic measures.

Lemma 3.2. [9] Let f(z) be a meromorphic function of ρ2(f) < 1 and c∈Cnf0g. Then

m r;
f ðzþ cÞ
f ðzÞ

� �
¼ o

Tðr; f Þ
r1−ρ2−e

� �
:

Using the above two basic lemmas due to [9], we have the next lemma.

Lemma 3.3. Let f(z) be a meromorphic function of ρ2(f) < 1 and c∈Cnf0g. Then for any
e > 0,

m r;
f ðzþ icÞ
f ðzþ jcÞ

� �
¼ o

Tðr; f Þ
r1−ρ2−e

� �
:

Using Lemma 3.1, by a simple alteration of the result for finite-order meromorphic functions
in [8], one can have the following lemma.

Lemma 3.4. Let f(z) be a meromorphic function of ρ2(f) < 1, then we have

Nðr; f ðzþ cÞÞ ¼ Nðr; f Þ þ Sðr; f Þ
and

Tðr; f ðzþ cÞÞ ¼ Tðr; f Þ þ Sðr; f Þ:

Lemma 3.5. [7] Let f be a transcendental meromorphic function in the plane of order less
than 1. Let h > 0. Then there exists an e-set E such that

gðzþ cÞ
gðzÞ → 1; when z→∞ in CnE;

uniformly in c for jcj ≤ h.
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Lemma 3.6. [1, 10] Let f(z) be a transcendental meromorphic solution of equation

f nAðz; f Þ ¼ Bðz; f Þ;
where A(z, f), B(z, f) are polynomials in f and its derivatives with meromorphic
coefficients, say {aλ: λ ∈ I}, such that m(r, aλ) 5 S(r, f) for all λ ∈ I. If the total degree of
B(z, f) is ≤ n, then

mðr;Aðz; f ÞÞ ¼ Sðr; f Þ:

Lemma3.7. (see [12], Theorem 1.51) Suppose that fi(z) (i5 1, 2, . . ., n) and gi(z) (i5 1, 2, . . .,
n) (n ≥ 2) are entire functions satisfying

(1)
Pn

i¼1fiðzÞegiðzÞ ≡ 0,

(2) gj(z) � gk(z) are not constants for 1 ≤ j < k < n,

(3) for 1 ≤ i ≤ n, 1 ≤ k < l ≤ n,

Tðr; fiÞ ¼ ofTðr; egk−gl Þg ðr→∞; r∉EÞ:

Then fi(z) ≡ 0 (i 5 1, 2, . . ., n).
Now we recall the following lemma due to Lu-Lu-Li-Xu (see [11], Corollary 3.2).

Lemma 3.8. [11] Let g (u0) be a nonconstant meromorphic solution of the linear difference
equation

Xk
i¼0

bigðzþ icÞ ¼ RðzÞ; (3.1).

where R(z) is a polynomial and bi
0s for i 5 0, 1, . . .k are complex constants with bkb0 ≠ 0,

c∈Cnf0g and k∈N. Then either ρ(g) ≥ 1 or g is a polynomial. In particular if bk ≠ ± b0,
then ρ(g) ≥ 1.

4. Proof of the main theorem

Proof of Theorem 2.1. According to our assumption λ(f) < ρ(f) and by Hadamard
factorization theorem, let us assume that f(z)5 h(z)eη(z), where h(z) (u0) is an entire function
and η(z) is a nonconstant entire function satisfying

λðf Þ ¼ ρðhÞ < ρðf Þ; ρðeηÞ ¼ ρðf Þ; ρðηÞ ¼ ρ2ðeηÞ ¼ ρ2ðf Þ < 1:

Therefore T(r, h) 5 S(r, f) and S(r, eη) 5 S(r, f) 5 S(r). Here,

Tðr; f Þ≤Tðr; hÞ þ Tðr; eηÞ≤Tðr; eηÞ þ SðrÞ: (4.1)

Let qðzÞ ¼ Lcf
eη
. Clearly q u 0. Then placing f(z) 5 h(z)eη(z), in view of Lemma 3.4, we can

deduce that
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Tðr; qÞ ¼ mðr; qÞ ¼ m r;
LcðhðzÞeηðzÞÞ

eηðzÞ

� �
¼ m r;

Xk
j¼0

ajhðzþ jcÞeηðzþjcÞ−ηðzÞ
 !

≤
Xk
j¼0

m r;
eηðzþjcÞ

eηðzÞ

� �
þ SðrÞ

¼ Sðr; eηÞ ¼ SðrÞ:

Since q and h are not equivalent to zero, one can easily write

ðqeη � aÞðqeη � bÞ
ðheη � aÞðheη � bÞ ¼

q2 eη � a
q

� �
eη � b

q

� �
h2 eη � a

h

� �
eη � b

h

� � : (4.2)

Applying the Second Fundamental Theorem for small functions [1] on eη and then applying
the First Fundamental Theorem [1] on eη � ω, we can obtain that

Tðr; eηÞ ¼ N r;
1

eη � ω

� �
þ SðrÞ; (4.3)

where ω (u0) is a small function of eη.
Here aub. Without loss of generality, let us assume that au0. Let z0 be a zero of e

η − a
h
but

q(z0)≠ 0. Since f andLcf thatmeans heη and qeη share the set {a, b} IM, so in view of (4.2), z0 is a

zero of eη − a
q
or eη − b

q
. Let us denote by Nðr; 0; eη − a

h
; eη − a

q
Þ the reduced counting function of

those common zeros of eη − a
h
and eη − a

q
, which are not zeros of q. Similarly, we denote by

Nðr; 0; eη − a
h
; eη − b

q
Þ the reduced counting function of those common zeros of eη − a

h
and eη − b

q
,

which are not zeros of q. Therefore from (4.3) we have,

Tðr; eηÞ ¼ N r;
1

eη � a
h

� �
þ SðrÞ

¼ N r; 0; eη � a

h
; eη � a

q

� �
þ N r; 0; eη � a

h
; eη � b

q

� �
þ SðrÞ;

which shows that either N r; 0; eη − a
h
; eη − a

q

� �
≠ SðrÞ or N r; 0; eη − a

h
; eη − b

q

� �
≠ SðrÞ.

Otherwise T(r, eη) 5 S(r). This is not possible because in view of (4.1), we can draw a
contradiction. Now, we consider two cases:

Case 1. SupposeN r; 0; eη − a
h
; eη − a

q

� �
≠ SðrÞ. For sake of convenience, we resolve the case

step by step.

Step 1. In this step we will show that Lcf ≡ f.

Let z1 is a zero of e
η − a

h
and eη − a

q
. It is obvious that z1 is a zero of

a
h
− a

q
. If a

h
− a

q
u0, then

N r; 0; eη � a

h
; eη � a

q

� �
≤N r;

1
a
h
� a

q

 !
¼ SðrÞ;

which is a contradiction. Therefore h 5 q that implies Lcf 5 f.
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Step 2. In this step we show that η(z) is a polynomial.

Expanding Lcf 5 f we can write

Xk
j¼0

ajhðzþ jcÞeηðzþjcÞ ¼ hðzÞeηðzÞ: (4.4)

Choosing bj 5 ajh(z þ jc) for j 5 1, 2, . . ., k and b0 5 (a0 � 1)h(z) we get
Pk

j¼0bje
ηðzþjcÞ ¼ 0.

Clearly ρ(bl) 5 ρ(h(z þ lc)) 5 ρ(h) < ρ(f) for all l 5 0, 1, . . ., k. So, bl
0s are finite-order entire

functions. We claim that ρ(eη(z þ ic)�η(z þ jc)) < ∞, for at least one pair of i, j; such that
0≤ i< j≤ k. On the contrary, let us suppose, for all 0≤ i< j≤ k, ρ(eη(z þ ic)�η(z þ jc))5∞. Then
T(r, bl)5 o{T(r, eη(z þ jc)�η(z þ ic))}, for 0≤ l≤ k and 0≤ i< j≤ k. Hence by Lemma 3.7, bl≡ 0 for
all l5 0, 1, . . ., k, which is not possible. Thereby ρ(eη(z þ ic)�η(z þ jc)) <∞ implies that η(zþ ic)�
η(z þ jc) is a polynomial. Let the degree of η(z þ ic) � η(z þ jc) be m. So, η(mþ1)(z þ ic) �
η(mþ1)(z þ jc) 5 0 that means η(mþ1)(z þ ic) is periodic entire function of period (j � i)c. If
η(mþ1)(z þ ic) is nonconstant, then obviously ρ(η(mþ1)(z þ ic)) ≥ 1, which yields
ρ(η) 5 ρ(η(z þ ic)) 5 ρ(η(mþ1)(z þ ic)) ≥ 1. But ρ(η) < 1, a contradiction. Hence η(mþ1)(z þ ic)
is a constant and so η(mþ1)(z) is constant, which implies η(z) is polynomial.

Step 3. In this step we wish to show that the degree of η(z) is 1.

On the contrary, suppose the deg(η(z)) 5 n(say) ≥ 2. Then for j 5 1, 2, . . ., k,

eηðzþjcÞ−ηðzÞ ¼ ejcncnz
n�1þQjðzÞ;

where Qj(z) is a (n � 2)-th degree polynomial and cn is the leading coefficient of η(z). Let
g ¼ ecncnz

n− 1
. So, for j 5 1, 2, . . ., k, eηðzþjcÞ−ηðzÞ ¼ gjeQjðzÞ. Clearly Tðr; eQj−QkÞ ¼ Sðr; gÞ for all

j 5 1, 2, . . ., k � 1 and Tðr; e−QkÞ ¼ Sðr; gÞ. Here we will draw a contradiction by deducing
T(r, g) 5 S(r, g). Rewriting (4.4) we have

Xk
j¼1

aj
hðzþ jcÞ
hðzÞ eQjðzÞgj ¼ 1� a0:

i.e.

gk−1g ¼ 1� a0

ak

hðzÞ
hðzþ kcÞe

−QkðzÞ �
Xk−1
j¼1

aj

ak

hðzþ jcÞ
hðzþ kcÞe

QjðzÞ−QkðzÞgj: (4.5)

As η(z) is a polynomial, so ρ2(h) ≤ ρ2(e
η) 5 ρ(η) 5 0, which implies ρ2(h) 5 0. Since

ρ(h) � 1 < ρ(f) � 1 5 ρ(eη) � 1 5 n � 1 5 ρ(g), so by Lemma 3.3, for any e > 0,

m r; hðzþjcÞ
hðzþkcÞ

� �
¼ o

Tðr;hÞ
r1−e

� �
¼ Sðr; gÞ, j 5 0, 1, . . ., k � 1.

Let Hðz; gÞ ¼Pk−1
j¼0Cjg

j, where Cj ¼ aj
ak

hðzþjcÞ
hðzþkcÞe

QjðzÞ−QkðzÞ for j 5 1, 2, . . ., k � 1 and

C0 ¼ 1− a0
ak

hðzÞ
hðzþkcÞe

−QkðzÞ. Thus, (4.5) can be written as gk�1g 5 H(z, g). Clearly total degree of

H(z, g) is at most k� 1 andm(r, Cj)5 S(r, g) for j5 0, 1, . . . k� 1. Hence by Lemma 3.6,m(r,
g)5 S(r, g) that meansT(r, g)5 S(r, g), a contradiction. Therefore deg(η(z))5 1. Let us assume
that η(z) 5 μz þ C, where μ and C be two nonzero constants.

Step 4. In this step we deduce a necessary condition and actual form of the function.
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Putting η(z)5 μzþ C in f(z)5 h(z)eη(z), we have f(z)5 Ah(z)eμz, where A5 eC is a nonzero
constant. Now, applying this, (4.4) can be written as

Xk
j¼0

ajhðzþ jcÞ eμcð Þj ¼ hðzÞ: (4.6)

i.e.

Xk
j¼0

aj
hðzþ jcÞ
hðzÞ eμcð Þj ¼ 1:

Since ρ(h) < ρ(f)5 ρ(eμz)5 1, so by Lemma 3.5, there exist e-set E, as z ∉ E and z→∞, such

that hðzþjcÞ
hðzÞ → 1. Thereby,

Xk
j¼0

aje
μcj ¼ 1: (4.7)

Since ρ(h) < 1, so by Lemma 3.8, we know that h(z) is a polynomial. Let us assume that
h(z)5 clz

lþ cl�1z
l�1þ � � � þ c1zþ c0. Putting it into (4.6) and then comparing coefficients and

doing a simple calculation, we have (4.7) and

l
Xk
j¼1

jaje
μcj ¼ 0; ðl � 1Þ

Xk
j¼1

j2aje
μcj ¼ 0;

ðl � 2Þ
Xk
j¼1

j3aje
μcj ¼ 0; . . . . . . ; ðl � ðl � 1ÞÞ

Xk
j¼1

jlaje
μcj ¼ 0:

Without loss of generality, we assume that all ai
0 s for i5 1, 2, . . ., k are nonzero. Now, the

above system of equations can be written as

A1X ¼ B; (4.8)

where A1 ¼

1 1 1 . . . 1
1 2 3 . . . k
12 22 32 . . . k2

. . . . . . . . .
1l 2l 3l . . . kl

0
BBBB@

1
CCCCA

ðlþ1Þ3 k

, X ¼

a1e
μc

a2e
2μc

a3e
3μc

. . .
ake

kμc

0
BBBB@

1
CCCCA

k3 1

and B ¼

1−a0
0
0
. . .
0

0
BBBB@

1
CCCCA

ðlþ1Þ3 1

.

Let C be the corresponding augmented matrix. It is obvious that rank(A1)5min{lþ 1, k}.
Clearly rank(C) 5 min{l þ 1, k þ 1}.

Suppose a0 ≠ 1. So the nonhomogeneous system (4.8) has unique solution when l5 k� 1,
infinitely many solutions when l < k � 1 and no solutions when l > k � 1. Hence
deg(h) ≤ (k � 1).

Next suppose a0 5 1. Then for k 5 1, Lcf 5 f and (4.7) both implies a1 5 0, which is not
possible. So in this case obviously k ≥ 2. Now, the homogeneous system A1X 5 0 has
solutions when l ≤ k � 2. Thus, we have our desired Conclusion 1.

Case 2. Suppose N r; 0; eη − a
h
; eη − b

q

� �
≠ SðrÞ. Let z2 is a zero of eη − a

h
and eη − b

q
. It is

obvious that z2 is a zero of
a
h
− b

q
. If a

h
− b

q
u0, then
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N r; 0; eη � a

h
; eη � b

q

� �
≤N r;

1
a
h
� b

q

 !
¼ SðrÞ;

which is a contradiction. Therefore

a

h
¼ b

q
: (4.9)

Since au0, therefore bu 0. Let z3 be a zero of e
η − b

h
but q(z0) ≠ 0. Since heη and qeη share the

set {a, b} IM, so z3 is a zero of e
η − a

q
or eη − b

q
. Let us denote byNðr; 0; eη − b

h
; eη − a

q
Þ the reduced

counting function of those common zeros of eη − b
h
and eη − a

q
, which are not zeros of q.

similarly, we denote by Nðr; 0; eη − b
h
; eη − b

q
Þ the reduced counting function of those common

zeros of eη − b
h
and eη − b

q
, which are not zeros of q. Therefore from (4.3) we have,

Tðr; eηÞ ¼ N r;
1

eη � b
h

 !
þ SðrÞ

¼ N r; 0; eη � b

h
; eη � a

q

� �
þ N r; 0; eη � b

h
; eη � b

q

� �
þ SðrÞ;

which shows that either N r; 0; eη − b
h
; eη − a

q

� �
≠ SðrÞ or N r; 0; eη − b

h
; eη − b

q

� �
≠ SðrÞ.

Otherwise T(r, eη) 5 S(r), which is not possible in view of (4.1). Now, we consider two
subcases:

Subase 2.1. SupposeN r; 0; eη − b
h
; eη − a

q

� �
≠ SðrÞ. Then proceeding in a similar manner as

used in starting portion of Case 2, we have b
h
¼ a

q
. In view of (4.9) we get, a2 5 b2. As aub, so

obviously b5�a. Therefore we must have q5�h that implies Lcf5�f. Further following
the same steps as done in Case 1, we can have the form of the function as f(z) 5 Ah(z)eμz

satisfying Xk
j¼0

aje
μcj ¼ −1: (4.10)

Next adopting the similar calculations as done in Step 4, for a0≠� 1, we have deg(h)≤ (k� 1)
and for a0 5 �1, we have k ≥ 2 and deg(h) ≤ (k � 2). Thus, we have corresponding desired
conclusion (2).

Subcase 2.2. Suppose N r; 0; eη − b
h
; eη − b

q

� �
≠SðrÞ, which is similar to the Case 1 and so,

we get the desired result.
Hence the proof is completed. ,

Proof of Corollary 2.1. To prove this corollary, it is sufficient to prove that deg(h) 5 0,
where h(z)5 clz

l þ cl�1z
l�1 þ � � � þ c1zþ c0 (l ≤ k� 1), cl ≠ 0. We know for the operator Δk

c f ,

aj ¼ ð−1Þk−j k
j

� �
, where j 5 0, 1, . . ., k.

From conclusion 1. of Theorem 2.1 we have,Δk
c f ¼ f and f takes the form f5Ah(z)eμz, where

A is a nonzero constant, h(z) is a polynomial and μ is a nonzero constant satisfyingPk
j¼0ð−1Þk−j k

j

� �
eμcj ¼ 1, that is, ðeμc − 1Þk ¼ 1. Now putting f 5 A(cl z

l þ cl�1z
l�1

þ � � � þ c1z þ c0)e
μz into Δk

c f ¼ f and then comparing coefficient of zk�1, we have
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Xk
j¼1

ðlcl jcþ cl−1Þð�1Þk−j k

j

� �
eμcj ¼ cl−1

0 lcl c
Xk
j¼1

jð�1Þk−j k

j

� �
eμcj þ cl−1ðeμc � 1Þk ¼ cl−1:

As c ≠ 0, cl ≠ 0 and ðeμc − 1Þk ¼ 1 and also we know j k
j

� �
¼ k k− 1

j− 1

� �
, so we get

l
Xk
j¼1

ð�1Þk−jk k� 1

j� 1

� �
eμcj ¼ 0

0 l
Xk−1
j¼0

ð�1Þðk−1Þ−j k� 1

j

� �
eμcj ¼ 0 0 lðeμc � 1Þk−1 ¼ 0:

(4.11)

Clearly in view of ðeμc − 1Þk ¼ 1, l must be 0.

From conclusion 2. of Theorem 2.1 we have, b 5 �a, Δk
c f ¼ −f and f takes the form

f5 Ah(z)eμz, where A is a nonzero constant, h(z) is a polynomial and μ is a nonzero constant

satisfying
Pk

j¼0ð−1Þk−j k
j

� �
eμcj ¼ −1, that is, ðeμc − 1Þk ¼ −1. Here obviously k ≥ 2.

Proceeding in a similar manner as in above, again we can have (4.11) and in view of

ðeμc − 1Þk ¼ −1, we can conclude l5 0. So in both cases l5 0 thatmeans deg(h)5 0. Hence the
corollary is proved. ,

5. Observation and an open question
Aswe know λ(f)≤ ρ(f) and since throughout the paperwe have dealt with the case λ(f) < ρ(f), it
will be interesting to inspect whether the same conclusions hold for the case λ(f)5 ρ(f). In the
next two examples we point out the fact that when λ(f)5 ρ(f), the conclusion of Theorem 2.1
ceases to hold.

Example 5.1. Let f5 ez(e2zþ 1). Choose c5 πi and for even integer k, akþ � � � þ a2þ a05 0
and ak�1 þ � � � þ a3 þ a1 5 1. Then λ(f) 5 ρ(f) 5 1 and Lcf 5 �ez(e2z þ 1). Clearly Lcf and f
share the set {a,�a} CM, where a is an entire function such that ρ(a) < ρ(f). Though Lcf5�f,
the form of f does not satisfy the conclusion of Theorem 2.1.

Example 5.2. Let f 5 �ez þ 3 and ðec − 1Þ2 ¼ −1. Then Δ2
c f ¼ ez and λ(f) 5 ρ(f) 5 1.

Clearly Δ2
c f and f share the set {1, 2} CM but Δ2

c f ≠±f .

In view of the above two examples, we can conclude that in Theorem 2.1, λ(f) < ρ(f) is sharp,
but the conclusion of the same theoremunder the case λ(f)5 ρ(f) is still an enigma. Sowe place
it as an open question:

Question 5.1. Under the hypothesis λ(f) 5 ρ(f), what will be the answer of the Question 1.1

concerning Δk
c f or even Lcf?
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