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Abstract

Purpose – The purpose of this paper is to study the Bertotti–Kasner space-time and its geometric
properties.
Design/methodology/approach – This paper is based on the features of λ-tensor and the technique of six-
dimensional formalism introduced by Pirani and followed byW. Borgiel, Z. Ahsan et al. and H.M. Manjunatha
et al. This technique helps to describe both the geometric properties and the nature of the gravitational field of
the space-times in the Segre characteristic.
Findings – The Gaussian curvature quantities specify the curvature of Bertotti–Kasner space-time. They are
expressed in terms of invariants of the curvature tensor. The Petrov canonical form and the Weyl invariants
have also been obtained.
Originality/value – The findings are revealed to be both physically and geometrically interesting for the
description of the gravitational field of the cylindrical universe of Bertotti–Kasner type as far as the literature is
concerned. Given the technique of six-dimensional formalism, the authors have defined the Weyl conformal
λW -tensor and discussed the canonical form of the Weyl tensor and the Petrov scalars. To the best of the
literature survey, this idea is found to be modern. The results deliver new insight into the geometry of the
nonstatic cylindrical vacuum solution of Einstein’s field equations.
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1. Introduction
Einstein’s relativity theory is one of the successful theories of space-time and gravity. The
space-time geometry describes one of the fundamental interactions in nature, namely gravity.
Einstein’s theory of relativity successfully reveals that space becomes curved in the presence
of the gravitational field. The matter distribution determines the geometry of space-time.
Albert Einstein introduced the field equations in 1915. Einstein’s field equation (EFE) is a
remarkable contribution in determining themotion ofmatter in a gravitational field aswell as
in determining the gravitational field from the distribution of matter. Among well-known
exact solutions of EFE, the Schwarzschild solution is the most important. It preserves
spherical symmetry. In 2011, Włodzimierz Borgiel [1] investigated the Schwarzschild space-
time and its gravitational field. In [2], Musavvir Ali and Zafar Ahsan have studied the Kerr–
Newman solution, which is the generalization of other well-known exact solutions of
Einstein–Maxwell equations. Themetric of Kerr–Newman space-time goes over into the Kerr
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metric, Reissner–Nordstr€om metric, and Schwarzschild metric if the electric charge, the
angular momentum per unit mass and both of them, respectively, are equal to zero. It reduces
to Minkowski metric if the physical parameters such as mass, the angular momentum per
unit mass and the electric charge vanish. They have studied the Schwarzschild soliton and its
geometric properties in [3].

The Schwarzschild-de Sitter (SdS) solution is the generalization of the Schwarzschild
solution. It is the spherically symmetric vacuum solution of EFE with a non-vanishing
cosmological constant. SdS solution is not the only possible generalization of the
Schwarzschild solution. Another possible generalization is the Bertotti–Kasner
solution [4].

The Bertotti–Kasner solution is the non-static cylindrical vacuum solution of EFE. The
Bertotti–Kasner space-time metric in Schwarzschild coordinates ðt; r; θ; fÞwith relativistic
units ðG ¼ c ¼ 1Þ is as follows: (see [4, 5])

ds2 ¼ dt2 � e2
ffiffiffi
Λ

p
tdr2 � 1

Λ
dΩ2; (1)

where dΩ2 ¼ dθ2 þ sin2θdf2
and Λ > 0 denotes the cosmological constant.

According to Bertotti [6], Kasner [7] introduced the existence of this solution in 1925, but
the explanation was not clear in the problem of the signature. In [6], it is found that the
Bertotti–Kasner solution exists in the absence of the electromagnetic field. In the 1960s, many
geometers and physicists have studied the spherically symmetric vacuum solutions. The
Bertotti–Kasner solution characterizes the geometry of our universe as cylindrical. It is
distinct from the solution due to the field around a spherical distribution of mass. So, Bonnor
[8] neglected the Bertotti–Kasner solution. However, it has been drawn the attention of many
geometers and physicists in recent days. One can see the discussion of geodesics on Bertotti–
Kasner space, and hyper-spherical Bertotti–Kasner space in [9] with the famous Kruskal–
Szekeres procedure. The Bertotti–Kasner solution is constructed in [10] from multiplets of
scalar fields with a self-interacting potential in 3þ 1−dimensions. A discussion on Killing’s
equations, Killing vectors, and time-like Killing vectors on Bertotti–Kasner space-time is
found in [11].

The interesting feature of Bertotti–Kasner space-time metric is its mathematical
simplicity and is purely geometric. It leads to the impression that our universe expands
more in one particular direction. Some recent experimental evidence shows that our universe
may have a particular direction, and in that direction the expansion velocity of the universe is
maximum. In a galactic coordinate system, the experimental data [12] of Union2 type Ia
supernova has given the evidence for the preferred direction, ðl; bÞ ¼ ð309+; 18+Þ of the
universe. The experimental report of the Planck Collaboration [13] has confirmed the
deviations from the isotropy with a significance level ∼ 3σ and hence given the evidence for
the preferred direction.

The article is organized as follows. In Section 2, we discuss the canonical form, and the
curvature invariants based on the technique of six-dimensional formalism. Hence, we
analyze the curvature of Bertotti–Kasner space-time. The description of gravitational field
is given by the features of λ-tensor. A glimpse ofWeyl conformal λW -tensor is also given in
Section 2. The paper ends with Section 3, where we have mentioned some important
conclusions.

2. Curvature of the Bertotti–Kasner space-time
We have considered that the matrix ðgμνÞ has the signature ðþ; − ; − ; − Þ. In the
Schwarzschild coordinates x ¼ ðt; r; θ; fÞ, the matrix ðgμνÞ is as follows:
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gμνðxÞ ¼

0
BBBBBBBB@

1 0

�e2
ffiffiffi
Λ

p
t

�1

Λ

0 �sin2θ

Λ

1
CCCCCCCCA
; (2)

where μ; ν ¼ 0; 1; 2; 3. The determinant of a matrix ðgμνÞ is equal to −e2
ffiffi
Λ

p
tsin2θ
Λ2 , which is less

than zero. Hence it is a real space-time [14]. The Riemannian metric tensor gμν determines the
nature of gravitational field potential, and for the Bertotti–Kasner space-time metric, it is
given by

Φ≈
1

2
ðg00 � 1Þ ¼ 0:

We deduce that the gravitational field potential of Bertotti–Kasner space-time metric is
approximately equal to zero. Christoffel symbols are the functions constructed by certain
combinations of partial differential coefficients of the metric tensor gμν. Let Γα

βγ denote the
Christoffel symbols of second kind defined by

Γα
βγ ¼

1

2
gαδðvγgβδ þ vβgδγ � vδgγβÞ: (3)

The independent non-vanishing components of Γα
βγ are as follows:

Γ1
01 ¼ Γ1

10 ¼
ffiffiffiffi
Λ

p
; Γ0

11 ¼
ffiffiffiffi
Λ

p
e2

ffiffiffi
Λ

p
t;

Γ3
23 ¼ Γ3

32 ¼
cos θ

sin θ
; Γ2

33 ¼ −cos θ sin θ:

Riemann and Christoffel introduced the tensorRα
βγδ of type ð1; 3Þ. It is formed bymetric tensor

gμν and its partial derivatives up to second order. The curvature tensor (or Riemann tensor)
of type ð0; 4Þ can be expressed as

Rαβγδ ¼ 1

2

�
v2βγgαδ þ v2αδgβγ � v2βδgαγ � v2αγgβδ

�þ gμν
�
Γμ
βγΓ

ν
αδ � Γμ

βδΓ
v
αγ

�
: (4)

The independent nonzero components of Rαβγδ are

R1010ðxÞ ¼ Λe2
ffiffiffi
Λ

p
t;

R3232ðxÞ ¼ −
sin2θ

Λ
:

The Ricci tensor Rαβ is a covariant tensor of order 2 and is given by

Rαβ ¼ Rγ
αβγ :

We found thatRαβ ¼ Λgαβ. LetR denote the scalar curvature. It is a tensor of order zero given
by

R ¼ gαβRαβ:

The scalar curvature of Bertotti–Kasner space-time is 4Λ. Therefore, it has a constant scalar
curvature. Since components of Ricci tensor are proportional to metric tensor components,
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scalar curvature is directly proportional to the cosmological constant, and hence Bertotti–
Kasner space-time is an Einstein space.

The Kretschmann scalar is found to be

Rαβγδ Rαβγδ ¼ 8Λ2:

For Bertotti–Kasner space-time, Kretschmann scalar is also constant and is directly
proportional to the square of the cosmological constant. The tensor Gαβ of type ð0; 2Þ is
defined by

Gαβ ¼ Rαβ � 1

2
gαβR

is called the Einstein tensor. It plays a supreme role in Einstein’s relativity theory. We found
that Gαβ ¼ −Λgαβ. Hence EFE is given by

Gαβ þ Λgαβ ¼ 0:

Given the anti-symmetric property

A½αβ� ¼ 1

2
ðAαβ � AβαÞ;

the Weyl curvature tensor can be evaluated as follows:

Cαβγδ ¼ Rαβγδ þ gγ½αRβ�δ � gδ½αRβ�γ � 1

3
gγ½αgβ�δR: (5)

The Weyl tensor is traceless, but it has the symmetric properties as Riemann tensor Rαβγδ. If
we contract on the couple of indices αδ or βγ, the obtained tensor vanishes. The independent
non-vanishing components of the Weyl tensor Cαβγδ are as follows:

C1010ðxÞ ¼ 2Λe2
ffiffiffi
Λ

p
t

3
; C2020ðxÞ ¼ −

1

3
; C3030ðxÞ ¼ −

sin2θ

3
;

C2121ðxÞ ¼ e2
ffiffiffi
Λ

p
t

3
; C3131ðxÞ ¼ sin2θe2

ffiffiffi
Λ

p
t

3
; C3232ðxÞ ¼ −

2sin2θ

3Λ
:

We observed that at a point of Bertotti–Kasner space-time, some components of the Weyl
tensor are non-vanishing. Hence Bertotti–Kasner space-time is not conformally flat.

Now, we switch onto the six-dimensional formalism to examine the bivector-tensors, the
Riemann tensor and theWeyl tensor in a pseudo-Euclidean spaceℝ6 [15]. Let us consider the
following identification to adopt the six-dimensional formalism [16]:

αβ : 23 31 12 10 20 30 (6)

U : 1 2 3 4 5 6:

Given gαβ are the metric tensor components at a point of Bertotti–Kasner space-time, we
define the bivector-tensor as follows:

gUV ¼ gαβγδ ¼ gαγgβδ � gαδgβγ :

The bivector-tensor gUV is non-singular, and has the signature ðþ; þ; þ; −; −; − Þ. It
satisfies the symmetric property, that is, gUV ¼ gVU . The suffix pairs αβ, γδ are skew-
symmetric. The bivector-tensor gUV has the following non-vanishing components:
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g11ðxÞ ¼ sin2θ

Λ2
; g22ðxÞ ¼ e2

ffiffiffi
Λ

p
tsin2θ

Λ
; g33ðxÞ ¼ e2

ffiffiffi
Λ

p
t

Λ
;

g44ðxÞ ¼ −e2
ffiffiffi
Λ

p
t; g55ðxÞ ¼ −

1

Λ
; g66ðxÞ ¼ −

sin2θ

Λ
:

Now we relabel the Riemann tensor Rαβγδ as RUV given the scheme of six-dimensional
formalism. Because of the property Rαβγδ ¼ Rγδαβ, the tensor RUV satisfies the symmetric
property, that is, RUV ¼ RVU . The tensor RUV has the following nonvanishing
components:

R11ðxÞ ¼ −
sin2θ

Λ
; R44ðxÞ ¼ Λe2

ffiffiffi
Λ

p
t;

R22ðxÞ ¼ R33ðxÞ ¼ R55ðxÞ ¼ R66ðxÞ ¼ 0:

Given identification (6) of the six-dimensional formalism, we relabel the Weyl tensor Cαβγδ as
CUV . Because of the property Cαβγδ ¼ Cγδαβ, the tensor CUV is symmetric, that is, CUV ¼ CVU .
The tensor CUV has the following nonvanishing components:

C11ðxÞ ¼ −
2sin2θ

3Λ
; C22ðxÞ ¼ sin2θ e2

ffiffiffi
Λ

p
t

3
; C33ðxÞ ¼ e2

ffiffiffi
Λ

p
t

3
;

C44ðxÞ ¼ 2Λe2
ffiffiffi
Λ

p
t

3
; C55ðxÞ ¼ −

1

3
; C66ðxÞ ¼ −

sin2θ

3
:

The λ-tensor is defined as RUV − λgUV . The curvature invariants are roots of the
characteristic equation jRUV ðxÞ− λgUV ðxÞj ¼ 0, and for Bertotti–Kasner space-time, they
are obtained as follows:

λ1ðrÞ ¼ λ4ðrÞ ¼ −Λ; (7)

λ2ðrÞ ¼ λ3ðrÞ ¼ λ5ðrÞ ¼ λ6ðrÞ ¼ 0: (8)

The curvature tensor has the following canonical form:

RU
0
V

0 ¼

0
BBBBBB@

�Λ 0
0

0
Λ

0
0 0

1
CCCCCCA
:

Also, we have

gU 0
V

0 ¼

0
BBBBBB@

1 0
1

1
�1

�1
0 �1

1
CCCCCCA
:

From the features of λ-tensorRUV − λgUV , we analyze the description of the gravitational field
in the Segre symbols (see Ref. [17]), and we found that it is of the type G1½ð1111Þð11Þ�.
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Under the algebraic structure of the Riemann tensor, we conclude that the Bertotti–Kasner
space-time (1) belongs to Type I in the Petrov’s classification (see Ref. [18]). It is important to
notice that the geometry of Bertotti–Kasner space-time is both flat and curved. It reduces
smoothly into Minkowski space-time and hence will become flat as Λ→ 0. This is shown in
Figure 1.

The Weyl conformal λW -tensor CUV − λWgUV is constructed from the symmetric tensors
CUV and gUV . The roots of the characteristic equation jCUV ðxÞ− λWgUV ðxÞj ¼ 0 are called
Weyl invariants, Petrov invariants or Petrov scalars. For Bertotti–Kasner space-time, Weyl
invariants are as follows:

λW1
ðrÞ ¼ λW4

ðrÞ ¼ −
2Λ
3
; (9)

λW2
ðrÞ ¼ λW3

ðrÞ ¼ λW5
ðrÞ ¼ λW6

ðrÞ ¼ Λ
3
: (10)

The determinant of the Weyl conformal λW -matrix CUV ðxÞ− λWgUV ðxÞ is zero for any of the
above Weyl invariants. The canonical form of the Weyl tensor or Petrov canonical form is
given by

CU
0
V

0 ¼

0
BBBBBBBBBBBBBBBBBBBBBB@

�2Λ
3

0

Λ
3

Λ
3

2Λ
3

�Λ
3

0 �Λ
3

1
CCCCCCCCCCCCCCCCCCCCCCA

:

0

–0.02

–0.04

–0.06

–0.08

–0.10
0 2 4 6 8 10

Λ = 0.01 Λ = 0.005 Λ = 0.001 Λ = 0.0001

r

K
t, 

r(
x)

 a
n
d
 K

θ,
 �

(x
)

Figure 1.
The quantities Kt;rðxÞ
and Kθ;fðxÞ of
Gaussian curvature for
different values of Λ
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Now, let us consider that θ ¼ 0 or θ ¼ π. This implies that dθ ¼ 0. Then the Bertotti–Kasner
space-time metric (1) reduces to the following form:

ds
02 ¼ dt2 � e2

ffiffiffi
Λ

p
tdr2: (11)

The matrix ðg0
μνÞ of metric tensor components in coordinates x

0 ¼ ðt; rÞ is given by

g
0
μνðx

0 Þ ¼
�
1 0
0 �e2

ffiffiffi
Λ

p
t

�
; (12)

where μ; ν ¼ 0; 1. The matrix ðg 0
μνÞ has the determinant −e2

ffiffiffi
Λ

p
t. The hypersurface H

0
0 or H

0
π

degenerates to the two-dimensional surface. Let Γ0α
βγ denote the Christoffel symbols of second

kind. The non-vanishing components of Γ0α
βγ are

Γ
00
01 ¼ Γ

00
10 ¼

ffiffiffiffi
Λ

p
; Γ

00
11 ¼

ffiffiffiffi
Λ

p
e2

ffiffiffi
Λ

p
t:

For the metric (11), the Riemann tensor has only one nonzero component, and is given by

R
0
1010ðx

0 Þ ¼ Λe2
ffiffiffi
Λ

p
t:

Moreover, the Gaussian curvature at each point x
0 ¼ ðt; rÞ of the hypersurfaceH 0

0 orH
0
π is as

follows:

K
0 ðx0 Þ ¼ R

0
1010ðx

0 Þ���� 1 0
0 �e2

ffiffiffi
Λ

p
t

����
¼ −Λ: (13)

We conclude that the Gaussian curvature of the hypersurface H
0
0 or H

0
π is constant. Further,

every point is isotropic in the two-dimensional surface.
Next, for the case θ∈ ð0; πÞand f ¼ 0, the Bertotti–Kasner space-time metric (1) takes the

form

ds
002 ¼ dt2 � e2

ffiffiffi
Λ

p
tdr2 � 1

Λ
dθ2: (14)

The matrix ðg 00
μνÞ of metric tensor components in coordinates x00 ¼ ðt; r; θÞ has the form

g
00
μνðx00Þ ¼

0
BBB@

1 0

�e2
ffiffiffi
Λ

p
t

0 �1

Λ

1
CCCA; (15)

where μ; ν ¼ 0; 1; 2. The matrix ðg 00
μνÞhas the determinant e

2
ffiffi
Λ

p
t

Λ . Let Γ00α
βγ denote the Christoffel

symbols of the second kind. The non-vanishing components of Γ00α
βγ for the metric (14) are as

follows:

Γ
001
01 ¼ Γ

001
10 ¼

ffiffiffiffi
Λ

p
; Γ

000
11 ¼

ffiffiffiffi
Λ

p
e2

ffiffiffi
Λ

p
t:

Similar to the case of a two-dimensional surface, we have only one non-vanishing component
of the Riemann tensor for the metric (14) and is given by

R
00
1010ðx00Þ ¼ Λe2

ffiffiffi
Λ

p
t:
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Hence the curvature of three-dimensional space at each point x00 is determined by one
Gaussian curvature quantity K

00
θðx00Þ. Further, we have

K
00
θ ðx00Þ ¼

R
00
1010ðx00Þ���� 1 0

0 �e2
ffiffiffi
Λ

p
t

����
¼ −Λ: (16)

Since the Riemann tensor components R
00
2020ðx00Þ and R

00
1212ðx00Þ are equal to zero, the Gaussian

curvature quantitiesK
00
r ðx00Þ andK

00
t ðx00Þvanish at each point. Further, we have observed that

the quantity K
00
θðx00Þ (Eqn (16)) is identical with λ1ðrÞ; λ4ðrÞ and the quantities K

00
r ðx00Þ and

K
00
t ðx00Þ are identical with λ2ðrÞ; λ3ðrÞ; λ5ðrÞ; λ6ðrÞ.
We pointed out that the curvature of Bertotti–Kasner space-time is determined by two

quantities Kt;rðxÞ and Kθ;fðxÞ of Gaussian curvature at each point x. The four quantities
Kt;θðxÞ, Kt;fðxÞ, Kr;θðxÞ, and Kr;fðxÞ of Gaussian curvature vanish at each point. The
curvature index [19] of Kt;rðxÞ and Kθ;fðxÞ is −1, and that of Kt;θðxÞ, Kt;fðxÞ, Kr;θðxÞ and
Kr;fðxÞ is 0. The six quantities of Gaussian curvature are shown in Eqn (17):

Kθ;fðxÞ ¼ K
00
θ ðx00Þ ¼ K 0ðx0Þ ¼ λ4ðrÞ ¼ −Λ;

Kt;fðxÞ ¼ K
00
t ðx00Þ ¼ λ2ðrÞ ¼ 0;

Kr;fðxÞ ¼ K
00
r ðx00Þ ¼ λ3ðrÞ ¼ 0;

Kt;rðxÞ ¼ λ1ðrÞ ¼ −Λ;
Kt;θðxÞ ¼ λ5ðrÞ ¼ 0;

Kr;θðxÞ ¼ λ6ðrÞ ¼ 0:

9>>>>>>>>>>=
>>>>>>>>>>;

(17)

From Eqn (17) we have observed that all the six Gaussian curvature quantities are expressed
in terms of curvature invariants. The radial coordinate r is plotted versusKt;rðxÞ andKθ;fðxÞ
in Figure 1. Here, we have considered different values of the cosmological constant like
Λ ¼ 0:01; Λ ¼ 0:005; Λ ¼ 0:001, and Λ ¼ 0:0001. We deduce from Figure 1 that the
quantities Kt;rðxÞ and Kθ;fðxÞ of Gaussian curvature tend to zero as Λ decreases. So that as
Λ→ 0, all six quantities of Gaussian curvature in Eqn (17) approach to zero, and hence
Bertotti–Kasner space-time smoothly becomes flat. In other words, it reduces intoMinkowski
space-time.

3. Conclusions
We have studied the geometric properties of the Bertotti–Kasner space-time. It is found that
in Bertotti–Kasner space-time, every point is isotropic. In two orientations K ¼ −Λ and the
other four orientations K ¼ 0. Further, we have analyzed the following:

Rαβγδ ¼ Kðgαγgβδ � gαδgβγÞ;
R

0
αβγδ ¼ K

�
g

0
αγg

0
βδ � g

0
αδg

0
βγ

�
;

R
00
αβγδ ¼ K

�
g

00
αγg

00
βδ � g

00
αδg

00
βγ

�
;

where K denotes the Gaussian curvature equal to −Λ, hence we conclude that Bertotti–
Kasner space-time is completely isotropic.

The canonical forms of tensors RUV and CUV are achieved in the pseudo-Euclidean space
ℝ6 concerning the orthonormal basis p1; p2; p3; p4; p5; p6 by six-dimensional formalism.
Both curvature invariants and canonical form of the Riemann tensor RUV describe the space-
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time curvature, and hence they lead to the analysis of nature of the gravitational field. In four
orthonormal directions piði ¼ 1; . . . ; 4Þ, the curvature invariants are equal to zero. However,
in the remaining two orthonormal directions, they are nonzero and equal to −Λ each.
Therefore, we may deduce that the Bertotti–Kasner space-time has a constant
gravitational field.
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