Classical solutions for the generalized KadomtsevPetviashvili I equations

218

Received 18 August 2022
Revised 21 November 2022 Accepted 8 January 2023

Svetlin Georgiev
Sofia University, Sofia, Bulgaria
Aissa Boukarou
Dynamic Systems Laboratory,
University of Science and Technology Houari Boumediene, Algiers, Algeria
Keltoum Bouhali
Universite du 20 aout 1955 de Skikda, Skikda, Algeria, and
Khaled Zennir
Qassim University, Buraydah, Saudi Arabia

Abstract

Purpose - This paper is devoted to the generalized Kadomtsev-Petviashvili I equation. This study aims to propose a new approach for investigation for the existence of at least one global classical solution and the existence of at least two nonnegative global classical solutions. The main arguments in this paper are based on some recent theoretical results. Design/methodology/approach - This paper is devoted to the generalized Kadomtsev-Petviashvili I equation. This study aims to propose a new approach for investigation for the existence of at least one global classical solution and the existence of at least two nonnegative global classical solutions. The main arguments in this paper are based on some recent theoretical results. Findings - This paper is devoted to the generalized Kadomtsev-Petviashvili I equation. This study aims to propose a new approach for investigation for the existence of at least one global classical solution and the existence of at least two nonnegative global classical solutions. The main arguments in this paper are based on some recent theoretical results. Originality/value - This article is devoted to the generalized Kadomtsev-Petviashvili I equation. This study aims to propose a new approach for investigation for the existence of at least one global classical solution and the existence of at least two nonnegative global classical solutions. The main arguments in this paper are based on some recent theoretical results.

Keywords Kadomtsev-Petviashvili equation, Existence, Classical solution
Paper type Research paper

1. Introduction

The Soviet physicists Boris Kadomtsev and Vladimir Petviashvili derived the equation that now bears their name, the Kadomtsev-Petviashvili equation (shortly the KP equation), as a model that describes the evolution of long ion-acoustic waves of small amplitude propagating in plasmas under the effect of long transverse perturbations. A particular case of this model is the Korteweg-de Vries (KdV) equation in the case of the absence of transverse dynamics. The KP equation is an extension of the classical KdV equation to two spatial dimensions, and it
© Svetlin Georgiev, Aissa Boukarou, Keltoum Bouhali and Khaled Zennir. Published in the Arab Journal of Mathematical Sciences. Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at http:// creativecommons.org/licences/by/4.0/legalcode
was used by Ablowitz and Segur for modeling of surface and internal water waves and for modeling in nonlinear optics, as well as in other physical settings.

The KP equation I can consider as a nonlinear partial differential equation in two spatial and one temporal coordinate. There are two distinct versions of the KP equation, which can be written in a normalized form in the following way:

$$
\left(u_{t}+6 u u_{x}+u_{x x x}\right)_{x}+3 \sigma^{2} u_{y y}=0
$$

where $u=u(x, y, t)$ is a scalar function, x and y are the longitudinal and transverse spatial coordinates, subscripts x, y, t denote partial derivatives and $\sigma^{2}= \pm 1$. When $\sigma=1$, this equation is known as the KPII equation, and in this case, it models water waves with small surface tension. In the case when $\sigma=-1$, this equation is known as the KPI equation, and in this case, it models waves in thin films with high surface tension. In the references, the equation is often written with different coefficients in front of the various terms. Note that the particular values are inessential and they can be modified by appropriate rescaling of the dependent variables and of the independent variables.

This paper is devoted to the IVP for the generalized Kadomtsev-Petviashvilli I (gKPI) equation

$$
\begin{array}{rlr}
\partial_{x}\left(\partial_{t} u+u \partial_{x} u+\mu^{2} \partial_{x}^{l} u\right)+\nu \partial_{y y} u & =0, \quad t>0, \quad(x, y) \in \mathbb{R}^{2}, \tag{1.1}\\
u(0, x, y) & =u_{0}(x, y), \quad(x, y) \in \mathbb{R}^{2},
\end{array}
$$

where
H1. $l \in \mathbb{N}, l \geq 5, u_{0} \in \mathcal{C}^{l+1}\left(\mathbb{R}^{2}\right),\left|u_{0}(x, y)\right| \leq B,(x, y) \in \mathbb{R}^{2}, B>0$ is a given constant.
$H 2 . \nu= \pm 1, \mu>0$.
In the particular case, when $l=5$, equation (1.1) is reduced to the fifth-order KP I equation and in the case $l=3$, equation (1.1) is reduced to the KP equation.

In Ref. [1], when $l=3$, the authors the local well-posedness for the Cauchy problem for the KP equation in certain Sobolev spaces. Generically, the solution of the KP equation develops a singularity in finite time t. It is discussed in Refs [2,3] that this singularity develops at a point where the derivatives become divergent in all directions except one.

In Ref. [4], the authors established the local well-posedness of the Cauchy problem for the gKP I equation in anisotropic Sobolev spaces $H^{s_{1}, s_{2}}(\mathbb{R})$ when $s_{1}>-\frac{\alpha-1}{4}, s_{2} \geq 0$ and $\alpha \geq 4$, and global well-posedness in $H^{s_{1}, 0}(\mathbb{R})$ when $s_{1}>-\frac{(\alpha-1)(3 \alpha-4)}{4(5 \alpha+3)}$ and $4 \leq \alpha \leq 5$, as well as when $s_{1}>-\frac{\alpha(3 \alpha-4)}{4(5 \alpha+4)}$ and $\alpha>5$.

Mechanical systems with impact, heartbeats, blood flows, population dynamics, industrial robotics, biotechnology, economics, etc. are real-world and applied science phenomena which are abruptly changed in their states at some time instants due to short time perturbations whose duration is negligible in comparison with the duration of these phenomena. A natural framework for mathematical simulation of such phenomena is differential equations when more factors are taken into account, please see Refs [5-8].

This paper aims to investigate the IVP (1.1) for the existence of at least one and at least two global classical solutions. In addition of $(H 1)$ and $(H 2)$, suppose
H3. $g \in \mathcal{C}\left([0, \infty) \times \mathbb{R}^{2}\right)$ is a positive function on $[0, \infty) \times \mathbb{R}^{2}$ such that

$$
g(0, x, y)=g(t, 0, y)=g(t, x, 0)=0, \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2},
$$

$$
\begin{array}{r}
2^{2 l+4}(l+1)!(1+t)^{2}\left(\sum_{r=0}^{l+1}|x|^{r}\right)\left(\sum_{r=0}^{l+1}|y|^{r}\right) \\
\int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y} g\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1}\right| d t_{1} \leq A, \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2},
\end{array}
$$

220

for some constant $A>0$, and
H4. $\epsilon \in(0,1), A$ and B satisfy the inequalities $\epsilon B_{1}(1+A)<B$ and $A B_{1}<1$.
$H 5$. Let $m>0$ be large enough and A, B, r, L, R_{1} be positive constants that satisfy the following conditions

$$
r<L<R_{1}, \quad \epsilon>0, \quad R_{1}>\left(\frac{2}{5 m}+1\right) L, \quad A B_{1}<\frac{L}{5} .
$$

In the last section, we will give an example of a function g and constants $\epsilon, A, B, B_{1}, r, L, R_{1}$ and m that satisfy $(H 3)-(H 5)$.

With $X=\mathcal{C}^{1}\left([0, \infty) \times \mathcal{C}^{l+1}\left(\mathbb{R}^{2}\right)\right)$, we denote the space of all continuous functions on $[0, \infty) \times \mathbb{R}^{2}$ so that $u_{t}, \partial_{x}^{r} u, \partial_{t x} u, \partial_{y} u, \partial_{y}^{2} u, r=1, \ldots, l+1$, exist and are continuous on $[0, \infty) \times \mathbb{R}^{2}$.

Our main result for existence of at least one global classical solution is as follows.
Theorem 1.1. Suppose that (H1)-(H4) hold. Then the IVP (1.1) has at least one solution $u \in X$.
Next theorem is our result for the existence of at least two global nonnegative classical solutions.
Theorem 1.2. Suppose that (H1)-(H3) and (H5) hold. Then the IVP (1.1) has at least two nonnegative solutions $u_{1}, u_{2} \in X$.
The main idea for the proof of our main results is as follows. First, we find an integral representation of the solutions of the IVP (1.1). Then we construct a pair of operators so that any fixed point of their sum is a solution of the IVP (1.1). We find some a-priori estimates of the defined operators and using some fixed point theorems we conclude the existence of at least one global classical solution and the existence of at least two nonnegative classical solutions of the IVP (1.1).

The paper is organized as follows. In the next section, we give some auxiliary results. In Section 3, we give some preliminary results. In Section 4, we will prove our main results. In Section 5, we give an example to illustrate our main results.

2. Auxiliary results

In this section, as in Ref. [9], we will give some basic definitions and facts which will be used in this paper. Moreover, we will formulate the basic fixed-point theorems which we explore to prove our main results. For more details, we refer the reader to the papers [10-14] and references therein. To prove the existence of at least one global classical solution for the IVP (1.1), we will use the following fixed-point theorem.

Theorem 2.1. ($[9,12,13])$ Suppose that the constants ϵ and B are positive constants. Let E be a Banach space and define the set $X=\{x \in E:\|x\| \leq B\}$ and the operator $T x=-\epsilon x, x \in X$.

Assume that the operator $S: X \rightarrow E$ is a continuous operator and the set $(I-S)(X)$ resides in a compact subset of E. Let also,

$$
\begin{equation*}
\{x \in E: x=\lambda(I-S) x, \quad\|x\|=B\}=\varnothing \tag{2.1}
\end{equation*}
$$

for any $\lambda \in\left(0, \frac{1}{\epsilon}\right)$. Then there exists $x^{*} \in X$ for which one has

$$
T x^{*}+S x^{*}=0
$$

Below, assume that X is a real Banach space. Now, we will recall the definition of a completely continuous operator in a Banach space.
Definition 2.2. [9] A map $K: X \rightarrow X$ is called a completely continuous map if it is continuous and it maps any bounded set into a relatively compact set.
For completeness, we will recall the definition of the Kuratowski measure of noncompactness, which will be used to be define l-set contraction mappings when $l \in \mathbb{N}_{0}$.
Definition 2.3. [9] With Ω_{X} we will denote the class of all bounded sets of X. Then the Kuratowski measure of noncompactness $\alpha: \Omega_{X} \rightarrow[0, \infty)$ is defined by

$$
\alpha(Y)=\inf \left\{\delta>0: Y=\bigcup_{j=1}^{m} Y_{j} \quad \text { and } \quad \operatorname{diam}\left(Y_{j}\right) \leq \delta, \quad j \in\{1, \ldots, m\}\right\} .
$$

here, with $\operatorname{diam}\left(Y_{j}\right)=\sup \left\{\|x-y\|_{X}: x, y \in Y_{j}\right\}$ we will denote the diameter of $Y_{j}, j \in\{1, \ldots, m\}$.
For the main properties of the measure of noncompactness, we refer the reader to Ref. [10]. Now, we are ready to define an l-set contraction in a Banach space for any $l \in \mathbb{N}_{0}$.
Definition 2.4. [9] A map $K: X \rightarrow X$ is called an l-set contraction if it is continuous, bounded and there exists a constant $l \geq 0$ for which one has the following inequality

$$
\alpha(K(Y)) \leq l \alpha(Y)
$$

for any bounded set $Y \subset X$. The map K will be called a strict set contraction map if $l<1$.
Note that any completely continuous mapping $K: X \rightarrow X$ is a 0 -set contraction (see Ref.[11], p. 264).
Next, for our main results, we have a need for a definition of an expansive operator.
Definition 2.5. [9] Let X and Y be real Banach spaces. A map $K: X \rightarrow Y$ is called expansive if there exists a constant $h>1$ for which one has the following inequality

$$
\|K x-K y\|_{Y} \geq h\|x-y\|_{X}
$$

for any $x, y \in X$.
Now, we will recall the definition of a cone in a Banach space.
Definition 2.6. [9] A closed, convex set \mathcal{P} in X is said to be cone if
(1) $\alpha x \in \mathcal{P}$ for any $\alpha \geq 0$ and for any $x \in \mathcal{P}$,
(2) $x,-x \in \mathcal{P}$ implies $x=0$.

Denote $\mathcal{P}^{*}=\mathcal{P} \backslash\{0\}$. The next result is a fixed-point theorem which we will use to prove the existence of at least two nonnegative global classical solutions of the IVP (1.1). For its proof, we refer the reader to the paper [14].

AJMS

Theorem 2.7. Let \mathcal{P} be a cone of a Banach space $E ; \Omega$ a subset of \mathcal{P} and U_{1}, U_{2} and U_{3} three open bounded subsets of \mathcal{P} such that $\bar{U}_{1} \subset \bar{U}_{2} \subset U_{3}$ and $0 \in U_{1}$. Assume that $T: \Omega \rightarrow \mathcal{P}$ is an expansive mapping with constant $h>1, S: \bar{U}_{3} \rightarrow$ Eis a k-set contraction with $0 \leq k<h-1$ and $S\left(\bar{U}_{3}\right) \subset(I-T)(\Omega)$. Suppose that $\left(U_{2} \backslash \bar{U}_{1}\right) \cap \Omega \neq \varnothing,\left(U_{3} \backslash \bar{U}_{2}\right) \cap \Omega \neq \varnothing$, and there exists $u_{0} \in \mathcal{P}^{*}$ such that the following conditions hold:
(1) $S x \neq(I-T)\left(x-\lambda u_{0}\right)$, for all $\lambda>0$ and $x \in \partial U_{1} \cap\left(\Omega+\lambda u_{0}\right)$,
(2) There exists $\epsilon \geq 0$ such that $S x \neq(I-T)(\lambda x)$, for all $\lambda \geq 1+\epsilon, \quad x \in \partial U_{2}$ and $\lambda x \in \Omega$,
(3) $S x \neq(I-T)\left(x-\lambda u_{0}\right)$, for all $\lambda>0$ and $x \in \partial U_{3} \cap\left(\Omega+\lambda u_{0}\right)$.

Then $T+S$ has at least two non-zero fixed points $x_{1}, x_{2} \in \mathcal{P}$ such that

$$
x_{1} \in \partial U_{2} \cap \Omega \text { and } x_{2} \in\left(\bar{U}_{3} \backslash \bar{U}_{2}\right) \cap \Omega
$$

or

$$
x_{1} \in\left(U_{2} \backslash U_{1}\right) \cap \Omega \text { and } x_{2} \in\left(\bar{U}_{3} \backslash \bar{U}_{2}\right) \cap \Omega
$$

3. Preliminary results

In this section, we will define suitable operators and we will deduct some a-priori estimates which we will use to prove our main results. Let X be endowed with the norm

$$
\begin{aligned}
\|u\|= & \max \left\{\sup _{(t, x, y) \in[0, \infty) \times \mathbb{R}^{2}}|u(t, x, y)|,\right. \\
& \sup _{(t, x, y) \in[0, \infty) \times \mathbb{R}^{2}}\left|\partial_{t} u(t, x, y)\right|, \\
& \sup _{(t, x, y) \in[0, \infty) \times \mathbb{R}^{2}}\left|\partial_{x}^{r} u(t, x, y)\right|, \\
& \sup _{(t, x, y) \in[0, \infty) \times \mathbb{R}^{2}}\left|\partial_{y}^{k} u(t, x, y)\right|, \\
& \left.r=1, \ldots, l+1, \quad k=1,2, \quad \sup _{(t, x y) \in[0, \infty) \times \mathbb{R}^{2}}\left|\partial_{t x} u(t, x, y)\right|\right\}
\end{aligned}
$$

provided it exists. For $u \in X$, define the operator

$$
\begin{aligned}
S_{1} u(t, x, y)= & u(t, x, y)-u_{0}(x, y) \\
& +\int_{0}^{t}\left(-\partial_{t} u\left(t_{1}, x, y\right)+\partial_{t} \partial_{x} u\left(t_{1}, x, y\right)+\left(\partial_{x} u\left(t_{1}, x, y\right)\right)^{2}\right. \\
& +u\left(t_{1}, x, y\right) \partial_{x x} u\left(t_{1}, x, y\right) \\
& \left.+\mu^{2} \partial_{x}^{l+1} u\left(t_{1}, x, y\right)+\nu \partial_{y y} u\left(t_{1}, x, y\right)\right) d t_{1}, \\
& (t, x, y) \in[0, \infty) \times \mathbb{R}^{2} .
\end{aligned}
$$

In the next lemma, we will establish that any solution of an integral equation is a solution to the IVP (1.1).

Lemma 3.1. Suppose that (H1) and (H2) hold. Let $u \in X$ be a solution of the equation

$$
\begin{equation*}
S_{1} u(t, x, y)=0, \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2} . \tag{3.1}
\end{equation*}
$$

Then it is a solution of the IVP (1.1).
Proof. Let $u \in X$ be a solution of equation (3.1). Using the definition of S_{1}, we get the following integral equation

$$
\begin{aligned}
0= & u(t, x, y)-u_{0}(x, y) \\
& +\int_{0}^{t}\left(-\partial_{t} u\left(t_{1}, x, y\right)+\partial_{t} \partial_{x} u\left(t_{1}, x, y\right)+\left(\partial_{x} u\left(t_{1}, x, y\right)\right)^{2}\right. \\
& +u\left(t_{1}, x, y\right) \partial_{x x} u\left(t_{1}, x, y\right) \\
& \left.+\mu^{2} \partial_{x}^{l+1} u\left(t_{1}, x, y\right)+\nu \partial_{y y} u\left(t_{1}, x, y\right)\right) d t_{1}, \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2} .
\end{aligned}
$$

For the last integral equation, we differentiate one time with respect to t and we get the following integral equation

$$
\begin{aligned}
0= & \partial_{t} u(t, x, y) \\
& -\partial_{t} u(t, x, y)+\partial_{t} \partial_{x} u(t, x, y)+\left(\partial_{x} u(t, x, y)\right)^{2} \\
& +u(t, x, y) \partial_{x x} u(t, x, y) \\
& +\mu^{2} \partial_{x}^{l+1} u(t, x, y)+\nu \partial_{y y} u(t, x, y), \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
0= & \partial_{t} \partial_{x} u(t, x, y)+\left(\partial_{x} u(t, x, y)\right)^{2} \\
& +u(t, x, y) \partial_{x x} u(t, x, y) \\
& +\mu^{2} \partial_{x}^{l+1} u(t, x, y)+\nu \partial_{y y} u(t, x, y), \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2} .
\end{aligned}
$$

Thus, u satisfies the first equation of (1.1). Now, we put $t=0$ and we arrive at the equality

$$
u(0, x, y)=u_{0}(x, y), \quad(x, y) \in \mathbb{R}^{2}
$$

From here, we conclude that u satisfies the second equation of (1.1). Consequently, u is a solution to the IVP (1.1). This completes the proof.

Now, we will give an a-priori estimate of the operator S_{1}. For this aim, we define the constant

$$
B_{1}=\left(2+|\nu|+\mu^{2}\right) B+2 B^{2}
$$

Lemma 3.2. Suppose that (H1) and (H2) hold. Let $u \in X$ be such that $\|u\| \leq b$, for some constant $b>1$. Then one has

$$
\left|S_{1} u(t, x, y)\right| \leq B_{1}(1+t), \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2}
$$

Proof. By the definition of the operator S_{1}, one gets

AJMS 30,2

224

$$
\begin{aligned}
\left|S_{1} u(t, x)\right|= & \mid u(t, x, y)-u_{0}(x, y) \\
& +\int_{0}^{t}\left(-\partial_{t} u\left(t_{1}, x, y\right)+\partial_{t} \partial_{x} u\left(t_{1}, x, y\right)+\left(\partial_{x} u\left(t_{1}, x, y\right)\right)^{2}\right. \\
& +u\left(t_{1}, x, y\right) \partial_{x x} u\left(t_{1}, x, y\right) \\
& \left.+\mu^{2} \partial_{x}^{l+1} u\left(t_{1}, x, y\right)+\nu \partial_{y y} u\left(t_{1}, x, y\right)\right) d t_{1} \mid \\
\leq & |u(t, x, y)|+\left|u_{0}(x, y)\right| \\
& +\int_{0}^{t}\left(\left|\partial_{t} u\left(t_{1}, x, y\right)\right|+\left|\partial_{t} \partial_{x} u\left(t_{1}, x, y\right)\right|+\left(\partial_{x} u\left(t_{1}, x, y\right)\right)^{2}\right. \\
& +\left|u\left(t_{1}, x, y\right) \| \partial_{x x} u\left(t_{1}, x, y\right)\right| \\
& \left.+\mu^{2}\left|\partial_{x}^{l+1} u\left(t_{1}, x, y\right)\right|+|\nu|\left|\partial_{y y} u\left(t_{1}, x, y\right)\right|\right) d t_{1} \\
\leq & 2 B+\int_{0}^{t}\left(B+B+B^{2}+B^{2}+\mu^{2} B+|\nu| B\right) d t_{1} \\
= & 2 B+\left(\left(2+|\nu|+\mu^{2}\right) B+2 B^{2}\right) t \\
\leq & B_{1}(1+t), \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2} .
\end{aligned}
$$

This completes the proof.
For $u \in X$, we define the operator

$$
S_{2} u(t, x, y)=\int_{0}^{t} \int_{0}^{x} \int_{0}^{y}\left(t-t_{1}\right)\left(x-x_{1}\right)^{l+1}\left(y-y_{1}\right)^{l+1} g\left(t_{1}, x_{1}\right) S_{1} u\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1} d t_{1},
$$

$(t, x, y) \in[0, \infty) \times \mathbb{R}^{2}$. In the next lemma, we will give an estimate of the norm of the operator S_{2}.
Lemma 3.3. Suppose that (H1)-(H3) hold. For $u \in X,\|u\| \leq B$, one has the following estimate

$$
\left\|S_{2} u\right\| \leq A B_{1} .
$$

Proof. We will use the inequality $(v+w)^{q} \leq 2^{q}\left(v^{q}+w^{q}\right), q>0, v, w>0$, to find estimates for $S_{2} u$ and its derivatives. Then, we will deduct the desired estimate for the norm of $S_{2} u$. We have

$$
\begin{aligned}
\left|S_{2} u(t, x, y)\right|= & \left|\int_{0}^{t} \int_{0}^{x} \int_{0}^{y}\left(t-t_{1}\right)\left(x-x_{1}\right)^{l+1}\left(y-y_{1}\right)^{l+1} g\left(t_{1}, x_{1}\right) S_{1} u\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1} d t_{1}\right| \\
\leq & \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y}\left(t-t_{1}\right)\right| x-\left.x_{1}\right|^{l+1}\left|y-y_{1}\right|^{l+1} g\left(t_{1}, x_{1}\right)\left|S_{1} u\left(t_{1}, x_{1}, y_{1}\right)\right| d y_{1} d x_{1} \mid d t_{1} \\
\leq & B_{1}(1+t) \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y}\left(t-t_{1}\right)\right| x-\left.x_{1}\right|^{l+1}\left|y-y_{1}\right|^{l+1} g\left(t_{1}, x_{1}\right) d y_{1} d x_{1} \mid d t_{1} \\
\leq & 2^{2 l+4} B_{1}(1+t)^{2}|x|^{l+1}|y|^{l+1} \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y} g\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1}\right| d t_{1} \\
\leq & (l+1)!2^{2 l+4} B_{1}(1+t)^{2}\left(\sum_{r=0}^{l+1}|x|^{r}\right)\left(\sum_{r=0}^{l+1}|y|^{r}\right) \\
& \times \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y} g\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1}\right| d t_{1} \\
\leq & A B_{1}, \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2} .
\end{aligned}
$$

Now, we will estimate the first derivative with respect to t of $S_{2} u$. For it, one has

$$
\begin{aligned}
\left|\partial_{t} S_{2} u(t, x, y)\right|= & \left|\int_{0}^{t} \int_{0}^{x} \int_{0}^{y}\left(x-x_{1}\right)^{l+1}\left(y-y_{1}\right)^{l+1} g\left(t_{1}, x_{1}\right) S_{1} u\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1} d t_{1}\right| \\
\leq & \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y}\right| x-\left.x_{1}\right|^{l+1}\left|y-y_{1}\right|^{l+1} g\left(t_{1}, x_{1}\right)\left|S_{1} u\left(t_{1}, x_{1}, y_{1}\right)\right| d y_{1} d x_{1} \mid d t_{1} \\
\leq & B_{1} \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y}\right| x-\left.x_{1}\right|^{l+1}\left|y-y_{1}\right|^{l+1} g\left(t_{1}, x_{1}\right) d y_{1} d x_{1} \mid d t_{1} \\
\leq & 2^{2 l+4} B_{1}(1+t)^{2}|x|^{2+1}|y|^{l+1} \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y} g\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1}\right| d t_{1} \\
\leq & (l+1)!2^{2 l+4} B_{1}(1+t)^{2}\left(\sum_{r=0}^{l+1}|x|^{r}\right)\left(\sum_{r=0}^{l+1}|y|^{r}\right) \\
& \times \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y} g\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1}\right| d t_{1} \\
\leq & A B_{1}, \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2} .
\end{aligned}
$$

For the derivatives of $S_{2} u$ with respect to x, one deduct

$$
\begin{aligned}
\left|\partial_{x}^{r} S_{2} u(t, x, y)\right|= & (l+1) \ldots(l-r+2) \\
& \times\left|\int_{0}^{t} \int_{0}^{x} \int_{0}^{y}\left(t-t_{1}\right)\left(x-x_{1}\right)^{l-r+1}\left(y-y_{1}\right)^{l+1} g\left(t_{1}, x_{1}\right) S_{1} u\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1} d t_{1}\right| \\
\leq & (l+1) \ldots(l-r+2) \\
& \times \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y}\left(t-t_{1}\right)\right| x-\left.x_{1}\right|^{l-r+1}\left|y-y_{1}\right|^{l+1} g\left(t_{1}, x_{1}\right)\left|S_{1} u\left(t_{1}, x_{1}, y_{1}\right)\right| d y_{1} d x_{1} \mid d t_{1} \\
\leq & (l+1)!B_{1}(1+t) \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y}\left(t-t_{1}\right)\right| x-\left.x_{1}\right|^{l-r+1}\left|y-y_{1}\right|^{l+1} g\left(t_{1}, x_{1}\right) d y_{1} d x_{1} \mid d t_{1} \\
\leq & (l+1)!2^{2 l-r+4} B_{1}(1+t)^{2}|x|^{l-r+1}|y|^{l+1} \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y} g\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1}\right| d t_{1} \\
\leq & (l+1)!2^{2 l+4} B_{1}(1+t)^{2}\left(\sum_{r=0}^{l+1}|x|^{r}\right)\left(\sum_{r=0}^{l+1}|y|^{r}\right) \\
& \times \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y} g\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1}\right| d t_{1} \\
\leq & A B_{1},(t, x, y) \in[0, \infty) \times \mathbb{R}^{2}, r=1, \ldots, l+1 .
\end{aligned}
$$

As above, one can get the following estimates

$$
\left|\partial_{y}^{k} S_{2} u(t, x, y)\right| \leq A B_{1}, \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2}, \quad k=1,2
$$

Note that for the mixed derivative $\partial_{t x} S_{2} u$, one has

AJMS

$$
\begin{aligned}
\left|\partial_{t x} S_{2} u(t, x, y)\right|= & (l+1)\left|\int_{0}^{t} \int_{0}^{x} \int_{0}^{y}\left(x-x_{1}\right)^{l}\left(y-y_{1}\right)^{l+1} g\left(t_{1}, x_{1}\right) S_{1} u\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1} d t_{1}\right| \\
\leq & (l+1) \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y}\right| x-\left.x_{1}\right|^{l}\left|y-y_{1}\right|^{l+1} g\left(t_{1}, x_{1}\right)\left|S_{1} u\left(t_{1}, x_{1}, y_{1}\right)\right| d y_{1} d x_{1} \mid d t_{1} \\
\leq & (l+1) B_{1}(1+t) \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y}\right| x-\left.x_{1}\right|^{l}\left|y-y_{1}\right|^{l+1} g\left(t_{1}, x_{1}\right) d y_{1} d x_{1} \mid d t_{1} \\
\leq & (l+1)!B_{1} 2^{2 l+3} B_{1}(1+t)^{2}|x|^{l} y^{l+1} \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y} g\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1}\right| d t_{1} \\
\leq & (l+1)!2^{2 l+4} B_{1}(1+t)^{2}\left(\sum_{r=0}^{l+1}|x|^{r}\right)\left(\sum_{r=0}^{l+1}|y|^{r}\right) \\
& \times \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y} g\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1}\right| d t_{1} \\
\leq & A B_{1}, \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2} .
\end{aligned}
$$

Thus,

$$
\left\|S_{2} u\right\| \leq A B_{1}
$$

This completes the proof.
In the next result, we will give other integral equations whose solutions are solutions to the IVP (1.1).
Lemma 3.4. Suppose (H1), (H2) and let $g \in \mathcal{C}([0, \infty) \times \mathbb{R})$ be a positive function almost everywhere on $[0, \infty) \times \mathbb{R}^{2}$. If $u \in X$ satisfies the equation

$$
\begin{equation*}
S_{2} u(t, x, y)=0, \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2} \tag{3.2}
\end{equation*}
$$

then u is a solution to the IVP (1.1).
Proof. We differentiate two times with respect to t, five times with respect to x and five times with respect to y equation (3.2) and we find

$$
g(t, x, y) S_{1} u(t, x, y)=0, \quad(t, x, y) \in[0, \infty) \times\left(\mathbb{R}^{2} \backslash\{\{x=0\} \cup\{y=0\}\}\right),
$$

whereupon

$$
S_{1} u(t, x, y)=0, \quad(t, x, y) \in[0, \infty) \times\left(\mathbb{R}^{2} \backslash\{\{x=0\} \cup\{y=0\}\}\right) .
$$

since $S_{1} u(\cdot, \cdot, \cdot)$ is a continuous function on $[0, \infty) \times \mathbb{R}^{2}$, we get

$$
\begin{aligned}
0 & =\lim _{t \rightarrow 0} S_{1} u(t, 0,0)=\lim _{x \rightarrow 0} S_{1} u(0, x, 0)=\lim _{y \rightarrow 0} S_{1} u((0,0, y) \\
& =\lim _{t, x \rightarrow 0} S_{1} u(t, x, 0)=\lim _{t, y \rightarrow 0} S_{1} u(t, 0, y)=\lim _{x, y \rightarrow 0} S_{1} u(0, x, y) \\
& =\lim _{t, x y \rightarrow 0} S_{1} u(t, x, y) .
\end{aligned}
$$

thus,

$$
S_{1} u(t, x, y)=0, \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2} .
$$

hence and Lemma 3.1, we conclude that u is a solution to the IVP (1.1). This completes the proof.

4. Proof of the main results

4.1 Proof of Theorem 1.1

Let $\tilde{\tilde{\tilde{Y}}}$ denote the set of all equi-continuous families in X with respect to the norm $\|\cdot\|$. Let also, $\tilde{\tilde{Y}}=\overline{\tilde{\tilde{Y}}}$ be the closure of $\tilde{\tilde{Y}}, \tilde{Y}=\tilde{\tilde{Y}} \cup\left\{u_{0}\right\}$,

$$
Y=\{u \in \tilde{Y}:\|u\| \leq B\} .
$$

Note that Y is a compact set in X. For $u \in X$, define the operators

$$
\begin{aligned}
\operatorname{Tu}(t, x, y) & =-\epsilon u(t, x, y), \\
S u(t, x, y) & =u(t, x, y)+\epsilon u(t, x, y)+\epsilon S_{2} u(t, x, y), \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2} .
\end{aligned}
$$

For $u \in Y$, using Lemma 3.3, we have

$$
\begin{aligned}
\|(I-S) u\| & =\left\|\epsilon u-\epsilon S_{2} u\right\| \\
& \leq \epsilon\|u\|+\epsilon\left\|S_{2} u\right\| \\
& \leq \epsilon B_{1}+\epsilon A B_{1} \\
& =\epsilon B_{1}(1+A) \\
& <B
\end{aligned}
$$

Thus, $S: Y \rightarrow E$ is continuous and $(I-S)(Y)$ resides in a compact subset of E. Now, suppose that there is a $u \in E$ so that $\|u\|=B$ and

$$
u=\lambda(I-S) u
$$

or

$$
\frac{1}{\lambda} u=(I-S) u=-\epsilon u-\epsilon S_{2} u
$$

or

$$
\left(\frac{1}{\lambda}+\epsilon\right) u=-\epsilon S_{2} u
$$

for some $\lambda \in\left(0, \frac{1}{\epsilon}\right)$. Hence, $\left\|S_{2} u\right\| \leq A B_{1}<B$,

$$
\epsilon B<\left(\frac{1}{\lambda}+\epsilon\right) B=\left(\frac{1}{\lambda}+\epsilon\right)\|u\|=\epsilon\left\|S_{2} u\right\|<\epsilon B
$$

which is a contradiction. Hence Theorem 2.1 follows that the operator $T+S$ has a fixed point $u^{*} \in Y$. Therefore,

$$
\begin{aligned}
u^{*}(t, x, y)= & T u^{*}(t, x, y)+S u^{*}(t, x, y) \\
= & -\epsilon u^{*}(t, x, y)+u^{*}(t, x, y)+\epsilon u^{*}(t, x, y)+\epsilon S_{2} u^{*}(t, x, y), \\
& (t, x, y) \in[0, \infty) \times \mathbb{R}^{2},
\end{aligned}
$$

where

$$
0=S_{2} u^{*}(t, x, y), \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2}
$$

from here and from Lemma 3.4, it follows that u is a solution to the IVP (1.1). This completes the proof.

$$
\begin{aligned}
T_{1} v(t, x, y) & =(1+m \epsilon) v(t, x, y)-\epsilon \frac{L}{10} \\
S_{3} v(t, x, y) & =-\epsilon S_{2} v(t, x, y)-m \epsilon v(t, x, y)-\epsilon \frac{L}{10}
\end{aligned}
$$

$t \in[0, \infty),(x, y) \in \mathbb{R}^{2}$. Note that any fixed point $v \in X$ of the operator $T_{1}+S_{3}$ is a solution to the IVP (1.1). Define

$$
\begin{aligned}
U_{1} & =\mathcal{P}_{r}=\{v \in \mathcal{P}:\|v\|<r\} \\
U_{2} & =\mathcal{P}_{L}=\{v \in \mathcal{P}:\|v\|<L\} \\
U_{3} & =\mathcal{P}_{R_{1}}=\left\{v \in \mathcal{P}:\|v\|<R_{1}\right\} \\
R_{2} & =R_{1}+\frac{A}{m} B_{1}+\frac{L}{5 m} \\
\Omega & =\overline{\mathcal{P}_{R_{2}}}=\left\{v \in \mathcal{P}:\|v\| \leq R_{2}\right\} .
\end{aligned}
$$

(1) Let $v_{1}, v_{2} \in \Omega$. Then, we get

$$
\left\|T_{1} v_{1}-T_{1} v_{2}\right\|=(1+m \varepsilon)\left\|v_{1}-v_{2}\right\|
$$

from the last equality, we conclude that the operator $T_{1}: \Omega \rightarrow X$ is an expansive operator with a constant $h=1+m \varepsilon>1$.
(2) Take $v \in \overline{\mathcal{P}}_{R_{1}}$ arbitrarily. Then

$$
\begin{aligned}
\left\|S_{3} v\right\| & \leq \varepsilon\left\|S_{2} v\right\|+m \varepsilon\|v\|+\varepsilon \frac{L}{10} \\
& \leq \varepsilon\left(A B_{1}+m R_{1}+\frac{L}{10}\right)
\end{aligned}
$$

from the last inequality, we conclude that the set $S_{3}\left(\overline{\mathcal{P}}_{R_{1}}\right)$ is uniformly bounded. Because the operator $S_{3}: \overline{\mathcal{P}}_{R_{1}} \rightarrow X$ is a continuous operator, we get that $S_{3}\left(\overline{\mathcal{P}}_{R_{1}}\right)$ is equi-continuous. Therefore, the operator $S_{3}: \overline{\mathcal{P}}_{R_{1}} \rightarrow X$ is a 0 -set contraction.
(3) Take $v_{1} \in \overline{\mathcal{P}}_{R_{1}}$ arbitrarily. Set

$$
v_{2}=v_{1}+\frac{1}{m} S_{2} v_{1}+\frac{L}{5 m} .
$$

note that $S_{2} v_{1}+\frac{L}{5} \geq 0$ on $[0, \infty) \times \mathbb{R}^{2}$. Therefore, $v_{2} \geq 0$ on $[0, \infty) \times \mathbb{R}^{2}$ and we have the following estimate

$$
\begin{aligned}
\left\|v_{2}\right\| & \leq\left\|v_{1}\right\|+\frac{1}{m}\left\|S_{2} v_{1}\right\|+\frac{L}{5 m} \\
& \leq R_{1}+\frac{A}{m} B_{1}+\frac{L}{5 m} \\
& =R_{2} .
\end{aligned}
$$

Generalized Kadomtsev-
Petviashvili I
equations
229
consequently $v_{2} \in \Omega$. Moreover,

$$
-\varepsilon m v_{2}=-\varepsilon m v_{1}-\varepsilon S_{2} v_{1}-\varepsilon \frac{L}{10}-\varepsilon \frac{L}{10}
$$

or

$$
\begin{aligned}
\left(I-T_{1}\right) v_{2} & =-\varepsilon m v_{2}+\varepsilon \frac{L}{10} \\
& =S_{3} v_{1} .
\end{aligned}
$$

Therefore, $S_{3}\left(\overline{\mathcal{P}}_{R_{1}}\right) \subset\left(I-T_{1}\right)(\Omega)$.
(4) Suppose that for any $v_{0} \in \mathcal{P}^{*}$, there exist $\lambda>0$ and $z \in \partial \mathcal{P}_{r} \cap\left(\Omega+\lambda v_{0}\right)$ or $z \in \partial \mathcal{P}_{R_{1}} \cap\left(\Omega+\lambda v_{0}\right)$ such that

$$
S_{3} z=\left(I-T_{1}\right)\left(z-\lambda v_{0}\right) .
$$

hence,

$$
-\epsilon S_{2} z-m \epsilon z-\epsilon \frac{L}{10}=-m \epsilon\left(z-\lambda v_{0}\right)+\epsilon \frac{L}{10}
$$

or

$$
-S_{2} z=\lambda m v_{0}+\frac{L}{5} .
$$

from the last equation, we arrive at

$$
\left\|S_{2} z\right\|=\left\|\lambda m v_{0}+\frac{L}{5}\right\|>\frac{L}{5} .
$$

this is a contradiction.
(5) Assume that for any $\epsilon_{1} \geq 0$ small enough there exist a $x_{1} \in \partial \mathcal{P}_{L}$ and $\lambda_{1} \geq 1+\epsilon_{1}$ such that $\lambda_{1} x_{1} \in \overline{\mathcal{P}}_{R_{1}}$ and

$$
\begin{equation*}
S_{3} x_{1}=\left(I-T_{1}\right)\left(\lambda_{1} x_{1}\right) . \tag{4.1}
\end{equation*}
$$

When $\epsilon_{1}>\frac{2}{5 m}$, one has $x_{1} \in \partial \mathcal{P}_{L}, \lambda_{1} x_{1} \in \overline{\mathcal{P}}_{R_{1}}, \lambda_{1} \geq 1+\epsilon_{1}$ and (4.1) holds. Since $x_{1} \in \partial \mathcal{P}_{L}$ and $\lambda_{1} x_{1} \in \overline{\mathcal{P}}_{R_{1}}$, it follows that

$$
\left(\frac{2}{5 m}+1\right) L<\lambda_{1} L=\lambda_{1}\left\|x_{1}\right\| \leq R_{1} .
$$

in addition,

AJMS
30,2
$-\epsilon S_{2} x_{1}-m \epsilon x_{1}-\epsilon \frac{L}{10}=-\lambda_{1} m \epsilon x_{1}+\epsilon \frac{L}{10}$,
or
hence,

$$
2 \frac{L}{5} \geq\left\|S_{2} x_{1}+\frac{L}{5}\right\|=\left(\lambda_{1}-1\right) m\left\|x_{1}\right\|=\left(\lambda_{1}-1\right) m L,
$$

and

$$
\frac{2}{5 m}+1 \geq \lambda_{1}
$$

which is a contradiction.
Therefore, all conditions of Theorem 2.7 hold and the IVP (1.1) has at least two solutions u_{1} and u_{2} so that

$$
\left\|u_{1}\right\|=L<\left\|u_{2}\right\|<R_{1},
$$

or

$$
r<\left\|u_{1}\right\|<L<\left\|u_{2}\right\|<R_{1} .
$$

5. An example

Below, we will illustrate our main results. Let $B=\mu=\nu=1$ and

$$
R_{1}=10, \quad L=5, \quad r=4, \quad m=10^{50}, \quad A=\frac{1}{5 B_{1}}, \quad \epsilon=\frac{1}{5 B_{1}(1+A)} .
$$

let also,

$$
u_{0}(x, y)=\frac{1}{1+x^{2}+y^{2}}, \quad(x, y) \in \mathbb{R}^{2} .
$$

then

$$
B_{1}=2+2+2=6,
$$

and

$$
A B_{1}=\frac{1}{5}<B, \quad \epsilon B_{1}(1+A)<1,
$$

i.e. (H4) holds. Next,

$$
r<L<R_{1}, \quad \epsilon>0, \quad R_{1}>\left(\frac{2}{5 m}+1\right) L, \quad A B_{1}<\frac{L}{5}
$$

i.e. (H5) holds. Take

Generalized Kadomtsev-
Petviashvili I equations
then

$$
\begin{aligned}
h^{\prime}(s) & =\frac{2 \sqrt{2}(l+1) s^{l}\left(1-s^{2 l+2}\right)}{\left(1-s^{l+1} \sqrt{2}+s^{2 l+2}\right)\left(1-s^{l+1} \sqrt{2}+s^{2 l+2}\right)} \\
l^{\prime}(s) & =\frac{(l+1) \sqrt{2} s^{l}\left(1+s^{2 l+2}\right)}{1+s^{l l+4}}, \quad s \in \mathbb{R}, \quad s \neq \pm 1
\end{aligned}
$$

therefore

$$
\begin{aligned}
\lim _{s \rightarrow \pm \infty} \sum_{r=0}^{l+1} s^{r} h(s) & =\lim _{s \rightarrow \pm \infty} \frac{h(s)}{\frac{1}{\sum_{r=0^{r}}^{l+1}}}=\lim _{s \rightarrow \pm \infty} \frac{h^{\prime}(s)}{\left.-\frac{\sum_{r=0}^{l}(r+1) s^{r}}{\left(\sum_{r=0}^{l+1} s^{r}\right.}\right)^{2}} \\
& =-\lim _{s \rightarrow \pm \infty} \frac{2 \sqrt{2}(l+1) s^{l}\left(1-s^{2 l+2}\right)\left(\sum_{r=0}^{l+1} s^{r}\right)^{2}}{\left(\sum_{r=0}^{l}(r+1) s^{r}\right)\left(1-s^{l+1} \sqrt{2}+s^{2 l+2}\right)\left(1-s^{l+1} \sqrt{2}+s^{2 l+2}\right)} \neq \pm \infty
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{s \rightarrow \pm \infty} \sum_{r=0}^{l+1} s^{r} l(s) & =\lim _{s \rightarrow \pm \infty} \frac{l(s)}{\frac{1}{\sum_{r=0^{s^{r}}}^{l+1}}}=\lim _{s \rightarrow \pm \infty} \frac{l^{\prime}(s)}{\left.-\frac{\sum_{r=0}^{l}(r+1) s^{r^{\prime}}}{\left(\sum_{r=0}^{l+1} s^{r}\right.}\right)^{2}} \\
& =-\lim _{s \rightarrow \pm \infty} \frac{(l+1) \sqrt{2} s^{l}\left(1+s^{l+2}\right)\left(\sum_{r=0}^{l+1} s^{r}\right)^{2}}{\left(1+s^{4 l+4}\right)\left(\sum_{r=0}^{l}(r+1) s^{r}\right)} \neq \pm \infty .
\end{aligned}
$$

consequently

$$
\begin{aligned}
& -\infty<\lim _{s \rightarrow \pm \infty}\left(\sum_{r=0}^{l+1} s^{r}\right) h(s)<\infty \\
& -\infty<\lim _{s \rightarrow \pm \infty}\left(\sum_{r=0}^{l+1} s^{r}\right) l(s)<\infty
\end{aligned}
$$

hence, there exists a positive constant C_{1} so that

AJMS
30,2

$$
\begin{aligned}
& \sum_{r=0}^{l+1}|s|^{r}\left(\frac{1}{(4 l+4) \sqrt{2}} \log \frac{1+s^{l+1} \sqrt{2}+s^{2 l+2}}{1-s^{l+1} \sqrt{2}+s^{l+2}}+\frac{1}{(2 l+2) \sqrt{2}} \arctan \frac{s^{l+1} \sqrt{2}}{1-s^{2 l+2}}\right) \\
\leq & C_{1},
\end{aligned}
$$

232
$s \in \mathbb{R}$. Note that $\lim _{s \rightarrow \pm 1} l(s)=\frac{\pi}{2}$ and by Ref. [15] (p. 707, Integral 79), we have

$$
\int \frac{d z}{1+z^{4}}=\frac{1}{4 \sqrt{2}} \log \frac{1+z \sqrt{2}+z^{2}}{1-z \sqrt{2}+z^{2}}+\frac{1}{2 \sqrt{2}} \arctan \frac{z \sqrt{2}}{1-z^{2}}
$$

let

$$
Q(s)=\frac{s^{l}}{\left(1+s^{4 l+4}\right)}, \quad s \in \mathbb{R},
$$

and

$$
g_{1}(t, x, y)=Q(t) Q(x) Q(y), \quad t \in[0, \infty), \quad(x, y) \in \mathbb{R}^{2}
$$

then there exists a constant $C>0$ such that

$$
\begin{aligned}
& 2^{2 l+4}(l+1)!(1+t)^{2}\left(\sum_{r=0}^{l+1}|x|^{r}\right)\left(\sum_{r=0}^{l+1}|y|^{r}\right) \\
& \times \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y} g_{1}\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1}\right| d t_{1} \leq C, \\
& (t, x, y) \in[0, \infty) \times \mathbb{R}^{2} .
\end{aligned}
$$

let

$$
g(t, x, y)=\frac{A}{C^{2}} g_{1}(t, x, y), \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{3} .
$$

then

$$
\begin{array}{r}
2^{2 l+4}(l+1)!(1+t)^{2}\left(\sum_{r=0}^{l+1}|x|^{r}\right)\left(\sum_{r=0}^{l+1}|y|^{r}\right) \\
\times \int_{0}^{t}\left|\int_{0}^{x} \int_{0}^{y} g\left(t_{1}, x_{1}, y_{1}\right) d y_{1} d x_{1}\right| d t_{1} \leq A, \quad(t, x, y) \in[0, \infty) \times \mathbb{R}^{2} .
\end{array}
$$

i.e. (H3), holds. Therefore, for the IVP

$$
\begin{array}{ll}
\partial_{x}\left(\partial_{t} u+u \partial_{x} u+\mu^{2} \partial_{x}^{l} u\right)+\nu \partial_{y y} u & =0, \quad t>0, \quad(x, y) \in \mathbb{R}^{2}, \\
u(0, x, y) & =\frac{1}{1+x^{2}+y^{2}}, \quad(x, y) \in \mathbb{R}^{2},
\end{array}
$$

are fulfilled all conditions of Theorem 1.1 and Theorem 1.2.

References

1. Rozanova A. The Khokhlov-Zabolotskaya-Kuznetsov equation. C R Math Acad Sci Paris. 2007; 344: 337-42.
2. Grava T, Klein C, Eggers J. Shock formation in the dispersionless Kadomtsev-Petviashvili equation. Nonlinearity. 2016; 29: 1384-416.
3. Manakov S, Santini P. On the solutions of the dKP equation: the nonlinear Riemann-Hilbert problem, longtime behaviour, implicit solutions and wave breaking. Nonlinearity. 2008; 41: 055204.
4. Yan W, Li YS, Huang JH, Duan JQ. The Cauchy problem for a two-dimensional generalized Kadomtsev-Petviashvili I equation in anisotropic Sobolev spaces. Anal Appl. 2020; 18: 469-522.
5. Bing L, Xue-Er Z, Bin W, Xing L. Rogue Waves based on the coupled nonlinear Schrödinger option pricing model with external potential. Mod Phys Lett B. 2022; 36(15): 2250057.
6. Xing L, Si-Jia C. New general interaction solutions to the KPI equation via an optional decoupling condition approach. Commun Nonl Sci Numer Simul. 2021; 103: 105939.
7. Xing L, Mingjun Z, Feng Y, Zhenzhong C. Observer-based region tracking control for underwater vehicles without velocity measurement. Nonlinear Dyn. 2022; 108: 3543-60.
8. Xing L, Si-Jia C. Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 2021; 103: 947-77.
9. Georgiev S, Aissa Boukaroum A, Zennir KH. Classical solutions for 1-dimensional and 2dimensional Boussinesq equations. Turkish J Math. 2022; 46: 2977-97.
10. Banas J, Goebel K. Measures of noncompactness in Banach spaces, lecture notes in pure and applied Mathematics, 60. New York: Marcel Dekker; 1980.
11. Drabek P, Milota J. Methods in nonlinear analysis, applications to differential equations. Springer Science \& Business Media. Birkhäuser, 2007.
12. Georgiev S, Kheloufi A, Mebarki K. Classical solutions for the Korteweg-de Vries equation. New Trends Nonlinear Anal Appl. 2022. (to appear).
13. Georgiev S, Zennir KH. Existence of solutions for a class of nonlinear impulsive wave equations. Ricerche Mat. 2022; 71: 211-25.
14. Mouhous M, Georgiev S, Mebarki K. Existence of solutions for a class of first order boundary value problems. Archivum Mathematicum. 2022; 58: 141-58.
15. Polyanin A, Manzhirov A. Handbook of integral equations. Boca Raton. CRC Press; 1998.

Further reading

16. Beyer F, LeFloch P. Second-order hyperbolic fuchsian systems and applications, class. Quan Grav. 2010; 27: 245012.
17. Djebali S, Mebarki K. Fixed point index theory for perturbation of expansive mappings by k-set contractions. Top Meth Nonli Anal. 2019; 54(2 A): 613-40.
18. Kadomtsev B, Petviashvili V. On the stability of solitary waves in weakly dispersive media. Sov Phys Dokl. 1970; 15: 539-41.
19. Manakov S, Zakharov V. Twodimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys-Lett A. 1977; 205-206.
20. Zabusky N. Fermi-Pasta-Ulam, solitons and the fabric of nonlinear and computational science: history, synergetics, and visiometrics. Chaos. 2005; 15(1): 16: 015102.

Corresponding author

Khaled Zennir can be contacted at: khaledzennir4@gmail.com

