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Abstract

Purpose – The present work focuses on the primality and the Cartesian product of graphs.
Design/methodology/approach –Given a graph G, a subsetM of V (G) is amodule of G if, for a, b∈Mand x
∈V (G) \M, xa∈E(G) if and only if xb∈E(G). A graphGwith at least three vertices is prime if the empty set, the
single-vertex sets and V (G) are the only modules of G.
Findings –Motivated by works obtained on “the Cartesian product of graphs” and “the primality,” this paper
creates a link between the two notions.
Originality/value – In fact, we study the primality of the Cartesian product of two connected graphs minus k
vertices, where k ∈ {0, 1, 2}.
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1. Introduction
In our paper, G5 (V, E) always denotes a finite undirected graph where V5 V(G) is a non-
empty and finite set, called the vertex-set ofG andE5E(G) is a set of pairs of distinct vertices
called the edge-set ofG. An edge {u, v} ofG is denoted by uv. Two distinct vertices u and v ofG
are adjacentwhenever uv∈E; otherwise u and v are said to be non-adjacent. Given a finite and
non-empty set V, (V, ∅) is the empty graph on V, whereas (V, [V]2) is the complete graph
where [V]2 is the set of pairs of V. The complement of each graph G 5 (V, E) is the graph

G ¼ ðV ;EÞ such that, for x ≠ y ∈ V, xy∈E if and only if xy ∉ E. Any graph with just one
vertex is referred to as trivial.

Let G5 (V, E) be a graph and x be a vertex of G. A neighbor of x is vertex y of G such that
xy ∈ E. The family of neighbors of x is called the neighborhood of x denoted by NG(v). The
vertex x is said to be pendant if it has a unique neighbor.

The degree of x, denoted by dG(x), is to the number of its neighbors. For example, a vertex
with degree zero is called an isolated vertex. The minimum vertex degree, known as the
minimum degree of G is the smallest vertex degree of G denoted by δ(G).

The notation u— v signifies that uv ∈ E while u.. . .v means that uv ∉ E. For any two
disjoint subsets I and J ofV, I— J (resp. I.. . . J) signifies for each (x, y)∈ I3 J, x— y (resp. x.. . .
y). In particular whenever I5 {x}, we denote x— J (resp. x.. . .J). Furthermore, x∼ Jmeans x—
J or x.. . .J. The negation is denoted by x § J.

Let G5 (V, E) be a graph. A graph G0 5 (V0, E0) is a subgraph of G if V0 ⊆ V and E0 ⊆ E.
Given a non-empty vertex subsetX ofV, the subgraph ofG induced byX is the subgraphG[X]
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5 (X, E ∩ [X]2). If X is a proper subset of V, G[V \ X] is also denoted by G � X and by G � x
whenever X 5 {x}.

Let G 5 (V, E) and H 5 (V0, E0) be two graphs. A bijection f from V onto V0 is an
isomorphism from G onto H provided that, for x ≠ y ∈ V, xy ∈ E if and only if f(x)f(y) ∈ E0.

Given a graph G5 (V, E), a subsetM ofV is amodule [1] (or a clan [2,3] or an interval [4,5])
of G provided that, for all a, b ∈M and x ∈ V \M, xa ∈ E if and only if xb ∈ E. Thus,M is a
module ofG if for all x∈V \M, x∼M. For example, the empty set,V and {x} where x∈V are
modules of G called trivial modules. A two-element module of G is known as a duo [6]. The
graphs that have no duo, are called duo-free graphs. A graph is indecomposable [5] if all its
modules are trivial. An indecomposable graph with at least three vertices is a prime graph [7].
All graphs with two vertices at most are indecomposable. However, all the 3-vertex graphs

are not prime. Notice that the graphsG andG share the samemodules. Thus,G is prime if and

only if G is prime. Given n ≥ 2, the n-vertex graph denoted by Pn is defined on {1, . . ., n} as
follows: for i, j∈ {1, . . ., n}, ij is an edge of Pn if ji� jj5 1. Each graph that is isomorphic to Pn
is called a path. It is clear that a path with at least 4 vertices is a prime graph. A path with
extremities x and y is denoted by (x, y)-path.

LetG5 (V,E) be a prime graph. A vertex x ofG is critical ifG� x is not prime. The graphG
is critical if all its vertices are critical. The indecomposability graph of the graph G, denoted by
IðGÞ, is the graph defined on the setV(G) as follows: for u≠ v∈V(G), uv is an edge ofIðGÞ if
G � {u, v} is prime.

Given a graph G5 (V, E), a non-empty subset C of V is a connected component of G if for
x ∈ C and y ∈ V \ C, xy ∉ E and if, for x ≠ y ∈ C, there is a sequence x 5 x0, . . ., xn 5 y of
elements of C such that, for each integer iwhere 0 ≤ i ≤ n� 1, xixiþ1 ∈ E. Clearly, an isolated
vertex ofG constitutes a connected component ofG. The graphG is connected if it has exactly
one connected component.

TheCartesian product G,H of graphsG5 (V1,E1) andH5 (V2,E2) is the graph such that
the vertex-set is V(G)3 V(H) and (a, x)(b, y) ∈ E(G,H) whenever ab ∈ E1 and x5 y or a5 b
and xy ∈ E2. For any h ∈ V2, the subgraph of G,H induced by V1 3{h} is called a G-fiber
and is denoted byGh. TheH-fiber could be defined similarly. Figure 1 gives an example of the
Cartesian product of two graphs.

Consider the following immediate observation.

1.1 Observation

(1) A Cartesian product of two graphs is connected if and only if both factors are
connected.

(2) Every proper module of a Cartesian product of two connected graphs is included in a
fiber.

•G1 • • •

•

•G2

•

•

•

•

•

•

•

•

•

•

•

•

•
Source(s): Created by the authors

Figure 1.
G1,G2
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The present work focuses on the primality and the Cartesian product of graphs. In the last
few years, graph products have emerged again as a flourishing topic in graph theory. It has
always been a good method to construct large graphs from small ones. Such products
include: the Categorical product [8], theKronecker product [9], the Cardinal product [10] and
the Cartesian product [11–13]. The most widely used one that offers interesting problems
may be the Cartesian product, which was first introduced by Sabidussi [14]. These types of
graph products and other ones have been the subject of several papers [8,9,15–17]. On the
other hand, the concept of primality has also been fundamental in the study of finite
structures. Many questions on primality revolve around the study of its hereditary aspect
in the graphs. Some papers have appeared along these lines [2,4,18–25]. In the case of
graphs a first result dates back to D. P. Sumner [26]: Every prime graph G with at least 4
vertices has a subgraph which is a P4. After that, A. Ehrenfeucht and G. Rozenberg [3]
affirmed that the prime graphs have the following ascendant hereditary property: Let X be
a subset of a prime graph G such that G[X] is prime. If jV(G) \ Xj≥ 2, then there are x ≠

y ∈ V(G) \ X such that G[X ∪ {x, y}] is prime. Later, J. H. Schmerl and W. T. Trotter [5]
established the following decending. For each prime graph G with at least 6 vertices, there
are a ≠ b ∈ V(G) such that G � {a, b} is prime. To prove this result, the authors have
introduced and described the critical graphs.

Motivated by works obtained on ”the Cartesian product of graphs” and ”the primality”, H.
Kheddouci proposed to find a link between the two notions. Actually, he asked about the
primality of Cartesian product and its subgraphs. This paper provides answers to questions
asked by Kheddouci.

First, we establish that the primality of the Cartesian product of two graphs is essentially
guaranteed by the connectedness of the two graphs. We obtain the following.

Theorem 1.2 Given two non-trivial connected graphs G1 5 (V1, E1) and G2 5 (V2, E2) such
that jV1j≥ 3 or jV2j≥ 3, then the Cartesian product G1,G2 is prime.

Using Observation 1.1, we deduce the following corollary.

Corollary 1.3 Given two non-trivial graphs G15 (V1,E1) and G25 (V2,E2) such that jV1j≥ 3 or
jV2j≥ 3, the Cartesian product G1,G2 is connected if and only if it is prime.

Second, we characterize all the vertex pairs of a Cartesian product of two connected
graphs such that their suppression results in a prime graph. We obtain the following.

Theorem 1.4 Let G15 (V1, E1) and G25 (V2, E2) be two connected graphs such that jV1j≥ 3
and jV2j≥ 3. Consider distinct vertices a 5 (xa, ya) and b 5 (xb, yb) of G1,G2.

The pair {a, b} is not an edge of the graph IðG1,G2Þ if and only if one of the following
conditions is satisfied.

1. There are distinct vertices x0, x1 and x2 ofG1 and distinct vertices y0, y1 and y2 ofG2 such
that NG1

ðx0Þ ¼ fx1g, x2 ∈NG1
ðx1Þ, NG2

ðy0Þ ¼ fy1g, y2 ∈NG2
ðy1Þ and

fa; bg ¼
fðx0; y1Þ; ðx1; y0Þg if jNG1

ðx1Þj≥ 3 or jNG2
ðy1Þj≥ 3

or��
xi; yj

�
; ðxj; yiÞ

�
where i≠ j∈ f0; 1; 2g otherwise:

8<
:

2. Either xa5 xb, xa is the neighbor of a pendant vertex of G1 and {ya, yb} is a duo of G2, or
ya 5 yb, ya is the neighbor of a pendant vertex of G2 and {xa, xb} is a duo of G1.
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For example, for G 5 P3,P3, EðIðP3,P3ÞÞ ¼ ffð1; 1Þ; ð3; 3Þg; fð1; 3Þ; ð3; 1Þg; fð1; 2Þ;
ð3; 2Þg; fð1; 2Þ; ð2; 1Þg; fð2; 1Þ; ð3; 2Þg; fð3; 2Þ; ð2; 3Þg; fð2; 3Þ; ð1; 2Þg; fð1; 2Þ; ð3; 2Þg;
fð2; 1Þ; ð2; 3Þgg (see Figure 2)

Note that Schmerl and Trotter [5] have confirmed that each prime graph with at least 6
vertices has a non-empty indecomposability graph. Theorem 1.4 describes the edges of the
indecomposability graph of the Cartesian product of two connected graphs.

The following corollary is an immediate consequence of Theorem 1.4.

Corollary 1.5 Let G15 (V1, E1) and G25 (V2, E2) be two connected graphs such that jV1j≥ 3
and jV2j≥ 3. The graphIðG1,G2Þ is complete if and only if one of the following conditions is
satisfied.

(1) min (δ(G1), δ(G2)) ≥ 2.

(2) There are i ≠ j ∈ {1, 2} such that δ(Gi) 5 1, δ(Gj) ≥ 2 and Gj is duo-free.

Finally, we prove that all the vertices of the Cartesian product of two connected graphs
with at least 3 vertices are not critical. We obtain the following.

Theorem 1.6 Given two connected graphs G15 (V1, E1) and G25 (V2, E2) such that jV1j≥ 3
and jV2j≥ 3, then G1,G2 has no critical vertex.

The text is organized as follows: Section 2 focuses on the proof of Theorem 1.2 while
Section 3 is devoted to the proof of Theorem 1.4. However, Section 4 covers the third main
result.

2. Proof of Theorem 1.2
Let two non-trivial connected graphs G1 5 (V1, E1) and G2 5 (V2, E2) such that jV1j≥ 3 or
jV2j≥ 3. DenoteG5G1,G2,V5V(G1,G2) andE5E(G1,G2). Let us prove thatG1,G2 is
prime. On the contrary, suppose that G1,G2 is decomposable and consider I a nontrivial
module of it. Since by Observation 1.1 G1,G2 is connected, I cannot be a connected
component of it. Thus, there is z ∈ V \ I such that z— I. It follows from Observation 1.1 that
I ⊆V ðGxz

2 Þ∪V ðGyz
1 Þ. Accordingly the two following cases have to be distinguished.

� Case 1. Either I \ V ðGxz
2 Þ ¼ ∅ or I \ VðGyz

1 Þ ¼ ∅.

Assume that I \ V ðGxz
2 Þ ¼ ∅ (resp. I \ V ðGyz

1 Þ ¼ ∅). Then, I ⊆G
yz
1 (resp. I ⊆G

xz
2 ). Based on

Observation 1.1, since G1 (resp. G2) is connected, then there is h ∈ V1 (resp. h ∈ V2) such that

hxz ∈ E1 (resp. hyz ∈ E2). Using the definition of G1,G2 again, there is α∈VðGh
2Þ (resp.

α∈V ðGh
1Þ) such that α § I; impossible.

� Case 2. I \ V ðGxz
2 Þ≠∅ and I \ V ðGyz

1 Þ≠∅.

Source(s): Created by the authors

Figure 2.
P3,P3
and IðP3,P3Þ
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In this case, there are two distinct elements u5 (xu, yu) and v5 (xv, yv) of I such that xu 5 xz,
yv 5 yz and xu ≠ xv. Using the definition of G1,G2, the vertex t5 (xv, yu) verifies tu ∈ E and
tv∈E because z— {u, v}. In addition, since I ⊆VðGxz

2 Þ∪VðGyz
1 Þ, necessarily t∉ I. Hence, t— I.

Moreover, for each h∈ ðV ðGxz
2 Þ∪V ðGyz

1 ÞÞnfu; vg, th∉ E and thus h∉ I. Therefore, I5 {u, v}.
Consequently, if jV2j≥ 3 (resp. jV1j≥ 3), there is α∈V ðGxz

2 Þ (resp. α∈VðGyz
1 Þ) such that αu∈E

and αv ∉ E (resp. αu ∉ E and αv ∈ E); which is impossible.

3. Proof of Theorem 1.4
We start by the following obvious observations.

3.1 Observation

(1) Let G be a connected graphwith at least 3 vertices. Then for any vertices x and y of G,
there is a subgraph (not necessarily an induced one) in G containing x and y and
isomorphic to Pn where n ≥ 3.

(2) Let G1 and G2 be two connected graphs with at least 3 vertices. Then for any distinct
vertices a and b of G1,G2, there is a subgraph (not necessary an induced one) of
G1,G2 containing a and b and isomorphic to Pn,Pm where n ≥ 3, m ≥ 3.

(3) Let m and n be two integers such that m, n ≥ 3, Pn,Pm be a Cartesian product and a
and b be two distinct vertices of Pn,Pm. Then

� (Pn,Pm) � {a} is connected.

� (Pn,Pm) � {a, b} is connected if and only if fa; bg∉ fðf 1; 2Þ; ð2; 1Þg;
fðn− 1; 1Þ; ðn; 2Þg; fð1;m− 1Þ; ð2;mÞg; fðn;m− 1Þ; ðn− 1;mÞg.

Notice that the second assertion of Observation 3.1 is an immediate consequence of the
first one.

Lemma 3.2. Let G15 (V1, E1) and G25 (V2, E2) be two connected graphs such that jV1j≥
3 and jV2j≥ 3 and let a and b be two distinct vertices of G1,G2. Then (G1,G2)� {a, b} is not
connected if and only if there are x, x0 ∈ V1 and y, y0 ∈ V2 such that NG1

ðxÞ ¼ fx0g,
NG2

ðyÞ ¼ fy0g and {a, b} 5 {(x0, y), (x, y0)}.
Proof. Consider two connected graphs G1 5 (V1, E1) and G2 5 (V2, E2) such that jV1j≥ 3 and
jV2j≥ 3 and two distinct vertices a and b ofG1,G2. LetG5G1,G2. Assume thatG� {a, b}
is not connected. Then there are two distinct vertices c5 (xc, yc) and d5 (xd, yd) of G� {a, b}
such that there is no (c, d)-path in G� {a, b}. Based on Observation 3.1, there is a subgraph of
G1 (resp. G2) containing xc and xd (resp. yc and yd) which is isomorphic to Pkwhere k≥ 3 (resp.
Pl where l ≥ 3). Hence, consider P 0

n (resp P 0
m) where n, m ≥ 3, a longest path of G1 (resp. G2)

containing xc and xd (resp. yc and yd) and H 0 ¼ P 0
n,P 0

m.
If a∉V(H0) or b ∉ V(H0), then Observation 3.1 confirms that there is (c, d)-path in G � {a, b};
impossible. Presently, assume that both a and b are elements ofV(H0). Given Observation 3.1,
we have to consider only the case where fa; bg∈ fðf 1; 2Þ; ð2; 1Þg; fðn− 1; 1Þ; ðn; 2Þg;
fð1;m− 1Þ; ð2;mÞg; fðn;m− 1Þ; ðn− 1;mÞg. Without loss of generality, let {a, b} 5 {(1, 2),
(2, 1)}. To end the proof, it is enough to prove that NG1

ð1Þ ¼ f2g and NG2
ð1Þ ¼ f2g. On the

contrary suppose that, for example, there is a vertex h5 (xh, yh) such that xh ∈NG1
ð1Þnf2g. In

case h∉V(H0), we obtain the subgraph defined on {1, 2, . . ., n, xh} which is a path containing
(xc and xd) and longer thanP

0
n, which contradicts the choice ofP

0
n. In case h∈V(H0),H0 � {a, b}

is connected. Thus, there is a (c, d)-path in G � {a, b}; impossible.
Conversely, assume that there are x, x0 ∈ V1 and y, y0 ∈ V2 such that NG1

ðxÞ ¼ fx0g,
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NG2
ðyÞ ¼ fy0g and {a, b} 5 {(x0, y), (x, y0)}. It is clear that.

V(G) \{(x0, y), (x, y0), (x, y)} is a connected component of G� {a, b}. Therefore, G� {a, b} is not
connected. ,

3.2 Proof of theorem. 1.4
Let a 5 (xa, ya) and b 5 (xb, yb) be distinct elements of V(G1,G2). Denote G 5 G1,G2,
V(G1,G2)5 V and E(G1,G2)5 E. Assume that ab∉EðIðG1,G2ÞÞ. Hence, G � {a, b} is
not prime. If G � {a, b} is not connected, then using Lemma 3.2, there are x, x0 ∈ V1 and y,
y0 ∈V2 such thatNG1

ðxÞ ¼ fx0g,NG2
ðyÞ ¼ fy0gand {a, b}5 {(x0, y), (x, y0)}. So by considering

x05 x; x15 x0, y05 y; y15 y0 we obtain {a, b}5 {(x1, y0), (x0, y1)} and thus the first condition of
Theorem 1.4 is verified. Assume that G� {a, b} is connected. Let I be a non-trivial module of
G� {a, b}. Obviously, I is not a connected component of G� {a, b}. Then there are u5 (xu,
yu)∈ I and z5 (xz, yz)∈V \ (I ∪ {a, b}) such that uz∈E. Based on the definition ofG, xu5 xz or
yu5 yz. Without loss of generality, we may assume that xu5 xz. Since I is a module ofG� {a,
b}, z — I. Then I ⊆V ðG2

xuÞ∪V ðG1
yzÞ. We distinguish the two following cases.

� Case 1. Either I \ VðG1
yzÞ ¼ ∅ or I \ V ðG2

xuÞ ¼ ∅.

Without loss of generality, we may assume that I \ VðG1
yzÞ ¼ ∅. Hence, necessarily

I ⊆V ðG2
xuÞ. Since G1 is connected, there is h ∈ V1 such that hxu ∈ E1. If jIj≥ 3, j Gh

2 j ≥ 3.

Thus, there is α∈VðGh
2Þnfa; bg such that α§ I; impossible. Consequently, jIj5 2. As I is a

duo ofG� {a, b},NG1
ðxuÞ ¼ fhg. Let v5 (xu, yv)∈ I \{u}. It is clear that {yu, yv} is a duo ofG2

and {a, b} 5 {(h, yu), (h, yv)}, thus verifying the second condition of Theorem 1.4.

� Case 2. I \ V ðG1
yzÞ≠∅ and I \ V ðG2

xuÞ≠∅.

In this case, there is v5 (xv, yv)∈ I such that yv5 yz and xv≠ xu. AsG1 andG2 are connected,
using the definition of G, there is t5 (xt, yt) ∈ V such that xt 5 xv, yt 5 yu, tu ∈ E and tv ∈ E.

First, prove that t∉{a, b}. On the contrary, suppose that t∈ {a, b}. For instance, assume
that t5 a. Since G1 is connected and jV1j≥ 3, there is xα ∈ V1 \{xu, xv} such that xαxu ∈ E1 or
xαxv ∈ E1. The two situations are studied as follows.

(1) In case xαxu ∈ E1. Since I ⊆VðG2
xuÞ∪VðG1

yzÞ, (xα, yu) ∉ I. Moreover, (xα, yu) § I
because (xv, yv). . ..(xα, yu)— (xu, yu). Thus, (xα, yu)5 b. SinceG2 is connected and jV2j≥
3, there is yβ ∈ V2 \{yu, yv} such that yβyu ∈ E2 or yβyv ∈ E2. First, assume that
yβyv ∈ E2, then (xv, yβ) ∉ I because I ⊆V ðG2

xuÞ∪V ðG1
yzÞ. Moreover, based on the

definition ofG, (xu, yu). . ..(xv, yβ)— (xv, yv); which contradicts the fact that I is amodule
of G � {a, b}. Second, assume that yβyu ∈ E2 and yβ ∉NG2

ðyvÞ because otherwise we
return to the first step. Observe that (xu, yβ) ∉ I, as z ∉ I, u ∈ I and (xu, yβ). . ..(xz, yz)—
(xu, yu). Furthermore, (xu, yβ) § I because (xv, yv). . ..(xu, yβ) — (xu, yu); which
contradicts the fact that I is a module of G � {a, b}.

(2) In case xαxv ∈ E1, we may also assume that xαxu∉ E1 because otherwise we return to
the first situation. Obviously, (xα, yz). . ..(xz, yz) as xαxu ∉ E1. Hence, (xα, yz) ∉ I.
Moreover, (xα, yz)§ I because (xu, yu). . ..(xα, yz)— (xv, yv). Thus b5 (xα, yz). Since G2 is
a connected graph with at least 3 vertices, there is yβ∈V2 \{yu, yv} such that yβyu∈E2

or yβyv∈E2. First, assume that yβyv∈E2. Then (xv, yβ)∉ I. Besides, using the definition
ofG, (xu, yu). . ..(xv, yβ)— (xv, yv); which contradicts the fact that I is amodule ofG� {a,
b}. Second assume that yβyu ∈ E2 and yβyv ∉ E2 because otherwise we return to the
first step. Evidently, (xu, yβ) ∉ I, since z ∉ I, v ∈ I and (xv, yβ). . ..(xz, yz) — (xu, yu).
Furthermore, (xu, yβ) § I, because (xv, yv). . ..(xu, yβ)— (xu, yu); which contradicts the
fact that I is a module of G � {a, b}.
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In what remains, assume that t∉{a, b}. Since I ⊆V ðG2
xuÞ∪V ðG1

yzÞ, we have t ∉ I.
Moreover, since u ∈ I and tu ∈ E, t — I. Using the definition of G, for each
h∈ ðV ðG2

xuÞ∪V ðG1
yzÞÞnfu; vg, th ∉ E and then h ∉ I. Therefore, I 5 {u, v}.

First, assume that dG1
ðxuÞ ¼ 1 and dG2

ðyvÞ ¼ 1. Then necessarily NG1
ðxuÞ ¼ fxvg and

NG2
ðyvÞ ¼ fyug. Since jV1j≥ 3, jV2j≥ 3 and {u, v} is a module of G � {a, b}, we obtain

NG
yv
1
ðvÞnfzg ¼ fag or {b} andNGxu

2
ðuÞnfzg ¼ fag or {b}. Thus, by considering, for example,

x05 xu, x15 xv, x25 xa, y05 yv, y15 yu and y25 yb, we have {a, b}5 {(x2, y0), (x0, y2)}, thus
verifying the first condition of Theorem 1.4.

Second, assume that dG1
ðxuÞ≥ 2 or dG2

ðyvÞ≥ 2. Without loss of generality, assume that
dG1

ðxuÞ≥ 2. Then there is h∈VðG1
yuÞ such that h∈NG(u) \{t} and h§ {u, v}. Therefore, h∈

{a, b}. For instance, assume that h5 a. Since jV2j≥ 3 andG2 is connected, there isw∈V2 such
that w∈NG2

ðyuÞ or w∈NG2
ðyvÞ. To begin with, assume that w∈NG2

ðyuÞ. Since (xu, w)§ {u,
v}, (xu, w)5 b. Necessarily, dG1

ðxvÞ ¼ 1 and dG1
ðxuÞ ¼ 2 because otherwise there is k ∈V \{a,

b} such that k§ {u, v}. Similarly, dG2
ðyvÞ ¼ 1and dG2

ðytÞ ¼ 2. Hence, by considering x05 xv,
x15 xu, x25 xa, y05 yv, y15 yu and y25 yb, we obtain {a, b}5 {(x2, y1), (x1, y2)}, thus verifying
the first condition of Theorem 1.4. Now, we may assume that w∈NG2

ðyvÞ and w∉NG2
ðyuÞ

because otherwise we return to the first situation. Since (xv, w) § {u, v}, (xv, w) 5 b.
Necessarily, dG1

ðxvÞ ¼ 1 and dG1
ðxuÞ ¼ 2 because otherwise there is k ∈ V \{a, b} such that

k§ {u, v}. Similarly, dG2
ðyuÞ ¼ 1 and dG2

ðyvÞ ¼ 2. It results, by considering x05 xv, x15 xu,
x2 5 xa, y0 5 yu, y1 5 yv and y2 5 yb that {a, b} 5 {(x2, y0), (x0, y2)}, thus verifying the first
condition of Theorem 1.4.

Conversely, assume that one of the conditions of Theorem 1.4 is satisfied and let us prove
that ab∉EðIðGÞÞ.

First, assume that the first condition is satisfied. Then there are distinct vertices x0, x1 and
x2 of G1 and distinct vertices y0, y1 and y2 of G2 such that NG1

ðx0Þ ¼ fx1g, x2 ∈NG1
ðx1Þ,

NG2
ðy0Þ ¼ fy1g, y2 ∈NG2

ðy1Þ and

fa; bg ¼
fðx0; y1Þ; ðx1; y0Þg if jNG1

ðx1Þj≥ 3 or jNG2
ðy1Þj≥ 3

or��
xi; yj

�
; ðxj; yiÞ

�
where i≠ j∈ f0; 1; 2g otherwise:

8<
:

Therefore, V \{(x0, y1), (x1, y0), (x0, y0)} or {(x0, y1), (x1, y0)} or {(x1, y1), (x0, y0)} is a non-trivial
module of G � {a, b}. Thus, ab∉EðIðGÞÞ.

Second, assume that the second condition is satisfied. If xa 5 xb, xa is the neighbor of a
pendant vertex ofG1 and {ya, yb} is a duo ofG2 (resp. If ya5 yb, ya is the neighbor of a pendant
vertex of G2 and {xa, xb} is a duo of G1), in this case, consider x1 (resp. y1) to be a pendant
vertex of G1 (resp. G2) such that NG1

ðx1Þ ¼ fxag (resp. NG2
ðy1Þ ¼ fyag). Clearly, {(x1, ya), (x1,

yb)} (resp. {(xa, y1), (xb, y1)}) is a non-trivial module of G � {a, b}. Thus, ab∉EðIðGÞÞ.,

4. Proof of Theorem 1.6
The proof of Theorem 1.6 is an immediate consequence of Theorem 1.2, the following result
due to Y. Boudabbous and P. Ille and also the lemma below.

Lemma 4.1. [21] Let G be a prime graph with at least 5 vertices. For each critical vertex x
of G, jNIðGÞðxÞj≤ 2.

Lemma 4.2. Let G15 (V1, E1) and G25 (V2, E2) be two connected graphs such that jV1j≥ 3
and jV2j≥ 3. Then for each vertex a ∈ V(G1,G2), jNIðG1,G2ÞðaÞj≥ 3.
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Proof. Let a 5 (xa, ya) ∈ V(G1,G2) and note that G 5 G1,G2, V(G1,G2) 5 V and
E(G1,G2) 5 E. The result is obvious when jNIðGÞðaÞj ¼ jV j− 1. Then assume that
jNIðGÞðaÞj < jV j− 1. Thus, there is b5 (xb, yb)∈V \{a} such that ab∉EðIðGÞÞ. Then one of
the conditions of Theorem 1.4 is satisfied.

First, assume that there are distinct vertices x0, x1 and x2 of G1 and distinct vertices y0, y1
and y2 of G2 such that NG1

ðx0Þ ¼ fx1g, x2 ∈NG1
ðx1Þ, NG2

ðy0Þ ¼ fy1g, y2 ∈NG2
ðy1Þ and

fa; bg ¼
fðx0; y1Þ; ðx1; y0Þg if jNG1

ðx1Þj≥ 3 or jNG2
ðy1Þj≥ 3

or��
xi; yj

�
; ðxj; yiÞ

�
where i≠ j∈ f0; 1; 2g otherwise:

8<
:

To begin with, assume that {a, b}5 {(x0, y1), (x1, y0)}. For instance, we may assume that a5
(x0, y1) and b5 (x1, y0). Consider the three vertices c5 (x0, y0), d5 (x0, y2) and e5 (x1, y1) of G.
Since {ya, y0}, {ya, y2} are not duos of G2 and {xa, x1} is not a duo of G1, then using Theorem
1.4, the vertices c, d and e are neighbors of a in IðGÞ and thus jNIðGÞðaÞj≥ 3.

Now, assume that {a, b}∈ {{(x0, y2), (x2, y0)}, {(x1, y2), (x2, y1)}}. If {a, b}5 {(x0, y2), (x2, y0)},
for example, wemay assume that a5 (x0, y2) and b5 (x2, y0). Consider the two distinct vertices
c5 (x1, y2) and d5 (x0, y1) of G. Since {ya, y1} is not a duo of G2 and {xa, x1} is not a duo of G1,
then based on Theorem 1.4 the vertices c and d are neighbors of a inIðGÞ. Presently, consider
the vertex e5 (x0, y0) of G. Since NG1

ðx0Þ ¼ fx1g, x0 is not a neighbor of a pendant vertex of
G1. So using Theorem 1.4, e is neighbor of a in IðGÞ and thus jNIðGÞðaÞj≥ 3.

At present, assume that {a, b}5 {(x1, y2), (x2, y1)}. For instance, consider a5 (x1, y2) and b
5 (x2, y1). Let c5 (x0, y2), d5 (x2, y2) and e5 (x1, y1). Since {ya, y1} is not a duo ofG2 and {xa, x0}
and {xa, x2} are not duos ofG1, then given Theorem 1.4, the vertices c, d and e are neighbors of
a in IðGÞ and thus jNIðGÞðaÞj≥ 3.

Second, either xa5 xb, xa is the neighbor of a pendant vertex of G1 and {ya, yb} is a duo of
G2, or ya5 yb, ya is the neighbor of a pendant vertex of G2 and {xa, xb} is a duo of G1. Without
loss of generality, we may assume that xa 5 xb, xa is the neighbor of a pendant vertex of G1

and {ya, yb} is a duo of G2. Let x0 ∈ V1 such that NG1
ðx0Þ ¼ fxag. As G1 is a connected graph

and jV1j≥ 3, there is x1 ∈NG1
ðxaÞnfx0g. Let c5 (x0, ya) and d5 (x1, ya). Observe that {x0, xa}

and {xa, x1} are not duos of G1, then c; d∈NIðGÞðaÞ follows from Theorem 1.4. Since G2 is
connected, jV2j≥ 3 and {ya, yb} is a duo of G2, there is y0 ∈ V2 such that y0— {ya, yb}.

If yayb∈E2, consider e5 (x0, y0). If y0 is not a neighbor of a pendant vertex ofG2, then based
on Theorem 1.4, e∈NIðGÞðaÞ and thus jNIðGÞðaÞj≥ 3. In case y0 is a neighbor of a pendant
vertex yα of G2, {ya, yα} is not a duo of G2 because yayb ∈ E2 and yα is a pendant vertex. Thus,
Theorem 1.4 implies that ðxa; yαÞ∈NIðGÞðaÞand then jNIðGÞðaÞj≥ 3. If yayb∉E2, consider e5
(xa, y0). It is clear that {ya, y0} is not a duo of G2, therefore, based on Theorem 1.4, e∈NIðGÞðaÞ
and thus jNIðGÞðaÞj≥ 3. ,
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