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Abstract

Purpose — The purpose of this paper is to show the existence results for adapted solutions of infinite horizon
doubly reflected backward stochastic differential equations with jumps. These results are applied to get the
existence of an optimal impulse control strategy for an infinite horizon impulse control problem.
Design/methodology/approach — The main methods used to achieve the objectives of this paper are the
properties of the Snell envelope which reduce the problem of impulse control to the existence of a pair of right
continuous left limited processes. Some numerical results are provided to show the main results.

Findings — In this paper, the authors found the existence of a couple of processes via the notion of doubly
reflected backward stochastic differential equation to prove the existence of an optimal strategy which
maximizes the expected profit of a firm in an infinite horizon problem with jumps.

Originality/value — In this paper, the authors found new tools in stochastic analysis. They extend to the
infinite horizon case the results of doubly reflected backward stochastic differential equations with jumps.
Then the authors prove the existence of processes using Envelope Snell to find an optimal strategy of our
control problem.

Keywords Impulse control, Infinite horizon, Jumps, Reflected backward stochastic differential equations,
Double barrier, Constructive method of the solution

Paper type Research paper

1. Introduction

The main motivation of this paper is to prove the existence of an optimal strategy which
maximizes the expected profit of a firm in an infinite horizon problem with jumps. More
precisely, let a Brownian motion (W;),,, and an independent Poisson measure u(d?, de)
defined on a probability space (€, A, P)and let F be the right continuous complete filtration
generated by the pair (W, u). Assume that a firm decides at stopping times to change its
technology to determine its maximum profit. Let {1, 2} be the possible technologies set.
A right continuous left limited stochastic process X models the firm log value and a process
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(&, t>0) taking its values in {1, 2} models the state of the chosen technology. The firm net
profit is represented by a function f, the switching technology costs are represented by ci »
andcz1, f > Oisadiscount coefficient. Then, the problem is to find an increasing sequence of
stopping times @ := (7,),,_;, Where 7_; =0, optimal for the following impulse control
problem -

+o0
K@, i, x) :=esssupF;, / e Pf (&, X,)ds — Z{e‘ﬁfz”qz + ¢ P 62,1} ,
0

acA >0

where A denotes the set of admissible strategies. The Snell envelope tools show that the
problem reduces to the existence of a pair of right continuous left limited processes
(Y, Y?). This idea originates from Hamadéne and Jeanblanc [1]. Their results are
extended to infinite horizon case and mixed processes (namely jump-diffusion with a
Brownian motion and a Poisson measure). In [1] the authors considered a power station
which has two modes: operating and closed. This is an impulse control problem with
switching technology without jump of the state variable. They solved the starting and
stopping problem when the dynamics of the system are the ones of general adapted
stochastic processes.

The existence of (Y1, Y?) is established via the notion of doubly reflected backward
stochastic differential equation. In this context, another interest of our work is to extend to the
infinite horizon case the results of doubly reflected backward stochastic differential
equations with jumps. Specifically, a solution for the doubly reflected backward stochastic
differential equation associated to a stochastic coefficient g, a null terminal value and a lower
(resp. an upper) barrier (L;)o(resp. (Ur) ) is @ quintuplet of F-progressively measurable
processes (Y3, Z;, Vi, K;", K;),» which satisfies

+o00 400 +o0 +o0 ©0

Ve [ eteass [ ai- [ akc - [ zaw [ [ vieis.ae),
t t t t t E

L,<Y,<U,, V>0 1)

t t
/ (YS—LS)dK::/ (Yo—Uy)dK-=0,P—ass.
0 0

where /i is the compensated measure of .

Another specificity of this paper is to promote a constructive method of the solution
of a BSDEs with two barriers. Specifically, we do not assume the so called Mokobodski’'s
hypothesis. Indeed this one is not so easy to check (see e.g. [2] in finite horizon and
continuous case). Our assumptions are more natural and easy to check on the barriers in
practical cases.

The notion of backward stochastic differential equation (BSDE) was studied by Pardoux
and Peng [3] (meaning in such a case L = —oo, U = +oc0 and K* = 0). To our knowledge,
they were the first to prove the existence and uniqueness of adapted solutions, under suitable
square-integrability and Lipschitz-type condition assumptions on the coefficients and on the
terminal condition. Several authors have been attracted by this area that they applied in
many fields such as Finance [1, 4-6], stochastic games and optimal control [7-10], and partial
differential equations [11].

The existence and the uniqueness of BSDE solutions with two reflecting barriers and
without jumps have been first studied by Cvitanic and Karatzas [4] (generalization of El
Karoui et al. [5]) applied in Finance area by El1 Karoui ef al. [6]. There is a lot of contributions on
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this subject since then, consisting essentially in weakening the assumptions, adding jumps
and considering an infinite horizon.

The extension to the case of BSDEs with one reflecting barrier and jumps has been studied
by Hamadene and Ouknine [8] considering a finite horizon 7' = 1. The authors show the
existence and uniqueness of the solution using the penalization scheme and the Snell
envelope tools. They stress the connection between such reflected BSDEs and integro-
differential mixed stochastic optimal control. The authors’ assumptions are: the terminal
value is a square integrable random variable, the drift coefficient function g(¢, w, y, z, v) is
uniformly Lipschitz with respect to (v, z, v) and the obstacle (S;), 4 is a right continuous left
limited process whose jumps are totally inaccessible. Hamadéne and Ouknine [12] deal with
reflected BSDEs in finite horizon, the barrier being right continuous left limited and
progressively measurable. Hamadene and Hassani [9] proved existence and uniqueness
results of local and global solutions for doubly reflected BSDEs driven by a Brownian motion
and an independent Poisson measure in finite horizon. The authors applied these results to
solve the related zero-sum Dynkin game.

Here the model is inspired from the papers [5, 8-10, 12]. But their results do not apply
directly to the situation which here requires an infinite horizon. Moreover we connect the
reflected BSDE with the impulse control problem. All these papers provide a solution to
the reflected BSDE problem which are here extended to the case of infinite horizon by
adding a discount coefficient and imposing admissibility conditions of strategies. In this
paper, the drift function is assumed to be Lipschitz and non-increasing in y. It is proved
that the reflected BSDE solutions are limit of Cauchy sequences in appropriate complete
metric spaces. Another interesting area is the one of oblique reflections, meaning a
multimodal switching problem, see for instance [13-15]. El Asri [14] considers the same
problem proposed by Hamadene and Jeanblanc [1] and extends it to the infinite horizon
case without jump of the state variable, namely a power station which produces
electricity and has several modes of production (the lower, the middle and the intensive
modes). Naturally, the switching from one mode to another induces costs. The optimal
switching problem is solved by means of probabilistic tools such as the Snell envelop of
processes and reflected backward stochastic differential equations. Moreover their proofs
are based on the verification theorem and the system of variational inequalities that we
do not use.

Our purpose is similar to the one in [16], but instead of using Snell envelope and fixed point
theorem as they do, here the two barriers case is solved using comparison theorem in one
barrier case and adding some assumptions on the drift coefficient g.

This paper is composed of six sections. Section 2 presents the impulse control problem and
describes the corresponding model. Section 3 introduces a pair of right continuous left limited
processes (Y1, Y?) that allows one to exhibit an optimal strategy. Section 4 extends the
doubly reflected BSDEs tools in the infinite horizon setting with jumps: first the case of a
single barrier with general Lipschitz drift is solved, then a comparison theorem is proved,
finally the uniqueness and the existence of solution for the doubly reflected BSDE under
suitable assumptions are proved in case of drift non depending on state (y, z, v). Section 5
proves the existence of the required pair (Y, Y?), and provides an application of these
doubly reflected BSDE to a switching problem. Finally, with some simulations, the results
allow to define an optimal strategy in Section 6. An appendix is devoted to an extension of
Gronwall’s lemma and some technical results.

2. Preliminaries and problem formulation
Let (Q, F, P) be a filtered complete probability space with a right continuous complete
filtration [ = (F), generated by the two following mutually independent processes:



(1) al —dimensional Brownian motion W = (W}) 5.

(2) a point process N; := fo Jeu(ds, de) associated with a Poisson random measure y
on R™ X E, where £ = R\{0}, for some > 1 endowed with its Borel o-algebra €&,
with compensator v(dt, de) = dtA(de), for a o-finite measure A on (E, &),
; E(l/\\e|2)/1(de) < o0; ji := p — v denotes the compensated measure associated with y.

Assume that a firm decides at random times to switch the technology in order to maximize its
profit: the firm switches from the technology 1 to the technology 2 along a sequence of
stopping times. An impulse control strategy is defined as a sequence a := (z,),5_;, Where
(Tn),>_1 1S @ sequence increasing to infinity of F-stopping times with 7_; = 0. The sequence
(7,) models the impulse time sequence of the system as follows: for every 7 > 0, 7, is the time
when the firm moves from technology 1 to technology 2 and 79,1 is the time when the firm
goes from 2 to 1. A cadlag process (&;) taking its values in {1, 2} is defined by

fl‘ = Z]‘[TZn—l-TZn[(t) + 221[72ne72n+1[(t)' (2)

n>0 n>0

Given K > 0and a measurable map y : R X E — R such that
sup |y(0, e)| <K andsup |y(x, e) — y(x, e)| <K|x — x| Vx, ¥ €R, (6))
cek ecE

the firm value is defined as S; := exp X, ¢ >0, where (X;) is the cadlag process

X, = X, + /b ds+/ dW+// X, e)i(ds, de), @

where X, € R is the initial condition, b : R - R and ¢ : R — R are two measurable functions
satisfying the K-Lipschitz condition (thus the sublinear growth condition).

The instantaneous net profit of the firm is given in terms of a positive function f,
depending on the technology in use and the value of the firm. Let ¢z 1 and ¢  be the positive
switching technology costs, ¢;; if one passes from technology ¢ to technology j, with regular
enough assumptions which will be specified later. One considers a discount coefficient g > 0
then, the profit associated with a strategy a is defined as

+oo
k(a) := / e_ﬂsf(fs, X,)ds — Z{e—ﬂmclz 4 e—ﬂrznﬂcm}’
0 n20

and the expected profit of the firm is defined by

oo
K(a, i, x) .= Ej, / ePf (&, X)ds =Y {e?™ ey + ey} | ®)
0

n>0

Definition 2.1. The strategy a := (7),,»_; is admissible if:

+o0
/ e_ﬂsf(fs, Xs)ds and Z{e—ﬂrzﬂ 1o + o P o1 }
0

n20

belong to L'(Q, F, P). We denote by A the set of admissible strategies.
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281 which maximizes the expected profit:
b

K(a, i, x) := sup,e 4 Eix {/0“" ePf (&, X )ds — Z{e—/’%cm +e e} (6)
=0

The following notations will be used:

(1) 7T :={6:F-stoppingtime}, 7,:={0€T : 6>t}.

(2) P :={ F-progressively measurable cadlag processes}.
3 C*:= {(Xi);50 € P : suchthat E[sup 1X; "] < oo}
4) H':={(X)EP: such‘chat[E[\/fOoo \Xt|2dt] < oo}.
5) HZ2:={(X;)€P: such thatE[ [ |X,[’ds] < wo}.
6) P the o algebra of F-predictable sets on Q X [0, + oo].
7) L2/ QX [0,400] X E— R, P®E —measurables.£. E[f;°[;| Vs(e) *A(de)ds) < oo}
8) I7:=1°(Q, Foo,P),p=1, 2.

9 B .=F(Q, Fo,P),p=1,2.

(10) Class[D]: {processes U : (Uy, 8 € T ) uniformly integrable}.

3. The impulse control problem

Section 5 shows that the problem reduces to the existence of a pair of cadlag processes
(Y, Y?) using the Snell envelope tools: this idea originates from Hamadene and Jeanblanc
[1]. The existence of (Y, Y?)is established in Section 5 via the reflected BSDEs tools. Indeed,
the solution of the reflected BSDE corresponds to the value function of an optimal stochastic
control problem and these processes allow to build an optimal switching strategy. We based
on [17] to use the fundamental optimal control concepts.

Proposition 3.1. Assume that there exist two right continuous left limited, regular
(meaning that the predictable projection coincide with the left limit) R-valued processes
Y1 = (Y})50and Y2 = (Y?),5, of class [D] and satisfying the properties

4
V! = esssup [E[/ (1, Xo)ds — e + Y,}2|]-",} @)

0eT, t

0eT,

Y;:Yi:O,CiJ’>O.

0
Y? =esssupE {/ e (2, X,) ds — e ey + Y91|}'t] @
t

where f(i,.) are positive functions satisfying [;° e f%(i, X;)ds € L', i=1,2 Then

Y} = sup,ea K(a, 1, x). Moreover, the strategy @ = (t,),, defined as follows:



T1 = 0
Ty = Inf{t > 71, Y} < — P01+ Y}, V020
Topt] = Hlf{l‘ > Toy, Ytz < - 671}1‘6271 + Ytl}

is optimal for the impulse control problem (6).

The proof is based on the properties of the Snell envelope. The scheme of the proof is
similar to the one in [18] and also [14, Appendix A, p. 246] as soon as the processes Y* are
regular. As a consequence of (7) and (8), remark that almost surely

—e e, <Y = V<. )

4. Reflected BSDE with jumps and infinite horizon

In this section, the results from [10] are extended to infinite horizon reflected backward
stochastic differential equations with general jumps, showing existence and uniqueness of an
infinite horizon solution, imposing additional assumptions on the drift function and using
appropriate estimates of the process Y. The following assumptions are done:

(1) (H1): Amapg: Q X [0, 400 X R X 13(E, &, 4;R) = R which is F-progressively
measurable and:
V(¢ z, v), yg(t, ¥, z, v) isnon increasing almost surely,
3C > Osuchthatforany >0, v, ¥ €R, 2,z €R?, v, v € 1*(E, &, ;;R) :
|g(t7y7 Z, U) 7g(tay727 'U)|SC(‘y*y ‘ + |272 | =+ ||1)—1} ||)CZ.S‘

where the norm of L*(E, &, 4; R) is defined as ||v]|” := [, (e)A(de).
+ oo

@) (H]) An [F-progressively measurable map g:Q X [0, + co[— R such that

[ ePg(s)dsel!,

() (Hz2) :Let the barriers (L;),»oand (U;);s, be F-progressively measurable continuous
real valued processes satisfying

E[sup( j)z] < oo, limsupL, <0<U, P as.
>0 t—+o0

To prove the existence of the solution for doubly reflected BSDE with jumps and infinite
horizon, we first consider the case of a single barrier (Section 4.1) then a comparison theorem
is proved in Section 4.2.

4.1 Reflected BSDE in case of a single barrier, infinite horizon
In this subsection, the case of infinite horizon reflected BSDE with one barrier and general
jumps is considered.

Definition 4.1. Let (¢7”g,L) be given. A solution of the reflected BSDE associated to
(¢7%g,L)is a quadruplet of processes (Y, Z, V, K) satisfying for any ¢ > 0:

(1) Ye® ZeBand Ve’

(2) almost surely

-
yt:/ ﬂs(sK,Zs,Vder/ dK, — / Zdw, — //V i(ds, de),
t

(10)
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28,1 (4) (K;)isanon-decreasing process satisfying E[( f;° dK. 3)2} < o0, Ky = 0, and for any ¢

t
/ (Yo — Ly)dK,; =0, P-as.
0

8 We then prove the following:

Theorem 4.2. Let (¢ #g, L) satisfy Hypotheses (H;), ¢ = 1, 2. Then there exists a unique
process (Y, Z, K, V) solution to the BSDE associated to (¢ g, L).

Proof: (1) As a first step, the uniqueness of the solution is insured: if there exist two solutions,
the proof of uniqueness is a standard one. For instance, look at Theorem 4.8 proof.

(2) Under the hypothesis [F[sup; (L,f)2 ] < o0, Theorem 2.1[10] can be applied: there exists
a quadruplet (Y7, ZT, KT VT) verifying YT e ZTen? vl e?, (actually
restricted to f€ [0, T)and V¢ < T :

Lt S K‘T7
T T T T
vl = / ePg(s, Y, ZT, VST)der/ K’ 7/ ZTdw; 7/ /VsT(e)ﬁ(ds7 de),
t t t t E
1)
2
T t
[E(/ dKf) < o003 V£ >0, / (Yl —L-)dK! =0P as. 12
0 0
Considering T< S, S, TeR™", onehas Vs < T :
d<YsS _ K]) — s [g(& YSS7ZSS’ Vf) 7g(s7 YST,ZST, Vg)}ds
- [dKf - dKST} + [Zf - Zf]dWs + / [Vf(e) - VST(e)] fi(ds, de).
E
13)

Applying Ito’s formula to the process s — (Y — YST)2 between ¢ and T yields

() = w)'s [ (-2 ass S[a(vr-v)]

t<s<T

2 S (v v (s ¥R 25 VE) s, ¥, 27, V) as
+2/T(yss_ysr) [45_4T}dm+2/T/{(K§—KT) (14)
t t E
(vt - vI(0) |t e

T
—z/t (vS -1+ L - v]) (dKS - dKT).



Using (Y —Ly)dK? = (YL —L)dKI = 0and Ly < Y5 and Y, one has Infinite horizon
impulse control

T - N7 . - bl

/t (VS ~ Lo+ Lo - Y])(aKS — dKT) = /t (L= YE)aKT + (L~ YT)aKS] <o, problem
S0 we get 9

(rwr)'s [ (ozr)ass 3 [a ()]

< <Y§)2+2/tTe_ﬂs(Yss_ YST> [ (57 Yf,Zf, Vs) g(s, YST7 2577 Vf)}ds

o[- -zawa [ [[(ve-v2) (v - v @) s, o

(15)

Considering the decomposition: g(s, Y, Z3, V) —g(s, YT, ZI V) = g(s, Y3, 25, V5) -
g(s, YST,ZSS7 VSS) g(s, YT7ZSS, VSS) —g(s, YT ZT VS) +g(s YT ZT VS)— (s, YST,ZST

VT) the Lipschitz property of the function g, the Cauchy-Schwarz inequality and the non-
increasing property of the map y—g(t,, z, v) for any (¢, z, v) and a > 0 lead to

Z/tTe—ﬂs(ySs _ YST)[ ( YS, Z5, Vf) s, Y7, 7, Vf)}ds
<oc [ erpys -y [1z5 - 27|+ v - VI

§2Ca/ HYS — YT ds + S /yzs A ds+ " (de)ds.

Thus for any a > 0 :

(v - Y[r)2 N /;T (2 _Zj)zds+ > [a(vr- Ys)r

t<s<T

T T
<(75) +2Ca e’/’S]YsS—YST\st—s—E |75 — 77 ds
a Ji

" \(de)ds

—2/ — 77w, - 2/ / V3(e) — V() | atds. do)

(16)
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281 S (YT 7[E{ / / VT )) (de)ds} 17

t<s<T
Then, since Y5, YT eC?, 75, ZT e H?and VS, VT € £?, the third line in (16) is a martingale;
10 thus taking the expectation of both sides with @ = 2C yields for any ¢t < T

[E(Yts _ YtT>2$

) o [ty [

T
S[E(Y;)ZMCZ[E[ P YS — YT ds.

E

Sle) — Ve (de)ds 18)

On the one hand, Lemma 7.2 , we obtain for any ¢ > 0, 7 and any S:

4C2 +2C+1
[E(Y;)2Sexp<%>cp(ﬂ, (19

. 2 . . .
where ¢(7) = || gle™" + Esupgr(LT)* + e( jﬁ dK?®) as defined in (61). Using
Gronwall’s lemma, inequality (19) becomes

E(v; - ¥7) <e(T)exp (W) exp (%)

On the other hand, we have

S S S S
/T dKS = Y5 — /T Pf (s, Y3, 25V )ds + / Z5aw, + /T VSii(ds, de),

and from the Lipschitz property, we get

S s S
/ ¢Pf(s, Yo, Z)ds <C / e (1734125 + || V2 as + / P F(s, 0, 0, 0)ds.
T T '1'
Using estimation (19), there exists a constant M, such that for any 7', S :

2

1 S s |
re( [ ) < aary+ Jipe

2
If we subtract from ¢(7') the term eE( |’ 7‘? dK?) we get
2

s
G—eM)[E(/T dKf) S(l—&-M)%HfZHe‘/’T %[Esup(Lﬂ (20)

s>T



This implies that the expectation on the left tends to zero uniformly when e is chosen [nfinite horizon
small enough indeed, since sup,L} € L% by Lebesgue’s monotone convergence impulse control

[EsupszT(LJr) tends to 0 when 7 tends to infinity. Globally ¢(7") -0 when T tends
to infinity and we obtain using (19) that the sequence (Y7 is a Cauchy sequence which
converges in [LQ(Q) to the process Y. Thus Lemma 7.2 concludes that, ¢ being fixed,
(YT, T>t) is a Cauchy sequence in L*(Q, F;, P), its limit defines the JF;measurable
random variable Y (¢, .). It is a family of random variables. We later prove that actually
the limit Y is a process.

(3) Turning to Zand V, to deal with the convergence in H2 respectively in £, An argument
similar to (63) shows that the sequence (Z ) isa Cauchy sequence in H?, its limit defines
a process Zwhich belongs to H2and (V7 is a Cauchy sequence in £2 its limit defines a
process V which belongs to £2.

(4) We now prove that there exists a process Y € C? which is the limit of a Cauchy
sequence in C2.
(@) Coming back to (16), for all @ > 0, we get

sup (Yts_ YtT)Z

1<T

T T
5(Y$>2+Casup‘Yss—YST]21+9 / 12577 [as+& / / VS~V (e) " Mde)ds
s<T poaljo ajo Je

[ (=) ]
/,f T /E [(VE-YT) (Vi@ -V (@) |tds,de)|

The Burkholder-Gundy-Davis inequality gives the existence of a constant C; > 0 such that
T T ) s \ 12
2esup| [ (vS - v7)[25 - 27]aw, <26 ( [ -y [z -2 ds)
t<T | Ji 0

T 9 1/2
<2C,Esup| VS Yf|< / 7~ 77 ds>
s<T 0

S 2, 1 ! T
yEsup|VS = VI +-E( [ [2°-7 } ds
s<T 14 0
for all y > 0. Similarly
[sup

<7 / / VS() Vf(e))}ﬁ(ds, de)
i /0 /E[E[(Vf@) - KNe))Z}A(de)ds}

+ 2sup

t<T

+ 2sup
t<T

<G

<Gi|yesuplvs - v
s<T

problem

11
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21 (12w ) [osup (v - ¥7)’ }

SE(Y;)Z} 5/0| ZT|ds+
—i—%{[E( / 75—z ) / / VS(e) ())We)ds].

Choosing a and y such that 1-— 7 —2Ciy > 0, using Lemma 7.2 and the facts that
(ZT, T>t)isa Cauchy sequence in H? and (VT T >1) is a Cauchy sequence in £ then

o - VI©)| Adods @Y
12

Elsup,<r (Y} - YT) ] goes to 0 when S and 7" go to infinity.

(5) Now one proves the other items of the proposition: ftem (2) According to (4.1) for all
h<t<T

ty ty ty
[t =vi-vi- [Cerets v zn vias+ [ 2w
H 4 4

ty .o
+ / / VI ()i(ds, de), @2

and due to the almost sure convergence of a subsequence of (Y7, ZT, VT)and the continuity
of the function g, the right hand side of Eqn (22) converges almost surely.

Thus ftiz dK is defined as the L% and almost sure limit of the right hand side of (22).

Hence, for almost sure limit, we get the reflected BSDE (10).

Item (3) For any 7' > ¢, one has L; < Y//, and using almost convergence of a subsequence,
one deduces Item (3).

Ttem (4) The L2 convergence in (22) proves that ft°° dK € 12 Moreover, for all T'using (12),
we get:

(YL —L)dK! =o0. 23)

On the one hand, for fixed (@, ¢) € Q X [0, T the left continuous and right limited function
s— Y_ — Ly is the uniform limit on [0, ] of a sequence (f*(w), k) of step functions:

lim sup |f*(®) — (Ys- — Ly)| = 0.

ko 0<s<t
t
</
0

Yo — L, — f*|dK.

We now deal with the successive bounds

[~ rgarr - [
- [+ |

For (w, t) fixed above, for any & > 0 there exists N(w, #) such that

t
+ / fraK?
0

24)

VE>N, sup |ff(w) — (Vi — L)| <e,

O<s<t



so the first and third terms in (24) are bounded

t
/
Remark that lim7_ (K] + K;)(0) = 2eK;(w).

We now fix k> N(w, t), and we remark that for any step function / :

t t
/ B($)AKT = 7 / h(s)dK
0 0

Thus when T goes to infinity the second term in (24) satisfies

t
a0
0

For any ¢, using (25) and (26) the limit of (24) when 7" goes to inﬁnity is bounded by 2¢K;(w).
This yields the fact that lim7_ o fo (Yoo —Lg)dK! fo o —Lg)dK.
Finally using (23) we get

t t t t
[ e~ Lyarr = [V~ Lak? - [(vI-1)dk? = [(ve - vI)ak!.
0 0 0 0

Thus
‘/ o — L dKT

which goes to 0 when 7" goes to infinity according to the convergence of Y7 to Yin C*and of
K7 in 2. So the proof of (4) is done.

t

Yoo —L,—f* — — L, —fHdK! <e(K] + K,). (25)

(26)

<sup| V.. — V7| K|

|

In case of a deterministic function g, meaning g is defined on R* X R X R an alternative
proof of Theorem 4.3 (under the same hypotheses) can be provided using penalization
method, as for instance Section 6 in [6] concerning continuous case, but here directed by a pair
Brownian motion-Poisson measure. We associate to (gk(s, y,2) =ePg(s, y,z)+
k(y—Ls)”) where the function g5 satisfies Assumption (7;), since g 1s obviously non
decreasing and uniformly Lipschitz, the solution (Y*, Z*, V*) in (C%, H2, £*) of the
following BSDE

Y,k:/tm( g (5.7 2) +r(vi -1, /deW //Vk i(ds,de). (27)

Since & — g 1s non decreasing, the standard comparlson theorem proves that actually, for any
fixed ¢ (Yk ) is a non- decreasmg sequence in L2 so it is almost surely and in L? convergent to
the random variable Y; § = = limy,_ o, V7. Using s1m11ar arguments as those ones in (4.1) (Y*)isa
Cauchy sequence in C* so the limit defmes the C? process Y. Now it is standard [19] to prove
the existence of a non decreasing process K such that

" 4K, = Tim k(Yf—Ls)_d&

k—o0

Infinite horizon
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and the existence of Z, V e (H2, £*) such that

Yt:/ —/is S Yq,Z ds+/ dK, — / Z.dW, — / /V dS de (28)
t

YtzL,fand/ Ys_sz:/ LdK;.
t t

This alternative method allows us to prove the following result.
Proposition 4.3. Under Hypotheses (H'], H;, i = 2), g being defined on RT X Q, one has

4
Yt = €SS Sup E |:/ e‘ﬂsg(s)ds +Lgl{g<°o}|.7:t:| . (29)
t

0T,

Proof. The uniqueness of the solution (step (i) in the proof of Theorem 4.2) insures that
this solution is the limit of the penalized Eqn (27): Y is the limit of the non-decreasing
sequence (Y*).

Reproducing Step 2 in the proof of Theorem 3.1 [16] leads for any % to

4
Ytk = €SS sup E|:/ e_/}sg(s)ds -+ YZ;/\L919<00‘.7:{| s
t

0eT,

so (Y} + [3 eg(s)ds), is the Snell envelope of the process J* : t — [; e#g(s)ds + Y}AL;

which is increasing almost surely towards the process J:{— f e Pg(s)ds + YinLy.
Remark that both J* and J are of class [D] since both are uniformly bounded
with [5° ¢ |g(s)|ds + supy|L:| € L.

Let us denote as SN(Y) the Snell envelope of process Y. Then Lemma A.l in
Appendix [10, 12] allows to commute the increasing limit and the essential supremum: on the
left hand side, Y1 Y; almost surely, on the right hand side SN(/¥),1SN(/), which achieves the
proof. u

From now on, we consider a function g defined on R* X Q satlsfymg Assumption (Hl)

The following is an extension of Lemma 2.4 in [20]: in our case g is defined only on R X Q
but the BSDE is directed by a mixed Brownian-Poisson process:

Lemmad4.4. Forn>0,let (Y, Z", V")be the solution of the single barrier reflected BSDE
associated to the barrier t — —e|g(t)| —n(y—U;)", where U; = cy1¢™ and Yy =0,
sup,(L;") € L. Then almost surely for all £ >0,

(Y, = U) < pesse™”.
Proof: The proof is similar to the one in [18].

The next step follows from Theorem 3.2 [20] or Proposition 4.12 [18].

Lemma 4.5. Let (p, 0, v, IT) be the solution of the reflected BSDE associated to the
barriers L and U : t — — e #|g(t)| — peo1e7”". Then there exists a constant C such that

([ m)

<C, 30)




andforall ¢ : E[p?] <C and [E</ >+[E(/ /V A(de) ds) <C. (31

Proof: (1) By definition, we have

dp, = (e7)g(s)| — Begre™™)ds — dIl; + 0,dW +/V i(de, ds).
Using Ito’s formula, one has
E((p)?) + [E( / 9§ds) +[E( / / I”/f(e)z(de)ds>
t Jt E

Y [ / (= Plg(s)| — fesre™) psds] +oF { / ) psdns} . (32)

t

The last term on the right hand side of (32) is bounded: for any &£ > 0

o[ ] - [1am ]
([ )]

Gathering these bounds and using Assumption () yield

o5 [ 00) ([ [

+ %[E[(iu? L)) + S[EK[O dnsﬂ.

00) = €| [ (ePlelo) + Geoe)as] + 1| sup L]

s>t

1
sl [ an| < eliswiL.)?

s>t

<E

Let

Using extended Gronwall’s Lemma 7.1 one has

E[(p,)"] < (¢(t) + eE K ./tw dl'[s>2} exp (%) . (34)

Let us denote y(t) := ¢() + eE[( [; dIT,)’], y being a decreasing function.

(2) Coming back to (33) one has

Infinite horizon
impulse control
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r<[ azds> +[E</ /V A(de) ds) [/too(e_ﬂs—#e“’s)pfds} +y(),

and from (34) setting y = ;

r( [ 9de> +[E( / ) /E Vj(e)ﬂ(de)ds) <expy. /t " (e (s)ds

+y(t) <w(t)(1 + rexpy). (35)

Now one turns to the estimate of IT:

/ drls:—pt—/ (‘/"\g()\+ﬁ021e/’s)ds+/ 9dW+/ /V i(ds, de).
t
So
0 2
/dl‘[s
t

Using (34) and (35):

1 /dl‘[s
t

—E
5
This yields (30) and (31), as soon as ¢ is chosen such that
1> 5¢e(exp y +1+yexpy).

1
—E
5

<Ep, + ¢(8) + [E/tw 6ds + [E/too/Ef/f(e)/l(de)ds.

2 < (d)(t) + €k [( /tm st)z] ) (expy + @(t) + (1 + rexpy)).

4.2 Comparison theorem in case of a single barrier
The following proposition is an extension of Theorem 2.2 in [10] to infinite horizon.

Proposition 4.6. Assume that (Y, Z, V, K) and (Y', Z, V', K') are solutions of the
reflected BSDE with jumps (10) assoc1ated W1th (g, ) and (g L) satisfying Assumptions
(H;, i =1, 2), gbeing defined on R* X Q X R X R?, g being defined on R* X Q X R X
R? X £2, and assume in addition that

H) : {P almost surely V¢ : g (¢, Y;, Z) < g (1, Y}, Z,, V).

Then, ¥, < Y P-almost surely.

Ifmoreoverg is defined on Rt X Q X R X R?, then K; > K t>0,P—p.s.

Proof: Theorem 2.2 in [10] proves that for any T P —almost surely, Vt <T,YI<V,Tand
in the case where f* does not depend on v, dK; > dK T

Theorem 4.2 proof gives us the almost sure convergence of Y7, K7, YT, K'T, so the
inequalities are preserved when T goes to 1nf1n1ty |

Here we summarize the results concerning the reflected BSDEs: In case of a function g
defined on R X Q satlsfymg (H,), the functions

t=ePg(t)—n(y—Uy) ", —eP|g(t)|-n(y=Uy;) ", —e|g(t)|—Pes1e7" satisfy Hypothesis
(Ha): Lipschitz property and non increasingness with respect to y.

(1) The F-progressively measurable process (I_/n, Z' , I_/n, K") which is the unique
solution of the reflected BSDE associated with (—e™#|g(¢)| —n(y — U;) ", L) satisfies



?;’:—/ e g (s) |ds—/ ZdW—n/ (YS”—US)+ds+/ dK,
t
//V i(ds, de), (36)

(2) The F-progressively measurable process (p, 6, v, IT) which is the unique solution of
the reflected BSDE associated with (—e ™ |g(¢)| — E[sups|us||F4], L) satisfies

P = /tm eP|g(s)|ds — /oo 0. dW, — /wﬁcme‘ﬂsds
/dl‘[ //V 7ids, de). 0

Thank to Lemma 4.4, one has the following inequalities:
Pg(t) ~n(V) ~U) 2 —ePlg(t)] ~n(¥, ~ V)" 2 — Plg(t)] — fesse™.
So as a consequence of Proposition 4.6, one has
V'>Y'>p; K"<K <II, (38)

where Y” and K" are introduced in (27). Finally, Lemma 4.5 proves that for all # and all #,

[E[(/tm dK:ﬂ <C. (39)

4.3 Double barrier reflected BSDE with jumps and infinite hovizon
Now one considers the problem of reflection with respect to two barriers L and U'in the case of

drift g being defined on R* X Q and satisfying (H/l).

Definition 4.7. Let (¢7g, L, U) be given. A solution of the double reflected BSDE
associated to (e#g, L, U) is a quintuplet of processes (Y, Z, V, KT, K~) satisfying for
any £ >0

(1) YeC’andZeH? Ve’

(2) almost surely

+o0 +o0 +o0
Y, — / e Pig(s)ds + / dKF — / dK-
+0<l: <3 ! !
- [ zaw~ [ [ vieyitas, ao
t t E

(3) almost surely L; <Y; <Uj,

(4) (Kjf) are non-decreasing processes satisfying E[( fo dK¥) ] < oo and for any ¢

t t
/ (Yoo — L)dK; = / (Yoo — U)dK; =0, P-a.s.
0 0

Infinite horizon
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Theorem 4.8. Let (¢#g, L, U) satisfying Hypotheses (H;), (Hz), then there exists a
unique solution (Y, Z, K+, K=, V) to Eqn (4.7).

The proof is given in the following subsections.
4.3.1 Uniqueness of the solution. As a first result, one proves the uniqueness of solution
when it exists.

proposition 4.9. If there exists a solution of (40) satisfying Items (1) to (4), it iS unique.

Proof: The proof of uniqueness is detailed, even if it is really standard, for stressing the role of
the assumption L; < U;. One assumes that there exist two solutions (Y7, Z¢, Vi, K*),
1 = 1, 2. Then they satisfy

AV}~ ¥) = [~ )W, — 4K — ) [ — K
_ /F [Vi(e) - V2(e))alds, de).

One has

[E(YJ—KZ)ZHEV(Z:—ZE)%H_/OO/ — V2(e) Ade)ds

t

s[E[Z/(Y;LSJrLSYSZ)(dK:] dK?) 2/ U U - Y2 (dKT - dK) |

t

Using Item (4) (Y._ — L;-)dK;" = Oand (Y!_ - U;-)dK;" = 0, the last line satisfies
T
[ (V- LR ¢ (L V2)aK
t

T
FE [ [(V - U)K - (U - Y2)dK;) <0 )
t

since L, < V! < U,
It follows that for any ¢

w1 -y = [ ez aeme [ [ - vl i -

SoY!'=Y2 7' =72 V! = V?and as a consequence K1 — K~! = K2 — K2, Thus there
exists a finite variation process h=K"-K*?=K1-K™2 satisfying h(0) =

(Yoo = Ls)dhs = Oand (Y, — Us)dhs = 0. But the assumption Lé_ < Us_ contradicts these
equalities if 2 0: indeed as soon as dhs #0, (Ys- — Ls) = Oand (Ys- — Us) = 0so Ls would
be equal to Us. This concludes the proof of uniqueness.

4.3.2 Existence of the solution for double barrier reflected BSDE with jumps. Here one uses
the so called penalization method: Let g satisfying (H’l) be the drift parameter and introduce
h(t, y) = eP'g(t) —n(y — U;)™ which obviously satisfies (H1 ).

So according to Theorem 4.2, Hypothesis (H2) still being in force, for each n € N*,
there exists a unique solution (Y, Z" V" K") of the reflected BSDE associated with
(eg (t, ) —n(y—U,)", L), meaning



Y= / e g (s)ds — / Z"dW, —n / (Y" - U,)"ds
t t t

o [Ca— [ [veeas. do

From Proposition 4.6, the sequence (Y”, n>1) (resp K", n>1) is non increasing (resp.
non-decreasing), let us denote Y, K™ their almost sure limits, consequence of
monotonicity.

From the inequality L; <Y; <Y}, it follows that ¥; = lim,_ Y7 belongs to L2 for
allteR.

The proof of Theorem 4.8 is done in five steps.

Step 1: There exists a constant C > 0 such that ¥z >0 and V¢ >0, one has

o 0 2
e+ (=n [ - vy / it

+/ Z” ds+/ / A(de)ds
t
Its formula yields

(Y;Z)%/t 1z Fds + 3 [a (Y] —+2/ e‘ﬂsY;’g(s)ds+2/t Y dK" — 2n

t<s

(42)

<C.

/ Yr (V" — U)tds -2 / Y2 aw, 3
72/ /Y” YV ()a(ds, de).

By definition of the solution
| v = [ v,
t t

Then,since L; < Y7, = Y* < —Ly= —nY*(Y* - Us)"ds < —nLs(Y" - U;)"ds,soVt, Vn :
—n/ YH (Y - U) ds < —/ Lan(Y" = Uy) " ds.
t t

Thus, one has

[z —n [Ty -y iss [z a0 - vy
t t !

Using the Cauchy-Schwarz inequality, for any e > 0, one has for any ¢ and n

s>t

oo S 2
2 / Ly (dK" — (n¥? — Us)+ds)§e( / (dK" — n(Y" - Us)*ds> + ¢ tsup(L,_ ).
t t

Infinite horizon
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On the other hand, with (38), Lemmas 4.4 and 4.5, for any 7 and # one has:

\ / aly+ 1| (v - u

/ drl, / e %P ods
t
Similarly for any ¢; > 0 one has

t
/ e Y g(s)ds
t

Note that the last line in the right hand side of (4.3) admits a zero expectation, and
embedding the inequalities (44), (45) and (17) in the expectation of (4.3):

e[+ [T @y [T [ vy aded

<E [cl / e‘”S|YS”|2ds + ¢t / e|g(s)|’ds + e(k(t))” + e‘lsup(Ls,)z} ,
t t

s>t

[t
t

(44)

< < 0.

2 ’ 2

2

S/ e"’s{cl|Yf\2+cl‘1|g(s)|2}ds. 45)
t

(46)

where % is the function defined as follows:

/ aIl,
t

k(t) == < c.

2

/ " e ey o)ds
t

2 ‘

So one has

|+ [T @y [T [ vy aded

! [ e‘ﬂ5|g(s)\2ds+e(k(t))z—i-e‘ls,slig)(Ls,)z} +a /t e“’s[E|Y_f}2 ds

<E

Gronwall’s Lemma 7.1 is now used with
D = Ele! [ e lg(s) *ds + e(k(0))? + e supesg (L )] and (s) = c1 so

E [(Yf)Z} <D exp%1
and

cl/ e_ﬂs[E“Y;Z‘Z]dSSClDech—l/ ePsds = D e‘ﬁ’expc—l.
¢ B J p p



Then one has a bound for (46) Infinite horizon
impulse control

[E{(Y;’)%r /t (Z)7ds + / / (V2 (e))*A(de) ds] problem

< [E[c;l / ePlg(s )|2ds+e(k(t))2+e’1sup(LS,)2} +D%e’/’texp% (47)
t s>t

21

< D(l +%exp%>.

This bound and (44) end the proof.
Step 2:1im,, Y} < Uy and limy—.o [ [supyso | (Y7 = Up) 7|] = 0.

The proof is an adaptation of the one given in Step 3 [20, p. 169].

Let (Y", Z", V", K") be the solution of the reflected BSDE with jumps associated to
(ePg(s)—n(y— U) L): so since e‘/“g( s)—n(y—U)" <ePg(s)—n(y—U;) and both
applications (s, y) — e #g(s) —n(y — U, ) and e #g(s) —n(y — Uy) satisfy obviously (H;),

Proposition 4.6 implies that P-a-s Y < Y" and dK" <dK".
Let T < & ;%md v be a stopping time such that: # < v < 0. Itd’s formula is applied to the
process (e ‘”SY , $>0) between vand TV v

—ne™" f’s ds +e7d f’s =

/V dsde}

Tvv —n n
WY Y = e |—(ePg(s) +nUy)ds — dK. + Z.dW,
Tvv v N s

/V dsde}

Using that, V£, L, <Y, < f’: €', one has limy_ e ™ ¥, = 0. This yields for any z:

—(eg(s) + nUy)ds — dK, + Z.dW,

This yields to

V= [E{ / e (eP5g(s) + nUy)ds + / e‘”(s‘”df{g}}].

Since U is right continuous then almost surely and in 1!

n/ e Uds - U lye, as 11— 0.
v

<G5l o)

In addition, one has

ol

E

/ e e g (s)ds
12
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then due to Assumption (7))

/ e g(s)ds — 0 in L1(Q, P) as n — co.
12

Finally with (38)
0 S / e—n(s—y)d[(: S / e—n(s—p)dK: S / e—n(s—p)dns.

This last bound [ e ") dI1, goes to 0 when 7 goes to infinity using Lebesque monotonous
convergence Theorem. Consequently

Y 5 Ulce in L2(Q, P) as n— oco.

Therefore lim, Y <1im, Y, < U, P-as.

From this and “Section Theorem” [21, p. 220], it follows that, P — a.s., Y; < U}, Vtand then
(Y7 = U;)" O P — almost surely.

We now denote by 2X the predictable projection for any X. Since Y > Y, then?Y" >?Y
and?Y <?U.So we deduce that? Y \,? Y < ? U, the semi-martingale Uis regular and Lemma
7.3 proves that the processes Y” are regular so Y” —U_ = ?Y" -?U\PY U <0. It
follows that lim,,—., (Y72 — U;~ )" = Ofor all ¢ P almost surely.

Consequently, from a weak version of the Dini theorem [22, p. 202], one deduces that
sup;o (Y — U;)" N0 P —a.s.as n — oo. Finally Lebesgue dominated convergence Theorem
implies

[E[Sup| (Y; - Ut)Jrﬂ —0as 7— .

>0

Step 3: There exist an F-adapted process Z = (%),s, and an [F-predictable process
V' = (Vi),5 such that

n—oco

limE [/ \z0 — zds + / /y V(e) — Vile) |2/1(de)ds} 0.
0 0
E
By It0’s formula one has for any p ># >0 and for all ¢,

(v -vo) s [z - zfas s Sl - v
t

t<s

—2 (Ve - v - aK?) -2 (v - v (k- kT
t t

N

2 [T a2 [ / (2 = ¥2) (V2(e) = VA(e)) s, do

(48)

where K~ denotes n [ (Y7 — U,)"ds.
Since p >, then Yl9 <Y" dK"<dK?, so

/ (Y? — Y?)(dK" — dK?) <0.
t



According to (7) in [20] (Y? = Y)(Y! = U) " < (Y2 = Uy)" (Y = Us) ", s0 Infinite horizon

P b vy (e =\ — o | (ve vy, (vn impulse control
—2/ (Y? — Y")p(Y? — U,) ds <2 sup(Y? — Us)+/ n(Y" - U)"ds  (49)
N 520 0
+2sup(¥ - U)° / p(Y? — U ds. 23
>0 0
Look at sup,(Y? — fo S Us)*ds, product of sup,(Y? —Us)" going to 0 when

p—>ooin 2 (Step 2) and of fo Y — Us)*ds which is for all 7 bounded by the integrable
random variable [;°[e™Bcy o]ds (see Lemma 4.4);

lilrjn supE [2 sup(¥? — US)+/ n(Y!— US)+ds} =0. (50)
0

n >0

The second term in (49) is symmetrical and the sum is going to 0 in L'.
Finally, taking the expectation of the left hand side in (48) and using (17)

Jim, H /0 ) \zr — 70 ds + /0 ) E/ V2 (e) - Vf(e)|21(de)dsH = 0. (1)

It follows that (2"),5oand (V"), . are Cauchy sequences in complete spaces then there exist
processes Zand V, respectively F-progressively measurable and P ® £&-measurable such that
the sequences (2"),, and (V"),,, converge respectively toward Z in H? and Vin £%

Step 4: 1imy, .o E[sUps50| Y7 — Y7 ]2] = 00 lim,, Y defines a process in C%.
Using Y” and Y? definitions, 7 > p (so dK” > dK?) and applying Ito’s formula between 0 and ¢
to the process ¢ — (Y = Y? )2 one has:

t
(Wz_;@ﬂ)zz(Yg’—Yé’)er/ 20— 201 ds + 3 _[As (Y —
0

s<t

vo [y - zyaw sz [ [0 - e &) 6

E

~2 / (V" = Y? ) (dK" — dK?) +2 / — Y?)(dK? — dK?").

(1) First look at

t
2| [ - v - )
0

<2sup|Y - VL

s<t

| (e - a),
0
For any ¢ > 0, the right hand side of this inequality is smaller than

© 2
csup| Y2 — Y PP 47! (/ (dK" — dKf)) :
s<t 0



AJMS (2) Using (49), the expectation of the last term in (52) is bounded:
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t
o<2e| [ (v - v2)(aKr - k)
JO

<sup E[Z sup(Y? — U)" / n(Y" —U,) " ds
n 520 J0

+sup [E[Z sup (Y7 — U)+/ p(Y? - Us)+ds}
0

520

24

which actually goes to 0 when # and p go to infinity using (50).

Concerning the supremum with respect to ¢ of the absolute value of second line in (52) the
Burkholder-Davis-Gundy and Cauchy-Schwarz inequalities are used: there exists a universal
constant Cy such that for any constant ¢ > 0:

g ] SZCﬂEW / (- —Zf>2ds]

t
< 2C1[E[sup|Y:Z -V / (2 —Zs")zds] <cGE[sup(V; — ¥7)']
u<t 0

u<t
+ c‘lcl[E[/ (z —Zf)zds].
0

Similarly one has f— fo Jel(Y2 = Y2 )(VI(e)— VP(e))|i(ds, de) is an F-martingale
(see [8], p. 4) and once again the Burkholder-Davis-Gundy and Cauchy-Schwarz
inequalities are used:

/ / )(V2(e) — V(@) aldu, de)
sccl[E[sulg)(Yf_ -~ V)] +iGE [ / / (V) - V2 (0)) (de)ds]

Using that sup,| Ys-| < sup,| Y| and gathering all these bounds, it yields for any #

t|swplz [ (7 - v2) (2~ 2)

s<t

E [sup

s<t

E[sup(v7 - ¥2)°] <E[(¥ = ¥2)°] + (1 + 26 [sup(v; - ¥7)']

(e

+rn(44W:—4ﬂ4 |
[ fomo- s o [ (o))

—l—sup[E{Z sup(Y? — Us)+/ n(Y) - Us)+d5]
0

>0

+E

+Sup[E{25up(Y” U)+/ p(Yfosfds}.
0

s>0

Choosing ¢ such that ¢(1 +2C;) < 1 and using the limit (50), the processes Z”, V" are
Cauchy sequences respectively in H2, £2 and the almost surely convergent monotonous



sequences (Y7), (fydKY), (Jd(K©)!) are Cauchy sequences in L* so is the sequence Infinite horizon
(> AK" = f a’ 7 — [, d(K°)¥). Thus the sequence (¥”) is a Cauchy sequence in C*. This impulse control
concludes Step 4 and proves item (1): problem

[E[sup(Ys” - Y")z} —0asp, n— oo.

S
0<s

25

Moreover, since for all ¢ ¥; is an almost sure limit of ¥}* and (Y”) is C? Cauchy sequence,
one has two progressively measurable cadlag processes which are modification of each
othezr so that ¥ = (Y}),5,1s an F-adapted right continuous left limited process belonging
toC”. -

Step 5: Existence of K, Item (4), Item (3)
By definition of K"~ for any #n>0and ¢ >0

t t t t
[ =ve-vi+ [erasiss [ [zaw- [ [vins, do. 6
0 0 0 0 E

So, the right hand side of (53) converges almost surely and in L2 to

t t
Y, — Yo+ / Pg(s)ds + / dKF — / 24w, — / / Vi(o)ilds, de)  (54)
0 0

and the non-decreasing process K~ can be defined almost surely and in L%

n—o0

t
= lim (Y” Yg’—i-/ e‘/’sg(s)ds—&-/ d f—/ ZlaW; — / /V” ji(ds, de)).
n—o0 0 0

This proves Item (2) and the existence of the non-decreasing process K~ in L% such
that [; dK; e 1%

Then, using the differential of Equation (53) and multiplying by Y;_ — U yield almost sure
convergence:

/dK _hmn/ (Yr —U,)"ds

t
vion [ (V- U7~ dsﬁ/ U)K
0
The right hand side is almost surely finite since it is equal to

/Ot(K_U)[dY + o Pg(s)ds + dKF — Z,dW, — /V i(ds, de)]

Remark that the sequence (Y- —Us)(Y”—Us)" goes almost surely to (Ys-—=U)
(Y, —Us)", and multiplied by # the limit cannot be finite unless (¥ — U;)" = 0, thus Item
4)1s proved

Y, <U, and (Y, — U,)dK = 0. (55)
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Finally Item (3) is a consequence of

(1) the fact L; <Y} for any n and ¢, and the almost sure convergence of sequence (Y7'),
soL; <Yy,

(2) above (55) gives Y; < U,

5. Application to the impulse control problem with infinite horizon

In this section we use Proposition 3.1, and Theorem 4.8 with g : (f, ) — f(1,X;(w))
—f(2,X;(w)) satisfying Assumption (H}), a null terminal value, and barriers
L= —c10e77<0,U, =216 >0, satisfying Assumptions (Hsz). There exists a
progressively measurable process (Y Z,K* K=, V) such that:

YeC!, Zer?, Vel®
+00
Y, = / LX) — F(2, X)) ds+/ dKF — / dK-

) —/tMZdW /M/V fi(ds, de)

—C12€ <Y, <e /ﬁCz,l

+0o00 t t
[ akzer [vi- vk = [v- vk 0
0 0 0

So the main result can be proved: the existence of processes (Y, ¥?) introduced in Proposition
3.1. This is the extension of Theorem 3.2 [1, p. 186] to the infinite horizon set up with jumps.

Theorem 5.1. Assume that f(1, X;) and f(2, X;) are positive, > f(i, X), 1 =1, 2,
satisfy (Hl) Ly = —¢Plp 2 and Uy := e P!y satisfies (HZ) Then there exists a couple of
R-valued processes (YL Y2 10 Satistying the assumptions in Proposition 3.1, in particular
(7) and (8) meaning:

0 -

V! =esssup E /e‘ﬁsf(l, X;) ds — e e + YEIF

0eT,

t

- -
Y? =esssup E /e‘/’*‘f(Z, X;) ds — e ey + Y| Fi|, Y2 =YL,

0eT,

t

Proof: Theorem 4.8 is applied with ggt F,X)-f(2, X)), Ly = —c1 207 <0<U; =
ecy,. Since the random variables [, dK + are 1ntegrable and f(i, X;), 1 = 1, 2 satisfy
(Hl) the following processes will be checked to satisfy Proposition 3.1 assumptlons Y are
positive right continuous left limited regular processes of class [D] satisfying (7) and (8). The
following processes are proposed:

o +oo
v [T [ axiiz]
t t

oo +oo
Yﬁ:ﬂ/eﬁﬂhmﬁ+/ ﬂqu
t t



(1) First one remarks that ¥} >0 as conditional expectation of non-negative random [nfinite horizon

variables. impulse control
(2 Second problem

Y, = [E[/o T AL Xo)ds + /0 h dKilff} - /0 S0, Xo)ds — K
27

are sum of an [F-martingale minus a right continuous left limited finite variation process so
these processes are right continuous left limited.

(6)] ’I;hird one has E[supy| I/f|2] < 00,7 = 1,2 indeed, using the facts that (7, .) and
Jo dK% are positive,

o +oo
0<Y <M = [E{ / e"/’sf(i,Xg)ds\]:f} + [E[ / dKf|}'t}
0 0

The facts that [j°dK*el? Assumption (M}) and ( [5°e™f(, Xs)ds)2 <gshe”
F2(i, X)ds belongs to LY, proves that the martingale M’ which bounds Y7 is uniformly
square integrable. Thus Burkholder-Davis-Gundy inequality applied to this square

integrable martingale M proves that [E[supt20|Yf|2] < 0. As a byproduct, the process Y?
is of class [D] since for any stopping time 6, 0 < Yé < sUPsso Yt’\ el?

(d) Fourthly Y7 are regular using the same argument as in [12]: the regularity of Y7 is
equivalent to the regularity of K*, and this one is equivalent to the regularity of ¥
defined by the system (.S). Lemma 7.3 in Appendix insures this property.

One now turns to the checking of (7) and (8). Theorem 4.34 [23, p. 189], applied to the semi
martingale H; := W; + N; = W; + fé Jzep(ds, de),with characteristics C = 1, v(w; dt X de)
= dtA(de) and AB;(w) = AH(w) = A\N(w), there exists a couple of [F-progressively
measurable processes (71, V1) e H? X £2 such that for any ¢

t t t t
[ zaw.s [ [Vientas. o= [ erraxpds+ [ ag v
0 0 E 0 0

E Uow (L, X,)ds + /Ow dK;] .

Using the third inequality of system (S), one has Y; > — ¢ 2¢, and replacing V; by Y} — Y7,
one has Y!> —cj2¢™ + Y2, Similarly, the fourth equality of system (S), meaning
Ji(Yie + ePier 5)dK; = 0, replacing Y; by Y} — Y2 shows

T
VT, / (Ytl_ — Ytz_ + e_ﬁt(,‘]‘z)dK;r =0.
0
As a result, the quadruplet (Y, Z!, V1, K*) satisfies the single barrier reflected BSDE:
{ _dY! = (1, X)dt + dKF — 20 — / V1 (e)ji(ds, de)
£

V!> —cpe” + Y2 and (YL — Y72 +e7¢15)dK,) = 0.
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Then Equality (29) in Proposition 4.3 is applied with L; = —cj2¢7# + V2. Since
[E[SuPt20’ Yf!Z] < o0, the hypothesis E[sup;so (Lt)z] < oo is satisfied and one has

0
V! = esssup [E[/ e (1, Xo)ds — crae7™ + Y| F4|.

0eT; t

Similarly, using the third inequality of system (S), one has Y; <cs1¢™, and once again
Equality (29) is used with L; = —co1¢7 + Y. Since E[sup;s| YHZ] < oo, the hypothesis
E[sup;so(L¢)?] < oo is satisfied and one has
0
Y7 =esssup E /e_ﬂsf@ X,)ds — c2167" + Yal|~7'-t )

0eT;
t

hence the existence of the asked couple (Y7, Y2).

Remark 5.2. Since V; = Yt1 - Yl?, t >0, according to Proposition 3.1, an optimal strategy
@ = (1,),50 is defined by

1 = 0
Ty = Inf{t > 79,1, Vi < — 61,26_’/”}7 Vn>0
Topsl = 1nf{t > Toy, Yt 262719*’”}.

6. Numerical resolution

Recall that the optimal strategy @ = (7,,),,, i completely defined by the process ¥ and is
obtained when Y reached successively the barriers L and U. As a result, solving numerically
this strategy amounts to simulating sample path trajectories of the process Y. Inrecent years,
several techniques have been proposed for the numerical solution of the process Y (for
example the quantization algorithm, Malliavin calculus). Here the approximation by
regression is chosen, which is well explained in [24, 25]. Our method is totally different from
the method used in [26] which is based on the approximation of the Brownian and Poisson
processes by a random walk. Recall once again that here the process X is the diffusion (4). For
this application, a simple case of stochastic differential equation with jump is considered: Let
b, o are constant drift and diffusion coefficients; ji(ds, de) gives an information about the
jump: the probability of the jump happening at time t and the relative amplitude of the jump.
It will be represented by a log-normal random variables, A is the yearly average of the number
of jumps. Thus the firm log-value is modeled as

X, =xy+ 0t +0cW, + N, — At.

By using the classical Euler scheme for sample path trajectories of the process X where
A=3,x0=1and T = 1, one has: (see Figures 1 and 2).

Let us now focus on our problem: namely, how to simulate the process Y, and therefore the
optimal strategy. Recall that

gty =e"(f(1, X)) — (2, X)), Ly = —c12¢™", U, = 216", ¢15 and 37 > 0

which satisfy Hypotheses (H;) and (Hy).
First of all, when ¢ tends to infinity, Y; goes to 0, so a finite horizon 7 should be fixed such
that t;, =4 ,—TZ, i=mn, ..., 0. More specifically, below the numerical samples show that as

soon as ¢ > 1, the length of interval (L;, U;) is negligible.
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Figure 3.
Lf = —0.58‘_%7
Ut = 0.46_2[

Y, € (Ly, Uy) so the error is bounded by U, — Ly, the order of which being e=*.
To approximate the backward component Y, the following discretization approximation
scheme is introduced, forO =fy <y < ... < t, = T:

Yy=Yi=0
V=B [V7 ]+ (b — 1) e (X7) 56)
Y; = (YZVLL‘])/\U,}X, i<n-—1,

where E, = E[.|F,]. To approximate the conditional expectation, here is adopted the
Longstaff-Schwarz algorithm [25] which uses a regression technique (Least-Square Monte
Carlo method). Taking the parameters f = 0.5, Xy = 1, b = 1, 6 = 2, and the profits/costs
functions

F(,x)=3+2x",f(2,2x)=2x", so f(1,x)—f(2,x) =—-2x+3,

the evolution of Y is observed. Previously all the assumptions have to be checked:

(1) One notes that with X; = bt + o W; + N; — At, : Assumption (Hll) is satisfied since
£, x) = a+ 2%, so E[(a + XF)*] <2a® + 2E[(X?)] < 2a% + 6(b* + o*t + At) thus
E[ fo~ ePf2(i, Xs)ds] < [57 e [2a + 6(0* + 6t + At)]dt < 0.

Interpretation: Recall once again that the optimal strategy @ = (7,,),,, is obtained when Y
reached successively the barriers L and U. In Figures 3 and 4, the costs are higher than in
Figures 5 and 6. In Figures 3 and 4, it could be not interesting to switch the technology. It is
preferable that the firm takes the precaution of keeping long enough the technology 1, which
will enable to obtain suitable expected profit.

In the case of reasonable costs, as in Figures 5 and 6, the firm can switch the technology
more often: actually at times 79 ~0.15 and 71 ~ 0.97 (Figure 5), respectively in Figure 5, the
firm can switch the technology at times 7y ~0.05 and 7; ~0.23.

0.4

0.3

0.2

0.1
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Figure 4.
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Figure 6.
Ly = —0.02¢7%,
U; =0.01e7%
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Appendix
For sake of completeness, references being out of our knowledge, here is provided an extension of
Gronwall’s lemma.

Lemma 7.1. Let g and y be positive functions, let D be a positive constant satisfying V¢ > 0
F()< D+ [ w(s)f(s)ds, then

(1) ifyeLl'(R"Y), vt f(1) < Dexp [ y(s)ds,
@ ifD=0,thenf(t) = 0.
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AJMS Lemma 7.2. Assume that fand L satisfy respectively () and (Hz)let (Y, Z, K)be the solution of the
28,1 RBSDE: YT = 0,

Y, = / ﬁ*(sYs,Zs,Vds+/dK /ZdW

o //V Vi(ds, de), te [0, ),

Where Yed ZeH? L;<Y,;, dK is a positive measure such that [E( jo dK < oo and
f e (Y, —Ly)dK; = 0, P—a.s. Then,

E[KZ}5¢<t>exp<‘w+/;2C“), (57)

where ¢(f) := YIF|Fe + LEsupoor (L) + ([ dK.)’,
E [ |Z|%ds<do(t). 58
[ 12, ds < 4o(1) 9

and

E / ) / \V(0)PA(de)ds <Aa(t).

Proof. Ito’s formula and f[ (Ys — Ls)dK; = 0 show

/ Zyds+ 3 (A

t<s<T

_2 / e (Y)els, Y Z, Vo)lds

_2/ Y.Z.dW, - //[ o)) ii(ds, de)

+2 / LK.
t

(59)

Using the Lipschitz property of g, we obtain

T ) T
EY2] + E / Zds + / / |Vi(e) PA(de)ds) < E[2C / (Y2 1 |YIZ] + VIVl ds
t JO JE Jt

T T T
+ / e 2| Yy|lg(s, 0, 0, 0)|ds + 2/ ePLdK,] <E[(4C* +2C+1) / YZeds
t t

t

T T T w
+/ e”g%(s, 0, 0,0)ds +% / Z2ds + 2/ LK, +% / /|Vs(e)\2/1(de)ds)}
‘ ‘ o Je

t

(60)



Tt follows that Infinite horizon

T T T impulse control
E[Y?] <E (402 +2C+ 1) / YZe ' ds + / e7g%(s, 0, 0)ds +2 / Ldes] : problem
t t t
Moreover, for any € > 0 :
2 35

T T T
2/ Ldes§2/ LidK,<2 supL*/ dK <7 sup L*) +£(/ sz)
t t t

s>t s>t

(we use 2 ab<la® + eb?. Applying Gronwall’s lemma (see Lemma 7.1) to bound ¢—E[Y7?] with
w(t) = (4C* + 2C + 1) and

2

T
o(t) = ngHze‘/’t + 1 [Esup(Lj)2 + 8E</ sz) . ®61)
ﬂ € s>t t
Since ¢ is decreasing, we get
T
E[Y?] < p(t)exp ( (2c2 +2C + 1) / e’/’”du> . 62)
t
Using (60) and (62), we get:

. .
Le / Zfds < (4C +20 +1)E / Y2 5ds + X |lgl e + 2 Esup(L7)’
2 t t p & s>t

+6[E(/t dK) <H/ s)eds + ¢(1),

where H = (4C* + 2C + 1)exp (‘%) . Since ¢ is decreasing, we get
r H
E / |Z[Pds < 2¢(t) (1 + Eﬂf) <4e(t).
t

E /0 ) /E V() [PA(de)ds < 4o (1),

Lemma 7.3. The solutions of the reflected BSDE (Theorem 4.2) and of the double reflected BSDE
(Theorem 4.8) are regular.

Similarly we get

Proof: Let T be a finite stopping time and (77,) be a non decreasing sequence of stopping times going
to 7. Using [VI 50 p. 125] [22], a sufficient and necessary condition for Y to be “regular” (meaning
=?Y)is
VT, T, E(Yr) = limE(Y7,).
n
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If the process Y is a solution to reflected BSDE, we get

T
E[YT” — Y’[] = / e_ﬂsg(s, )157 ZS, V\)ds + [E[K'] _K'j‘ﬂ].

Ty
So a sulfficient condition is: for any F —predictable stopping time 7, E[A.K] = 0. Under Assumption

(H>) this condition is satisfied since under these hypotheses K* are continuous.
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