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Abstract

Purpose – The paper presents a mathematical problem involving quasistatic contact between a thermo-
electro-viscoelastic body and a lubricated foundation, where the contact is described using a version of
Coulomb’s law of friction that includes normal damped response conditions and heat exchange with a
conductive foundation. The constitutive law for the material is thermo-electro-viscoelastic. The problem is
formulated as a system that includes a parabolic equation of the first kind for the temperature, an evolutionary
elliptic quasivariational inequality for the displacement and a variational elliptic equality for the electric stress.
The author establishes the existence of a unique weak solution to the problem by utilizing classical results for
evolutionary quasivariational elliptic inequalities, parabolic differential equations and fixed point arguments.
Design/methodology/approach – The author establishes a variational formulation for the model and
proves the existence of a unique weak solution to the problem using classical results for evolutionary
quasivariational elliptic inequalities, parabolic difierential equations and fixed point arguments.
Findings –The author proves the existence of a uniqueweak solution to the problemusing classical results for
evolutionary quasivariational elliptic inequalities, parabolic difierential equations and fixed point arguments.
Originality/value – The author studies a mathematical problem between a thermo-electro-viscoelastic body
and a lubricated foundation using a version of Coulomb’s law of friction including the normal damped response
conditions and the heat exchange with a conductive foundation, which is original and requires a good
understanding of modeling and mathematical tools.

Keywords Conductive foundation, Fixed point, Frictional contact, Normal damped response,

Thermo-piezoelectric, Variational inequality

Paper type Research paper

Frictional
contact
problem

JEL Classification — 47J30, 70F40, 74F05, 74M10, 74M15
© Abdelmoumene Djabi. Published in the Arab Journal of Mathematical Sciences. Published by

Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC
BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this
article (for both commercial and non-commercial purposes), subject to full attribution to the original
publication and authors. The full terms of this license may be seen at http://creativecommons.org/lice
nces/by/4.0/legalcode

The author would like to thank the reviewers for the important comments. This article presents an
extension of sources [2, 11]. The article is based on the work of the abovementioned sources by
extending the mathematical model to a multiphysical thermoelectromechanical law with three
elements, introducing complex boundary conditions of different physical types and models.

For the mathematical model, the existence of a unique weak solution to the problem is
demonstrated using results on quasivariational elliptical inequalities, parabolic differential
equations and fixed point arguments.

These contributions represent an important step forward in the field of boundary problems in
contact mechanics.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/1319-5166.htm

Received 1 August 2021
Revised 18 November 2021

15 February 2022
6 June 2022
17 July 2022

20 October 2022
Accepted 8 January 2023

Arab Journal of Mathematical
Sciences

Emerald Publishing Limited
e-ISSN: 2588-9214
p-ISSN: 1319-5166

DOI 10.1108/AJMS-08-2021-0174

http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/AJMS-08-2021-0174


1. Introduction
Contact phenomena between deformable bodies or between a deformable body and a
foundation are ubiquitous phenomena in everyday life. The contact of a wheel with the ground,
the contact of the brake shoe with the wheel or the gradual sinking in a wheelchair during a
seated posture, are just a few everyday examples, among many others. Some industrial
processes such asmetal stampingandmetal extrusion lead to evolution problemswhere contact
and friction conditions are decisive. These phenomena call upon sophisticated mathematical
models, which are represented by systems of partial differential equations with boundary
conditions describing complex contact processes (with or without friction). The mathematical
theory of contact problems allows rigorous modeling of contact phenomena based on the
principles of continuum mechanics as well as on variational analysis and numerical models.

Important developments concerning the mathematical study, numerical mechanics of the
problems resulting from the mechanics of the contact were carried out during XXth century.
The first contact problem between a deformable body and a foundation was stated by
Signorini and first solved by Fichera. Duvaut and Lions were the first to work on the
mathematical theory of contact mechanics; They introduced variational formulations of
contact problems and provided existence and uniqueness results. Subsequently, several new
works have focused on the resolution of these variational problems such as the work of Refs
[1–6]. However, mathematical theory of contact problems is a very broad field of study where
many issues remain to be investigated.

The importance of the mathematical study of such problems leads to give coupled
conditions for the material and the contact conditions.

Recent researches use coupled laws of behavior between mechanical and electric effects or
between mechanical and thermal effects. For the case of coupled laws of behavior between
mechanical and electric effects, numerous papers use different electro-mechanical conditions such
as [2, 5, 7, 8]. For the case of coupled laws of behavior betweenmechanical and thermal effects, we
can found severalmodels inRefs [4, 6, 7, 9–12]. For this, the new researchesuse coupled conditions
between the mechanical, electrical and thermal behavior of the material see [13–15].

Thepyroelectric effect is characterizedbya couplingbetween the electrical and thermal effects
and does not produce mechanical effects. The pyroelectric effect used for fire alarm, pyroelectric
detectors and sensors. Some pyroelectric applications can be found in Refs [9, 16, 17].

The piezoelectric effect is a coupling between the mechanical and electrical properties of
the materials and does not produce heat effects. This coupling, leads to the appearance of
electric field in the presence of a mechanical stress and conversely. A mechanical stress is
generated when electric potential is applied. The first effect is used in sensors and the reverse
effect is used in actuators. During the past few years, a lot of attention has been focused on the
piezoelectric effects, such as [8, 18, 19].

Recent modeling, analysis and numerical simulations of electro-mechanical, thermo-
mechanical and thermo-electro-mechanical contact problems with friction can be found in
Refs [2, 4, 5, 7, 10, 11, 14]. General models of energy can be found in Refs [1]. a generalized
Coulomb friction version is given in Refs [3, 20]. Indeed, the authors used the normal damped
response conditions for a lubricated foundation; see, for instance [21, 22].

Nowadays, there are increasing efforts to investigate coupled-field problems. In this
respect, electro-thermo-mechanical coupling is one particular application, which occurs, for
example, in Car fan or Computer fan. In this paperwe usemixed conditions between electrical,
thermal and mechanical conditions. The law of behavior used is given by

σðtÞ ¼ Aðεð _uðtÞÞÞ þ GεðuðtÞÞ þ E*∇wðtÞ �MθðtÞ; (1.1)

DðtÞ ¼ EεðuðtÞÞ þ BEðwðtÞÞ þ PθðtÞ; (1.2)
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This law is thermo-electro-viscoelastic Kelvin-Voigt model where A, G are nonlinear
operators describing the purely viscous and the elastic properties of thematerial, respectively
and E(w) 5 �∇w, E ¼ ðeijkÞ, M, B, P are respectively electric field, piezoelectric,
thermal expansion, electric permittivity, pyroelectric tensors, and E* is the transpose of E.
Note also that when E ¼ 0 and D 5 0, (1.1)–(1.2) becomes the Kelvin-Voigt thermo-
viscoelastic constitutive relation used in [10]. Moreover, when M ¼ 0 and P ¼ 0, the
relations (1.1)–(1.2) becomes the Kelvin-Voigt electro-viscoelastic.

The evolution of the temperature field obtained from the conservation of energy and
defined with the following differential equation

_θðtÞ � divK ∇θ tð Þð Þ ¼ ψðMθðtÞ;uðtÞÞ þ qth; (1.3)

where θ is the temperature, K denotes the thermal conductivity tensor, M the thermal
expansion tensor, qth is the density of volume heat sources and ψ is a nonlinear function,
assumed here depends on thermal expansion tensor and the displacement field.

Processes of contact are present in numerous domestic and industrial applications which
may change from body to body depending on the constitutive law of the body studied. In this
paper we use mechanical, thermal and electrical contact conditions.

For the mechanical contact conditions, the Coulomb friction is one of the most useful
friction laws and known from the literature. This law has two basic ingredients namely the
concept of friction threshold and its dependence on the normal stress.We use normal damped
response conditions associated with the Coulomb’s law of dry friction given by:

σν ¼ −pν _uν tð Þð Þ; jστjj j≤ pτ _uν tð Þð Þ;

στ ¼ −pτ _uν tð Þð Þ _uτ tð Þ
k _uτ tð Þk; if _uτ tð Þ≠ 0;

8><
>: (1.4)

This condition models frictional contact between the body and lubricated foundation where
pν and pτ represent given contact functions, _uν and _uτ denote the normal and tangential
velocity field respectively.

On the other hand in the study of this problem, we make the assumption that the
foundation is thermo-electrical conductive, the electrical conductivity assumed depends on
the linear function H defined as:

H w tð Þð Þ ¼ w tð Þ � w0 (1.5)

Here, we assume that the electrical conductivity H depends only on the electric potential w
and the initial electric potential w0

Moreover, for the thermal conductivity we use the following conditions on the contact
surface

−kijθ;inj ¼ ke θ tð Þ � θFð Þ (1.6)

where ke is the heat exchange coefficient between the body and the obstacle, θF is the
temperature of the foundation.

The paper is organized as follows. In Section 2 we present the model. In Section 3 we
introduce the notations, some preliminaries results, list of the assumptions on the data andwe
give the variational formulation of the problem. In Section 4 we state our main existence and
uniqueness result theorem 4.1. The proof of the theorem is based on evolutionary elliptic
variational inequalities, ordinary differential equations and fixed point arguments.

Frictional
contact
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2. The model
The physical setting is the following. A thermo-electro-viscoelastic body occupies a bounded

domainΩ⊂Rd ðd ¼ 2; 3Þwith outer Lipschitz surface Γ. This boundary is divided into three
open disjoint parts Γ1,Γ2 and Γ3, on one hand and a partition of Γ1∪ Γ2 into two open parts Γa
and Γb, on the other hand.We assume thatmeas(Γ1) > 0 andmeas(Γa) > 0. LetT> 0 and [0,T]
be the time interval of interest. The body is subjected to the action of body forces of density f0,
volume electric charges of density q0 and a heat source of constant strength qth.The body is
clamped onΓ13 (0,T ), so the displacement field vanishes there. A surface traction of density
f2 act on Γ23 (0,T ). We also assume that the electrical potential vanishes on Γa3 (0,T ) and
a surface electric charge of density qb is prescribed on Γb3 (0,T ). Moreover, we suppose that
the temperature vanishes on Γ1 ∪Γ2ð Þ3 ð0;TÞ. Moreover, we suppose that the body forces
and tractions vary slowly in time, and therefore, the accelerations in the system may be
neglected. Neglecting the inertial terms in the equation of motion leads to a quasistatic
approach to the process.

In the reference configuration, the body is in contact with a foundation, over the contact
surface Γ3. The model of the contact is frictional specified by the normal damped response
conditions and it is associated with the Coulomb’s law of dry friction for the mechanical
contact, an associated temperature boundary condition for the thermal contact and electrical
conditions modeling electric potential exchange between the body and the conductive
foundation.

The classical formulation of the mechanical problem is as follows.

Problem P. Find the displacement field u : Ω3 ½0;T�→Rd, the stress field

σ : Ω3 ½0;T�→Sd, the electric potential w : Ω3 ½0;T�→R, the electric displacement field

D : Ω3 ½0;T�→Rd and the temperature θ : Ω3 ½0;T�→R such that

σðtÞ ¼ Aðεð _uðtÞÞÞ þ GεðuðtÞÞ þ E*∇wðtÞ �MθðtÞ; inΩ3 ð0;TÞ; (2.1)

DðtÞ ¼ EεðuðtÞÞ � B∇ðwðtÞÞ þ PθðtÞ; inΩ3 ð0;TÞ; (2.2)

_θðtÞ � divK ∇θ tð Þð Þ ¼ ψðMθðtÞ;uðtÞÞ þ qth; inΩ3 ð0;TÞ; (2.3)

Divσ þ f0 ¼ 0 inΩ3 ð0;TÞ; (2.4)

divD ¼ q0 inΩ3 ð0;TÞ; (2.5)

u ¼ 0 onΓ1 3 ð0;TÞ; (2.6)

σν ¼ f2 onΓ2 3 ð0;TÞ; (2.7)

σν ¼ −pν _uν tð Þð Þ; jστjj j≤ pτ _uν tð Þð Þ;

στ ¼ −pτ _uν tð Þð Þ _uτ tð Þ
k _uτ tð Þk; if _uτ tð Þ≠ 0;

8><
>: onΓ3 3 ð0;TÞ; (2.8)

−kijθ;inj ¼ ke θ tð Þ � θFð Þ onΓ3 3 ð0;TÞ; (2.9)

D:ν ¼ H w tð Þð Þ onΓ3 3 ð0;TÞ; (2.10)

θ ¼ 0 on Γ1 ∪Γ2ð Þ3 ð0;TÞ; (2.11)

w ¼ 0 onΓa 3 ð0;TÞ; (2.12)

D $ ν ¼ qb onΓb 3 ð0;TÞ; (2.13)

uð0Þ ¼ u0; θð0Þ ¼ θ0; inΩ: (2.14)
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we now describe problem (2.1)–(2.14) and provide explanation of the equations and the
boundary conditions.

Equations (2.1) and (2.2) represent the thermo-electro-viscoelastic constitutive law, the
evolution of the temperature field is governed by differential equation given by the relation
(2.3) where ψ is the mechanical source of the temperature growth, assumed to be rather
general function of the strains. Next equations (2.4) and (2.5) are the steady equations for the
stress and electric-displacement field, conditions (2.6) and (2.7) are the displacement and
traction boundary conditions. Equation (2.11) means that the temperature vanishes on
Γ1 ∪Γ2ð Þ. Next, (2.12) and (2.13) represent the electric boundary conditions for the electrical
potential on Γa and the electric charges on Γb respectively. Equation (2.14) represents the
initial displacement field and the initial temperature field where the initial displacement is u0,
and θ0 is the initial temperature.

We turn to the contact conditions (2.8)–(2.10) describe a mixed contact on the potential
contact surface Γ3. The relation (2.8) describes a normal damped response conditions with the
Coulomb’s law of dry friction (2.9) represents an associated temperature boundary condition
on contact surface. Finally, (2.10) shows models the electric conductivity.

3. Variational formulation
In order to obtain the variational formulation of the ProblemP, we use the following notations
and preliminaries

3.1 Notations and preliminaries
We present the notation we recall some preliminary material. For more details, we refer the
reader to [23–26]. In what follows the indices i and j run from 1 to d, the summation
convention over repeated indices is used and the index that follows a comma indicates a
partial derivative with respect to the corresponding component of the independent

variable. We denote bySd the space of second order symmetric tensors onRd (d5 2, 3). We

recall that the canonical inner products and the corresponding norms on Rd and Sd,
respectively are given by

u:v ¼ ui:vi ;
��v�� ¼ ffiffiffiffiffiffiffi

v:v
p

for allu; v∈Rd;

σ:τ ¼ σij:τij ; kτk ¼ ffiffiffiffiffiffi
τ:τ

p
for all σ; τ ∈Sd:

Let Ω⊂Rd be a bounded domain with outer Lipschitz boundary Γ and let ν denote the unit
outer normal on vΩ 5 Γ. We introduce the spaces

H ¼ L2ðΩÞd ¼ v ¼ við Þ : vi ∈L2ðΩÞ� �
;

H ¼ τ ¼ τijð Þ : τij ¼ τji ∈L2ðΩÞ� �
;

H 1ðΩÞd ¼ fv ¼ við Þ∈H : εðvÞ∈Hg;
H1 ¼ fτ ∈H : Divτ ∈Hg;

Here ε : H 1ðΩÞd →H and Div : H1 →H are the linearized deformation and divergence
operators, respectively, defined by

εðvÞ ¼ ðεijðvÞÞ; εijðvÞ ¼ 1

2
ðvi;j þ vj;iÞ; Divτ ¼ ðτij;jÞ:

The spaces H, H, H1(Ω)d and H1 are real Hilbert spaces endowed with the canonical inner
products given by:
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ðu; vÞH ¼
Z
Ω
ui:vidx; ðσ; τÞH ¼

Z
Ω
σijτijdx;

ðu; vÞ
H1ðΩÞd ¼ ðu; vÞH þ ðεðuÞ; εðvÞÞH ;

ðσ; τÞH1
¼ ðσ; τÞH þ ðDiv σ;Div τÞH :

and with the associated norms are denoted by k$kH, k$kH, k$kH1ðΩÞd and k$kH1
, respectively.

We introduce the closed subspaces of H1(Ω) and H1(Ω)d defined by

V ¼ v∈H 1ðΩÞd : v ¼ 0 onΓ1

n o
;

W ¼ f∈H 1ðΩÞd : f ¼ 0 onΓa

n o
;

W ¼ �
D ¼ Dið Þ : Di ∈L2ðΩÞ; divD∈L2ðΩÞ�;

Z ¼ w∈H 1ðΩÞ : w ¼ 0 a:e onΓ1 ∪Γ2

� �
;

SincemeasΓa> 0 andmeasΓ1 > 0, the Korn’s and Friedrichs-Poincar�e inequalities hold, thus,

kεðvÞkH ≥C0kvkH1ðΩÞd ; ∀v∈V ; (3.1)

k∇fkW ≥C1kfkH1ðΩÞ; ∀f∈W ; (3.2)

k∇wkH ≥C2kwkH1ðΩÞ; ∀w∈Z; (3.3)

where here and below C0, C1 and C2 are positive constants that depend on the problem data
and are independent of the solutions.

On the spaces V, W and Z, we define the following inner products

ðu; vÞV ¼ ðεðuÞ; εðvÞÞH; ∀u; v∈V ; (3.4)

ðw;fÞW ¼ ð∇w;∇fÞW ; ∀w;f∈W ; (3.5)

ðw; zÞZ ¼ ð∇w;∇zÞH ; ∀w; z∈Z; (3.6)

where

ðw;fÞW ¼
Z
Ω
∇w:∇fdx;

ðD;EÞW ¼
Z
Ω
D:Edxþ

Z
Ω
divD:divEdx :

It follows from (3.1) and (3.4) that k.kH1ðΩÞd and k.kV are equivalent norms onV, (3.2) and (3.5)

follows that k.kH1ðΩÞd and k.kW are equivalent norms onW and from (3.3) and (3.6) we deduce

that k.kH1ðΩÞ and k.kZ are equivalent norms onZ. Therefore, the spaces (V, ($,$)V), (W, ($,$)W)

and ðZ; ð$; $ÞZÞ are real Hilbert spaces. Moreover, by the Sobolev trace theorem and the
equalities (3.4)–(3.6), there exists C0, C1 and C2, three positive constants, such that

kvk
L2ðΓ3Þd ≤C0kvkV ; ∀v∈V ; (3.7)

kfkL2ðΓ3Þ≤C1kfkW ; ∀f∈W ; (3.8)

kzkL2ðΓ3Þ≤C2kzkZ ; ∀z∈Z: (3.9)
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Let HΓ ¼ ðH 1=2ðΓÞÞd and γ : H 1ðΓÞd →HΓ be the trace map. For every element v ∈ H1(Ω)d,
we also use the notation v to denote the trace map γv of v on Γ, and we denote by vν and vτ the
normal and tangential components of v on Γ given by

vν ¼ v$ν; vτ ¼ v� vνν: (3.10)

Similarly, for a regular (say C1) tensor field σ : Ω→Sd we define its normal and tangential
components by

σν ¼ σνð Þ$ν; vτ ¼ σν� σνν; (3.11)

and for all σ∈H1, θ ∈ H1(Ω)d and D∈W the following three Green’s formulas holds:

ðσ; εðvÞÞH þ ðDivσ; vÞH ¼
Z
Γ
σν:vda ∀v∈H 1ðΩÞd; (3.12)

ðθ;∇wÞH þ ðdivθ;wÞL2ðΩÞ ¼
Z
Γ
θν:wda ∀w∈H 1ðΩÞ; (3.13)

ðD;∇fÞH þ ðdivD;fÞL2ðΩÞ ¼
Z
Γ
Dν:fda ∀f∈H 1ðΩÞ; (3.14)

where

divθ ¼ ðθi;iÞ ; divD ¼ ðDi;iÞ;
We recall the following definition of an Gelfand triple.

Definition 3.1. Let V and H be real Hilbert spaces such that V is dense in H and the
injection map is continuous. The spaceH is identified with its own dual and with a subspace
of the dual V0 of V. We write

V ⊂H ⊂V 0:

and we say that the inclusions above define a Gelfand triple. We denote by $k kV , $k k H , and
$k kV 0, the norms on the spacesV,H andV0 respectively, andwe use $; $ð ÞV 0 3V for the duality
pairing between V0 and V. Note that if f ∈ H then

f ; vð ÞV 0 3V ¼ f ; vð ÞH ; ∀v∈H : (3.15)

and we recall the following Theorem

Theorem 3.2. Let V ⊂ H ⊂ V0 be a Gelfand triple. Assume that A: V → V0 is a
hemicontinuous and monotone operator that satisfies

Av; vð ÞV 0 3V ≥ω vk k2Vþζ ; ∀v∈V (3.16)

Avk k2V 0 ≤C vk kV þ 1
� �

; ∀v∈V (3.17)

For some constantsω>0,C>0 and ζ∈RThen, givenu0∈Hand f ∈L2 0;T;V 0ð Þ, there exists
a unique function u∈L2 0;T;Vð Þ \ C 0;T;Hð Þ satisfies

u∈L2 0;T;Vð Þ \ C 0;T;Hð Þ; _u∈L2 0;T;V 0ð Þ;
_u tð Þ þ Au tð Þ ¼ f tð Þ a:e t ∈ 0;Tð Þ;
u 0ð Þ ¼ u0
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The proof of this abstract result may be found in [3, p. 141], and will be used in the study of
thermal problem presented in Section 5.

Finally, for any real Hilbert spaceX, we use the classical notation for the spaces Lp(0,T;X)
and Wk,p(0, T; X), where 1 ≤ p ≤ ∞ and k > 1. For T > 0 we denote by Cð0;T;XÞ and
C1ð0;T;XÞ the space of continuous and continuously differentiable functions from [0,T] toX,
respectively, with the norms

kfkCð0;T;XÞ ¼ max
t∈ 0;T½ �

kf tð ÞkX ;

kfkC1ð0;T;XÞ ¼ max
t∈ 0;T½ �

kf tð ÞkX þ max
t∈ 0;T½ �

k_f tð ÞkX ;

Moreover, we use the dot above to indicate the derivativewith respect to the time variable and
if X1 and X2 are real Hilbert spaces then X13 X2 denotes the product Hilbert space endowed
with the canonical inner product ($,$)X 1 3X2

.

3.2 Assumptions on the data
We now list the assumptions on the problem’s data.

The viscosity operator A : Ω3Sd
→Sd satisfies

ðaÞThere existsLA > 0 such that

kAðx; ε1Þ � Aðx; ε2Þk≤LAkε1 � ε2k for all ε1; ε2 ∈Sd; a:e:x∈Ω:

ðbÞThere existsmA > 0 such that

ðAðx; ε1Þ � Aðx; ε2ÞÞ$ðε1 � ε2Þ≥mAkε1 � ε2k2

for all ε1; ε2 ∈Sd; a:e:x∈Ω:

ðcÞThemappingx↦Aðx; εÞ is Lebesguemeasurable onΩ; for any ε∈Sd:

ðdÞThemappingx↦Aðx; 0Þ belongs toH:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(3.18)

The elasticity operator G : Ω3Sd
→Sd satisfies

ðaÞThere existsLG > 0 such that

kGðx; ε1Þ � Gðx; ε2Þk:≤LGkε1 � ε2k for all ε1; ε2 ∈Sd; a:e:x∈Ω:

ðbÞThemappingx↦Gðx; εÞ is Lebesguemeasurable onΩ; for any ε∈Sd :

ðcÞThemappingx↦Gðx; 0Þ belongs toH:

8>>>>><
>>>>>:

(3.19)

The piezoelectric operator E : Ω3Sd
→Rd satisfies

ðaÞE x; τð Þ ¼ eijkτjkð Þ; ∀τ ¼ τjkð Þ∈Sd; a:e: x inΩ:

ðbÞeijk ¼ eikj ∈L∞ðΩÞ; 1≤ i; j; k≤ d:

(
(3.20)

The thermal expansion operator M : Ω3R→R
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ðaÞThere exists a constantLM > 0 such that

kMðx; θ1Þ �Mðx; θ2Þk≤LMkθ1 � θ2k for all θ1; θ2 ∈R; a:e:x∈Ω:

ðbÞThemappingx↦Mðx; θÞ is Lebesguemeasurable onΩ; for any θ∈R:

ðcÞThemappingx→Mðx; 0Þ∈H
ðdÞmij ¼ mji ∈L∞ðΩÞ:

8>>>>>>>><
>>>>>>>>:

(3.21)

The nonlinear constitutive function ψ : Ω3R3V →R satisfies

ðaÞThere exists a constantLψ > 0 such that
kψðx;Mθ1;u1Þ � ψðx;Mθ2;u2Þk≤Lψð Mθ1 �Mθ2k k þ ku1 � u2kÞ
for all θ1; θ2 ∈R; for allu1;u2 ∈V ; a:e:x∈Ω:

ðbÞThemappingx→ψðx;Mθ;uÞ is Lebesguemeasurable onΩ for any θ∈R;
for anyu∈V :

ðcÞThemappingx→ψðx; 0; 0Þ∈L2ðΩÞ:

8>>>>>><
>>>>>>:

(3.22)

The electric permittivity operator B ¼ ðB ijÞ : Ω3Rd
→Rd satisfies

ðaÞBðx;EÞ ¼ ðB ijðxÞEjÞ for allE ¼ ðEiÞ∈Rd; a:e:x∈Ω:

ðbÞB ij ¼ B ji ∈L∞ðΩÞ; 1≤ i; j≤ d:

ðcÞThere exists a constantmB > 0 such thatBE:E ≥mBjEj2

for allE ¼ ðEiÞ∈Rd; a:e: inΩ:

8>>>>><
>>>>>:

(3.23)

The pyroelectric operator P : Ω3Rd
→Rd

ðaÞThere exists a constant LP > 0 such that

kPðx; θ1Þ � Pðx; θ2Þk≤LPkθ1 � θ2k for all θ1; θ2 ∈Rd; a:e:x∈Ω:

ðbÞThemappingx↦Pðx; 0Þ belongs toW:

8>><
>>: (3.24)

The thermal conductivity operator K : Ω3Rd
→Rd

ðaÞThere exists a constant LK > 0 such that

kKðx; r1Þ � Kðx; r2Þk≤LKkr1 � r2k for all r1; r2 ∈Rd; a:e:x∈Ω:

ðbÞ kij ¼ kji ∈L∞ðΩÞ ; 1≤ i; j≤ d:

ðcÞThemappingx↦ Sðx; 0; 0Þ belongs toL2ðΩÞ:

8>>>>><
>>>>>:

(3.25)

The contact functions ps: Γ3 3R→Rþ; s ¼ ν; τð Þ satisfy
ðaÞThere existsLs > 0 such that

kpsðx;w1Þ � psðx;w2Þk≤Lskr1 � r2k for all r1; r2 ∈R; a:e:x∈Γ3:

ðbÞThemappingx↦ psðx;wÞ is Lebesguemeasurable onΓ3; for any r∈R:

ðcÞThemappingx↦ psðx; 0Þ belongs toL2ðΓ3Þ:

8>>>>><
>>>>>:

(3.26)

The electrical conductivity function H : Ω3R→Rþ satisfies
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ðaÞThere existsmHe
> 0 such that

ðHðx;w1Þ � Hðx;w2ÞÞ$ðw1 � w2Þ≥mHkw1 � w2k2

for allw1;w2 ∈R; a:e:x∈Ω:

ðbÞThemappingx↦Hðx;wÞ is Lebesguemeasurable onΩ; for anyw∈R:

ðcÞThemappingx↦Hðx; 0Þ belongs toL2ðΩÞ:

8>>>>>>>>><
>>>>>>>>>:

(3.27)

The density of volume forces, traction, volume electric charges, surface electric charges and
the temperature evolution increase satisfy

f0 ∈ Cð0;T;HÞ; f2 ∈ C
�
0;T;L2ðΓ2Þd

	
; (3.28)

q0 ∈ C�0;T;L2ðΩÞ�; q2 ∈ C�0;T;L2ðΓbÞ
�
; (3.29)

∃Lθ > 0; kθ1 � θ2kZ ≤Lθkw1 � w2kW for all θi ∈Z;wi ∈W ; i ¼ 1; 2: (3.30)

The initial displacement, the potential of the foundation, the initial temperature and the
temperature of the foundation fields satisfy

u0 ∈V ;w0 ∈L2 Γ3ð Þ; θ0 ∈Z; θF ∈L2 Γ3ð Þ; (3.31)

and the initial temperature field satisfies

qth ∈L2 0;T;Z0ð Þ: (3.32)

Using the above notation and Green’s formulas given by (3.12)–(3.14), we obtain the
variational formulation of the mechanical problem (2.1)–(2.14) for all functions v ∈ V,w∈Z,
f ∈ W and a.e t ∈ 0;Tð Þ given as follows,

3.3 Problem PV

Find the displacement field u: [0,T]→V, the stress field σ : ½0;T�→H1, the electric potential
w: [0, T]→W, the electric displacement fieldD: [0,T]→H and the temperature θ: [0, T]→ V
such that

σðtÞ ¼ Aðεð _uðtÞÞÞ þ GεðuðtÞÞ þ E*∇wðtÞ �MθðtÞ; (3.33)

σðtÞ; εðvÞ � εð _uðtÞÞð ÞH þ jð _uðtÞ; vÞ � jð _uðtÞ; _uðtÞÞ≥ ðfðtÞ; v� _uðtÞÞV ; (3.34)

ð _θðtÞ;wÞZ0 3Z þ ðK ∇θðtÞð Þ;∇wÞ ¼ ðG1 θ;wð Þ þ ψðMθðtÞ;uðtÞÞ þ qth;wÞZ0 3Z; (3.35)

D tð Þ ¼ EεðuðtÞÞ � B∇wðtÞ þ PθðtÞ; (3.36)

ðD tð Þ;∇fÞH þ ðqeðtÞ;fÞW ¼ G2 w;fð Þ; (3.37)

uð0Þ ¼ u0; θð0Þ ¼ θ0; in Ω: (3.38)

where j : V 3V →R; f : ½0;T�→V , qe : ½0;T�→W ;G1 : Z3Z→RandG2 : W 3W →R
are respectively, defined by

AJMS



jðu; vÞ ¼
Z
Γ3
pν uνð Þvνdaþ

Z
Γ3
pτ uνð Þkvτkda; (3.39)

ðfðtÞ; vÞV ¼
Z
Ω
f0ðtÞ$vdxþ

Z
Γ2
f2ðtÞ$vda; (3.40)

ðqeðtÞ;fÞW ¼
Z
Ω
q0ðtÞfdx�

Z
Γb
qbðtÞfda; (3.41)

G1 θ;wð Þ ¼ −

Z
Γ3
ke θ:ν� θF :νð Þwda; (3.42)

G2 w;fð Þ ¼
Z
Γ3
H w tð Þð Þfda; (3.43)

for all u, v∈V, θ;w∈Z and f∈W and t∈ [0,T]. We note that the definitions of f and qe are
based on the Riesz representation theorem. Moreover, conditions (3.28) and (3.29) imply that

f∈ Cð0;T;VÞ; qe ∈ Cð0;T;W Þ: (3.44)

4. Existence and uniqueness of a solution
Now, we propose our existence and uniqueness result.

Theorem4.1. Assume that (3.18)–(3.32) hold. Then there exists a constant α0which depends
only on Ω, Γ1, Γ3 and A such that if

Lν þ Lτð Þ < α0; (4.1)

where α0 ¼ mA
C2
0

such that mA is defined in (3.18) and C0 defined by (3.7).Then there exists a
unique solution u; σ; θ;w;Df g to problem PV . Moreover, the solution satisfies

u∈ C1ð0;T;V Þ; (4.2)

σ ∈ Cð0;T;H1Þ; (4.3)

θ∈L2ð0;T;ZÞ \ C�0;T;L2ðΩÞ�; (4.4)

w∈ Cð0;T;W Þ; (4.5)

D∈ Cð0;T;WÞ; (4.6)

The proof of Theorem 4.1 is carried in several steps. It is based on results of evolutionary
variational inequalities, ordinary differential equations and fixed point arguments.

To prove the theorem we consider the following three auxiliary problems for given

η∈ Cð0;T;V Þ, χ ∈L2ð0;T;Z0Þwe consider the following three auxiliary problems:

4.1 Problem PVη

Find a displacement field uη: [0, T] → V and a stress field ση : ½0;T�→H such that

σηðtÞ ¼ Aðεð _uηðtÞÞÞ þ Gε�uηðtÞ
�þ η tð Þ; (4.7)
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ðAðεð _uηðtÞÞÞ; εðv� _uηðtÞÞÞH þ ðGεðuηðtÞÞ; εðv� _uηðtÞÞÞH þ jð _uηðtÞ; vÞ (4.8)

�jð _uηðtÞ; _uηðtÞÞ (4.9)

≥ ðfðtÞ; v� _uηðtÞÞV � ðη tð Þ; εðv� _uηðtÞÞÞH; (4.10)

uηð0Þ ¼ u0; inΩ: (4.11)

for all uη, v ∈ V and t ∈ 0;Tð Þ,

4.2 Problem PVχ

Find the temperature θχ : ½0;T�→Z which is solution of the variational problem

_θχðtÞ;w

�
Z0 3Z

þ ðK ∇θðtÞð Þ;∇wÞZ0 3Z ¼ ðχðtÞ þ qthðtÞ;wÞZ0 3Z; (4.12)

θχð0Þ ¼ θ0; in Ω: (4.13)

for all θχ ;w∈Z, a.e.t ∈ (0, T),

4.3 Problem PVw

Find an electrical potential w: [0, T] → W, D : ½0;T�→W such that

Dη tð Þ ¼ Eε�uηðtÞ
�� B∇wðtÞ þ Pθ; (4.14)

ðB∇wðtÞ;∇fÞH � �Eε�uηðtÞ
�
;∇f

�
H
� ðPθ;∇fÞH þ G2 w;fð Þ ¼ ðqeðtÞ;fÞW : (4.15)

for all w, f ∈ W, t ∈ 0;Tð Þ.
We begin with an auxiliary result on the properties of the functionals j : V 3V →R and

G1 : Z3Z→R defined by (3.39) and (3.42), respectively.

Lemma 4.2. Under the hypotheses (3.18)–(3.32), the functionals j and G1 satisfy

jðu; :Þ is convex and lower semicontinuous onV ; (4.16)

jðu1; v2Þ þ jðu2; v1Þ � jðu1; v1Þ � jðu2; v2Þ
≤C

2
0 μk kL∞ Γ3ð Þ þ 1
� 	

u1 � u2k kV v1 � v2k kV; for allu1;u2; v1; v2 ∈V
(4.17)

kG1 θ1;wð Þ � G1 θ2;wð ÞkL2ðΓ3Þ≤CG1
kθ1 tð Þ � θ2 tð ÞkZ ; for all θ1; θ2;w∈Z (4.18)

Proof (Lemma4.2).We use the assumption (3.26) and inequality (3.7) to see that the functional
j defined by (3.39) is a seminorm on V and moreover,

jjðu1; vÞ � jðu2; vÞj≤C
2
0 Lν þ Lτð Þ u1 � u2k kV vk kV

Thus, the seminorm j is continuous on V and, therefore, (4.16) hold.
From the definition of the functional j given by (3.39), we have
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jðu1; v2Þ þ jðu2; v1Þ � jðu1; v1Þ � jðu2; v2Þ
¼

Z
Γ3

pν u1νð Þ � pν u2νð Þð Þ ju2νj � ju1νjð Þda

þ
Z
Γ3

pν u1νð Þ � pν u2νð Þð Þ jv1τjj j � jv2τjj jð Þda; ∀u1;u2; v1; v2 ∈V ;

(4.19)

Using (3.39), the last equality becomes

jðu1; v2Þ þ jðu2; v1Þ � jðu1; v1Þ � jðu2; v2Þ
≤

Z
Γ3
Lνju1ν � u2νj: jv2νj � jv1νjj jda

þ
Z
Γ3
Lτju1ν � u2νk: v1τk k � v2τk kj jda; for allu1;u2; v1; v2 ∈V ;

(4.20)

Next, we use the following inequalities

ju1ν � u2νj≤ ku1 � u2k;
jv2νj � jv1νjj j≤ jv1ν � v2νj≤ kv1 � v2k;
v1τk k � v2τk kj j≤ v1τ � v2τk k≤ v1 � v2k k;

(4.21)

The inequality (4.20) becomes

jðu1; v2Þ þ jðu2; v1Þ � jðu1; v1Þ � jðu2; v2Þ
≤

Z
Γ3

Lν þ Lτð Þku1 � u2k:kv1 � v2kda;

which implies

jðu1; v2Þ þ jðu2; v1Þ � jðu1; v1Þ � jðu2; v2Þ
≤ Lν þ Lτð Þku1 � u2kL2ðΓ3Þ:kv1 � v2kL2ðΓ3Þda;

Using (3.7) and (4.1), we conclude

jðu1; v2Þ þ jðu2; v1Þ � jðu1; v1Þ � jðu2; v2Þ
≤C

2
0α0ku1 � u2kV :kv1 � v2kVda:

Moreover, the functional G1 defined in (3.42) by

G1 θ;wð Þ ¼ −

Z
Γ3
ke θ:ν� θF :νð Þwda; for all θ; θF ;w∈Z;

Thus by the assumption (3.32) and inequality (4.21), we get

kG1 θ1;wð Þ � G1 θ2;wð ÞkL2ðΓ3Þ ≤ kek kL∞ Γ3ð Þ:
���θ1 tð Þ � θ2 tð ÞkL2ðΓ3Þ;

From the inequality (3.8), we obtain

kG1 θ1;wð Þ � G1 θ2;wð ÞkL2ðΓ3Þ ≤C1 kek kL∞ Γ3ð Þ

���θ1 tð Þ � θ2 tð ÞkZ ;
Thus, we can write

kG1 θ1;wð Þ � G1 θ2;wð ÞkL2ðΓ3Þ ≤CG1

��θ1 tð Þ � θ2 tð ÞkZ ; for all θ1; θ2 ∈Z:

where CG1
¼ C1 kek kL∞ Γ3ð Þ. ,

We have the following result for Problem PVη.
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Lemma4.3. Under the hypotheses (3.18)–(3.32), for every η∈ Cð0;T;VÞ, ProblemPVη has a

unique weak solution uη; ση

� �
, such that

uη ∈ C1ð0;T;V Þ ; ση ∈ Cð0;T;H1Þ: (4.22)

Moreover, if ui; σ if g are the solutions of Problem PVηi, corresponding η ¼ ηi ∈ Cð0;T;V Þ for
i 5 1, 2,then

u1 tð Þ � u2 tð Þk kV ≤C

Z T

0

kη1ðsÞ � η2ðsÞkVds (4.23)

Proof [of Lemma (4.3)]. Choosing v ¼ _uηðtÞ± ξ in (4.10), where ξ∈D Ωð Þd is arbitrary,
we find �

σηðtÞ; εðΦÞ�H ¼ ðfðtÞ;ΦÞV
Using the definition (3.40) for f, we deduce

DivσηðtÞ þ f0ðtÞ ¼ 0; t ∈ 0;Tð Þ; (4.24)

With the regularity assumption (3.28) on f0, we see that Divση(t) ∈ H. Therefore, σηðtÞ∈H1.
Now, we use Riesz Representation Theorem to define the operators A: V→ V, B: V→ V

and the function fη : 0;T½ �→V by

Au; vð Þ ¼ Aε uð Þ; ε vð Þð ÞH; (4.25)

Bu; vð Þ ¼ Gε uð Þ; ε vð Þð ÞH; (4.26)

fη tð Þ; v� � ¼ f tð Þ; vð ÞV � η tð Þ; ε vð Þð ÞV ; (4.27)

for all u, v ∈ V and t ∈ 0;T½ �.
It follows from (4.25) and (3.18(a)) that

Au� Avk kV ≤LA u� vk kV ; (4.28)

Which shows that A: V → V is Lipschitz continuous. Now, by (4.25) and (3.18(b)) we find

Au� Av;u� vð ÞV ≥mA u−vk k2V ; ∀u; v∈V ; (4.29)

i.e. that A: V→ V is a strongly monotone operator on V. Moreover, using (4.26) and (3.19(a))
we find

Bu� Bvk kV ≤LB u� vk kV ; ∀u; v∈V : (4.30)

if (4.1) is satisfied, since A is a strongly monotone and Lipschitz continuous operator on V
and B is Lipschitz continuous operator on V, j(u, .) satisfies conditions (4.16) and (4.17), u0
satisfies the assumption (3.31), and we note that for any fixed η∈ Cð0;T;V Þ we use the
definitions 3.44 and (4.27) to show that fη ∈ Cð0;T;V Þwe deduce from classical results for
evolutionary elliptic variational inequalities (see for example [27]) that there exists a unique

function uη ∈ C1ð0;T;VÞ. Moreover, for ui ¼ uηi solutions of the Problem PVηi for i 5 1,
2, then

_u1 tð Þ � _u2 tð Þk kV ≤C u1 tð Þ � u2 tð Þk kV þ ��η1ðtÞ � η2ðtÞkV
� �

(4.31)
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Since

ui tð Þ ¼
Z t

0

_ui sð Þdsþ u0; ∀t ∈ 0;T½ �;

We have

u1 tð Þ � u2 tð Þk kV ≤C

Z t

0

_u1 sð Þ � _u2 sð Þk kVds (4.32)

Recent modeling Using (4.31) the inequality (4.32) becomes

u1 tð Þ � u2 tð Þk kV ≤C

Z t

0

u1 sð Þ � u2 sð Þk kV þ
Z t

0

kη1ðsÞ � η2ðsÞkVds

 �

Next, we apply Gronwall’s inequality to deduce

u1 tð Þ � u2 tð Þk kV ≤C

Z T

0

kη1ðsÞ � η2ðsÞkVds (4.33)

,
For the Problem PVχwe have the following result.

Lemma4.4. Under the hypotheses (3.18)–(3.32), for every χ ∈L2ð0;T;Z0Þ, ProblemPVχ has
a unique weak solution such that

θχ ∈L2ð0;T;ZÞ \ C�0;T;L2ðΩÞ�; (4.34)

Moreover, if θi are the solutions of ProblemPVχi, corresponding χ ¼ χ i ∈ Cð0;T;Z0Þ for i5 1,
2, then

θ1 tð Þ−θ2 tð Þk k2L2ðΩÞ ≤C

Z T

0

χ1 sð Þ−χ2 sð Þk k2Z0ds (4.35)

Proof [of Lemma (4.4)]. The inclusion mapping of Z; :k kZð Þ into L2 Ωð Þ; :k kL2 Ωð Þ
� 	

is

continuous and its range is dense. We can write the Gelfand triple

Z ⊂L2 Ωð Þ ¼ L2 Ωð Þ� �0
⊂Z0:

The problem (4.12)–(4.13) may be written as

_θχðtÞ þ Kθχ tð Þ ¼ QðtÞ ;
θχð0Þ ¼ θ0 ;

where, K : Z→Z0 and Q : 0;T½ �→Z0 are defined as

ðKτ;wÞZ0 3Z ¼
Xd

i;j¼1

Z
Ω
kij
vτ
vxj

vw

vxi
dxþ

Z
Γ3
τ:wda; (4.36)

ðQ;wÞZ0 3Z ¼ ðχðtÞ þ qthðtÞ;wÞZ0 3Z; (4.37)

It follows from the definition of the operator K, and (3.15) the assumption (3.25(b)) that
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Kτ� Kwk kZ0 ≤LK τ�wk kZ ; ∀τ;w∈Z; (4.38)

which shows that K : Z→Z0 is continuous and so is hemicontinuous

Now, by (4.36) and (3.25(c)), we find

ðKτ� Kw; τ�wÞZ0 3Z ≥mK τ−wk k2Z ; ∀τ;w∈Z; (4.39)

Which shows that is K a strongly monotone operator. Choosing w ¼ 0Z in (4.39), we obtain

ðKτ; τÞZ0 3Z ≥ mK τk k2Z� K0Zk kZ0 τk kZ
≥

1

2
mK τk k2Z�

1

2mK
K0Zk kZ0 ; ∀τ∈Z ;

Thus, K satisfies condition (3.16) with ω ¼ mK
2
and ζ ¼ − 1

2mK
K0Zk kZ0.

Next, by (4.38) we deduce that

Kτk kZ0 ≤LK τk kZ þ K0Zk kZ0 ; ∀τ∈Z:

This inequality implies that K satisfies condition (3.17).

Moreover, for χðtÞ∈L2ð0;T;Z0Þ and qthðtÞ∈L2 0;T;L2 Ωð Þ� �
which implies Q∈L2

0;T;Z0ð Þ and θ0 ∈L2 Ωð Þ.
It follows now from Theorem 3.2 that there exists a unique function θχ ∈L2

ð0;T;ZÞ \ Cð0;T;L2ðΩÞÞ, which satisfies the Problem PVχ.
Now, to provide the estimate (4.35), we take the substitution χ5 χ1 and χ5 χ2 in (4.12) and

subtracting the two obtained equations, we deduce by choosing w ¼ θ1 tð Þ− θ2 tð Þ as test
function.


_θ1ðtÞ � _θ2ðtÞ; θ1 tð Þ � θ2 tð Þ
�

Z0 3Z
þ ðKθ1 tð Þ � Kθ2 tð Þ; θ1 tð Þ � θ2 tð ÞÞZ0 3Z

¼ ðχ1ðtÞ � χ2ðtÞ; θ1 tð Þ � θ2 tð ÞÞZ0 3Z ;

Then integrating the last property over 0; tð Þ, using (3.15),(4.38) and (4.39), we deduce
(4.35). ,

For the last Problem PVwwe have the following result.

Lemma 4.5. Under the hypotheses (3.18)–(3.32), for every η∈ Cð0;T;VÞ, Problem PVw has

a unique weak solution wη;Dη

� �
such that

wη ∈ Cð0;T;W Þ; Dη ∈ Cð0;T;WÞ; (4.40)

Moreover, if wi;Dif g are the solutions of problem PVηi, corresponding η ¼ ηi ∈ Cð0;T;VÞ for
i 5 1, 2, then

w1ðtÞ � w2ðtÞk kW ≤C u1ðtÞ � u2ðtÞk kV
� �

; (4.41)

Proof [of Lemma (4.5)]. First, for the functional G2 : W 3W →R defined in (3.43):
Let w1, w2 ∈ W, we find that

kG2 w1;fð Þ � G2 w2;fð ÞkL2ðΓ3Þ ¼
Z
Γ3
H w1ð Þfda�

Z
Γ3
H w2ð Þfda;

We use the definition on the functional H given in (1.5) to obtain
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kG2 w1;fð Þ � G2 w2;fð ÞkL2ðΓ3Þ ¼
Z
Γ3

w1 � w0ð Þfda�
Z
Γ3

w2 � w0ð Þfda;
which implies

kG2 w1;fð Þ � G2 w2;fð ÞkL2ðΓ3Þ ¼ kw1 � w2k2L2ðΓ3Þ
Using the inequality (3.8), we get

kG2 w1;fð Þ � G2 w2;fð ÞkL2ðΓ3Þ≤C1kw1 � w2k2W (4.42)

We use Riesz representation theorem to define the operator F: W → W by

Fw;fð ÞW ¼ B∇wðtÞ;∇fð ÞH � �Eε�uηðtÞ
�
;∇f

�
W
þ G2 w;fð Þ; ∀w;f∈W ; (4.43)

Let w1, w2 ∈ W. Using the assumption (3.23) and (3.27), we find that

Fw1 � Fw2;f1 � f2ð ÞW ≥ mB þmHð Þkw1 � w2k2W ; ∀w;f∈W : (4.44)

On the other hand, using the assumptions (3.20), (3.23) and the inequality (4.42), we have

Fw1 � Fw2;fð ÞW ≤ CE þ C1ð Þkw1 � w2k2WkfkW ; ∀w;f∈W ;

where CE and C1 are a positives constants. Thus,

kFw1 � Fw2kW ≤ CE þ C1ð Þkw1 � w2kW : (4.45)

Thus, by (4.44) and (4.45) we conclude that F tð Þ is a strongly monotone and Lipschitz
continuous operator on W and, therefore, there exists a unique element wη ∈ W such that

FðtÞwηðtÞ ¼ qe þ Pθ; ∀wη ∈W : (4.46)

Let η1; η2 ∈ Cð0;T;V Þ. Using the last equality, we get

kFw1 � Fw2kW ≤ kqe1 � qe2kW þ LPkθ1 � θ2kZ
Moreover, we use the assumption (3.30), to obtain

kFw1 � Fw2kW ≤ kqe1 � qe2kW þ LPLθkw1 � w2kW ;

We conclude that wη tð Þ is a solution of PVw. It follows from (3.20), (3.23) and (4.15) that

mB þmHð Þkw1 � w2k2W ≤CE u1ðtÞ � u2ðtÞk kVkw1 � w2kW
þkqe1 � qe2kWkw1 � w2kW
þ
Z
Γ3
j w1 � w0ð Þ � w2 � w0ð Þj:jw1 � w2jda

þLPkθ1 � θ2kZkw1 � w2kW ;

Using (3.2) and (3.30), we get

mB þmHð Þkw1 � w2k2W ≤ CE u1ðtÞ � u2ðtÞk kVkw1 � w2kW þ C1kw1 � w2k2W
þkqe1 � qe2kWkw1 � w2kW þ LPLθkw1 � w2k2Z ;
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which implies

kw1 � w2kW ≤C u1ðtÞ � u2ðtÞk kV þ qe1ðtÞ � qe2ðtÞk kW
� �

; (4.47)

Then, for every uη ∈ C1ð0;T;V Þ, the previous inequality and the regularity of qe imply
that wη ∈ C 0;T;Wð Þ.

We now use (3.41) and definition of the divergence operator div to see that

divDη;f
� �

H
¼ qe;fð ÞH ; ∀f∈H 1ðΩÞ; (4.48)

This shows that Dη ∈ Cð0;T;WÞ.
Let η1; η2 ∈ Cð0;T;VÞ and let ui ∈ C1ð0;T;VÞ, for i 5 1, 2, We use (4.15) and arguments

similar to those used in the proof of (4.47) to obtain (4.41) ,
Finally, as a consequence of these results and using the properties of the operators E,M

and the function ψ for t ∈ 0;T½ �, we consider the element

Λðη; χÞðtÞ ¼ ðΛ1ðη; χÞðtÞ;Λ2ðη; χÞðtÞÞ∈V 3L2ðZ0Þ; (4.49)

defined by

Λ1ðη; χÞðtÞ ¼ E*∇wηðtÞ �Mθχ ; ∀t ∈ 0;T½ �; (4.50)

Λ2ðη; χÞðtÞ ¼ G1 θ;wð Þ þ ψðMθðtÞ;uðtÞÞ; ∀t ∈ 0;T½ �; (4.51)

We have the following result.

Lemma 4.6. Let (4.1) be satisfied. Then for ðη; χÞ∈ Cð0;T;V 3L2ðZ0ÞÞ, the function

Λðη; χÞ : 0;T½ �→V 3L2ðZ0Þ is continuous, and there is a unique element ðη*; χ*Þ∈Cð0;T;

V 3 L2ðZ0ÞÞ. Such that Λ(η*, χ*) 5 (η*, χ*)

Proof [of Lemma 4.6]. Let ðη; χÞ∈ Cð0;T;V 3L2ðZ0ÞÞ, and t1; t2 ∈ 0;T½ �. Using the
assumptions (3.19)–(3.22) and (3.24), we have

kΛðη1; χ1ÞðtÞ � Λðη2; χ2ÞðtÞkV 3 L2ðZ0Þ
≤CEkw1ðtÞ � w2ðtÞkW þ LM þ LMLψ

� �kθ1 � θ2kL2ðΩÞ
þ Lψku1ðtÞ � u2ðtÞkV þ kG1 θ1;w1ð Þ � G1 θ2;w2ð ÞkL2ðΓ3ÞÞ

(4.52)

The last inequality and (4.18), implies

kΛðη1; χ1ÞðtÞ � Λðη2; χ2ÞðtÞkV 3L2ðZ0Þ
≤CEkw1ðtÞ � w2ðtÞkW þ LM þ LMLψ þ CG1

� �kθ1 � θ2kL2ðΩÞ
þ Lψku1ðtÞ � u2ðtÞkV

Using H€older’s inequality, we get

kΛðη1; χ1ÞðtÞ � Λðη2; χ2ÞðtÞk2V 3L2ðZ0Þ
≤C kw1ðtÞ � w2ðtÞk2W þ kθ1 � θ2k2L2ðΩÞ þ u1 tð Þ−u2 tð Þk k2V

� 	 (4.53)

For the electric potential field, we use (4.33) and (4.41), we obtain

kw1ðtÞ � w2ðtÞk2W ≤C

Z T

0

kη1ðsÞ � η2ðsÞk2Vds (4.54)

For the displacement, we use (4.23) to get
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u1 tð Þ−u2 tð Þk k2V ≤C

Z T

0

kη1ðsÞ � η2ðsÞk2Vds; (4.55)

Moreover, using the inequality (4.35) obtained in Lemma 4.4 for the temperature.
Applying Young’s, H€older’s inequalities, the increases (4.35), (4.54) and (4.55), then the

inequality (4.53) becomes

kΛðη1; χ1ÞðtÞ �Λðη2; χ2ÞðtÞk2V 3L2ðZ0Þ

≤C

Z T

0

kðη1; χ1ÞðsÞ � ðη2; χ2ÞðsÞk2V 3L2ðZ0Þds;
(4.56)

Thus, for m sufficiently large, Λm is a contraction on Cð0;T;V 3L2ðZ0ÞÞ, and so Λ has a
unique fixed point in this Banach space. ,

Now, we have all the ingredients to prove Theorem 4.1.
Proof [of Theorem (4.1)]. Existence

Let ðη*; χ*Þ∈ Cð0;T;V 3L2ðZ0ÞÞ be the fixed point of Λ defined by (4.49)–(4.51) and
denote

u* ¼ u
η*
; θ* ¼ θ

χ*
;w

*
¼ w

η*
;

σ* ¼ A
�
ε
�
_u*

		
þ Bε

�
u*

	
þ E*∇w

*
�Mθ*;

D* ¼ Eε
�
u*

	
� B∇w

*
� Pθ* :

Let fu*; σ*g; θ* and w*;D*

n o
be the solutions of the problems PV

η*
;PV

χ*
and PV

w*
respectively, obtained in Lemmas 4.3, 4.4 and 4.5. The equalities Λ1(η*, χ*) 5 η* and Λ2(η*,
χ*)5 χ* combined with 4.49–4.51 show that 3.33–3.38 are satisfied. Next, the regularity 4.2–4.6
follows from Lemmas 4.3, 4.4 and 4.5. ,

Uniqueness
Proof. The uniqueness part of solution is a consequence of the uniqueness of the fixed

point of the operator Λ defined by (4.49)–(4.51) and the unique solvability of the problems
PVη, PVχ and PVw which completes the proof. ,
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