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Abstract

Purpose — The paper presents a mathematical problem involving quasistatic contact between a thermo-
electro-viscoelastic body and a lubricated foundation, where the contact is described using a version of
Coulomb’s law of friction that includes normal damped response conditions and heat exchange with a
conductive foundation. The constitutive law for the material is thermo-electro-viscoelastic. The problem is
formulated as a system that includes a parabolic equation of the first kind for the temperature, an evolutionary
elliptic quasivariational inequality for the displacement and a variational elliptic equality for the electric stress.
The author establishes the existence of a unique weak solution to the problem by utilizing classical results for
evolutionary quasivariational elliptic inequalities, parabolic differential equations and fixed point arguments.
Design/methodology/approach — The author establishes a variational formulation for the model and
proves the existence of a unique weak solution to the problem using classical results for evolutionary
quasivariational elliptic inequalities, parabolic difierential equations and fixed point arguments.

Findings — The author proves the existence of a unique weak solution to the problem using classical results for
evolutionary quasivariational elliptic inequalities, parabolic difierential equations and fixed point arguments.
Originality/value — The author studies a mathematical problem between a thermo-electro-viscoelastic body
and a lubricated foundation using a version of Coulomb’s law of friction including the normal damped response
conditions and the heat exchange with a conductive foundation, which is original and requires a good
understanding of modeling and mathematical tools.
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The author would like to thank the reviewers for the important comments. This article presents an
extension of sources [2, 11]. The article is based on the work of the abovementioned sources by
extending the mathematical model to a multiphysical thermoelectromechanical law with three
elements, introducing complex boundary conditions of different physical types and models.

For the mathematical model, the existence of a unique weak solution to the problem is
demonstrated using results on quasivariational elliptical inequalities, parabolic differential
equations and fixed point arguments.

These contributions represent an important step forward in the field of boundary problems in
contact mechanics.

Frictional
contact
problem

Received 1 August 2021
Revised 18 November 2021
15 February 2022

6 June 2022

17 July 2022

20 October 2022

Accepted 8 January 2023

C

Arab Journal of Mathematical
Sciences

Emerald Publishing Limited
eISSN: 2588-9214

p-ISSN: 1319-5166

DOI 10.1108/AJMS-08-2021-0174


http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/AJMS-08-2021-0174

AJMS

1. Introduction

Contact phenomena between deformable bodies or between a deformable body and a
foundation are ubiquitous phenomena in everyday life. The contact of a wheel with the ground,
the contact of the brake shoe with the wheel or the gradual sinking in a wheelchair during a
seated posture, are just a few everyday examples, among many others. Some industrial
processes such as metal stamping and metal extrusion lead to evolution problems where contact
and friction conditions are decisive. These phenomena call upon sophisticated mathematical
models, which are represented by systems of partial differential equations with boundary
conditions describing complex contact processes (with or without friction). The mathematical
theory of contact problems allows rigorous modeling of contact phenomena based on the
principles of continuum mechanics as well as on variational analysis and numerical models.

Important developments concerning the mathematical study, numerical mechanics of the
problems resulting from the mechanics of the contact were carried out during XX century.
The first contact problem between a deformable body and a foundation was stated by
Signorini and first solved by Fichera. Duvaut and Lions were the first to work on the
mathematical theory of contact mechanics; They introduced variational formulations of
contact problems and provided existence and uniqueness results. Subsequently, several new
works have focused on the resolution of these variational problems such as the work of Refs
[1-6]. However, mathematical theory of contact problems is a very broad field of study where
many issues remain to be investigated.

The importance of the mathematical study of such problems leads to give coupled
conditions for the material and the contact conditions.

Recent researches use coupled laws of behavior between mechanical and electric effects or
between mechanical and thermal effects. For the case of coupled laws of behavior between
mechanical and electric effects, numerous papers use different electro-mechanical conditions such
as[2,5,7,8]. For the case of coupled laws of behavior between mechanical and thermal effects, we
can found several models in Refs[4, 6, 7, 9-12]. For this, the new researches use coupled conditions
between the mechanical, electrical and thermal behavior of the material see [13-15].

The pyroelectric effect is characterized by a coupling between the electrical and thermal effects
and does not produce mechanical effects. The pyroelectric effect used for fire alarm, pyroelectric
detectors and sensors. Some pyroelectric applications can be found in Refs [9, 16, 17].

The piezoelectric effect is a coupling between the mechanical and electrical properties of
the materials and does not produce heat effects. This coupling, leads to the appearance of
electric field in the presence of a mechanical stress and conversely. A mechanical stress is
generated when electric potential is applied. The first effect is used in sensors and the reverse
effect is used in actuators. During the past few years, a lot of attention has been focused on the
piezoelectric effects, such as [8, 18, 19].

Recent modeling, analysis and numerical simulations of electro-mechanical, thermo-
mechanical and thermo-electro-mechanical contact problems with friction can be found in
Refs [2, 4, 5, 7, 10, 11, 14]. General models of energy can be found in Refs [1]. a generalized
Coulomb friction version is given in Refs [3, 20]. Indeed, the authors used the normal damped
response conditions for a lubricated foundation; see, for instance [21, 22].

Nowadays, there are increasing efforts to investigate coupled-field problems. In this
respect, electro-thermo-mechanical coupling is one particular application, which occurs, for
example, in Car fan or Computer fan. In this paper we use mixed conditions between electrical,
thermal and mechanical conditions. The law of behavior used is given by

6(t) = A(e(a(t))) + Ge(u(t)) + EVe(t) — MO(t), 1.1)
D(t) = €e(u(t)) + BE(o(t)) + PO(1), 1.2)



This law is thermo-electro-viscoelastic Kelvin-Voigt model where A, G are nonlinear
operators describing the purely viscous and the elastic properties of the material, respectively
and Elp) = —Vo, &= (ejz), M, B, P are respectively electric field, piezoelectric,
thermal expansion, electric permittivity, pyroelectric tensors, and £* is the transpose of &.
Note also that when £ =0 and D = 0, (1.1)~(1.2) becomes the Kelvin-Voigt thermo-
viscoelastic constitutive relation used in [10]. Moreover, when M =0 and P = (0, the
relations (1.1)—(1.2) becomes the Kelvin-Voigt electro-viscoelastic.

The evolution of the temperature field obtained from the conservation of energy and
defined with the following differential equation

0(t) — divk(VO(1)) = y(M6(t), u(t)) + qu, 13

where 0 is the temperature, IC denotes the thermal conductivity tensor, M the thermal
expansion tensor, gy, is the density of volume heat sources and y is a nonlinear function,
assumed here depends on thermal expansion tensor and the displacement field.

Processes of contact are present in numerous domestic and industrial applications which
may change from body to body depending on the constitutive law of the body studied. In this
paper we use mechanical, thermal and electrical contact conditions.

For the mechanical contact conditions, the Coulomb friction is one of the most useful
friction laws and known from the literature. This law has two basic ingredients namely the
concept of friction threshold and its dependence on the normal stress. We use normal damped
response conditions associated with the Coulomb’s law of dry friction given by:

oy = _pu(ﬁv(t))v ||Gr|| < pf(ﬁu(f)),

¥ 14
H%w 01 0, "

6, = _pr(uv(t))

This condition models frictional contact between the body and lubricated foundation where
b, and p, represent given contact functions, 1, and 1, denote the normal and tangential
velocity field respectively.

On the other hand in the study of this problem, we make the assumption that the
foundation is thermo-electrical conductive, the electrical conductivity assumed depends on
the linear function H defined as:

H(e(1)) = ¢(t) — ¢y 1.5

Here, we assume that the electrical conductivity H depends only on the electric potential ¢
and the initial electric potential ¢

Moreover, for the thermal conductivity we use the following conditions on the contact
surface

—kif in; = k,(0(t) — OF) 1.6)

where %, is the heat exchange coefficient between the body and the obstacle, 8y is the
temperature of the foundation.

The paper is organized as follows. In Section 2 we present the model. In Section 3 we
introduce the notations, some preliminaries results, list of the assumptions on the data and we
give the variational formulation of the problem. In Section 4 we state our main existence and
uniqueness result theorem 4.1. The proof of the theorem is based on evolutionary elliptic
variational inequalities, ordinary differential equations and fixed point arguments.
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2. The model

The physical setting is the following. A thermo-electro-viscoelastic body occupies a bounded
domain Q c R? (d = 2, 3) with outer Lipschitz surface I'. This boundary is divided into three
open disjoint parts I'y, I'; and I'3, on one hand and a partition of I'; U I's into two open parts I,
and I';, on the other hand. We assume that meas([";) > 0 and meas(T",) > 0.Let 7> 0and [0, T
be the time interval of interest. The body is subjected to the action of body forces of density fo,
volume electric charges of density go and a heat source of constant strength ¢, The body is
clamped onT'; X (0, T'), so the displacement field vanishes there. A surface traction of density
foacton', X (0, T'). We also assume that the electrical potential vanishes on I, X (0, 7°) and
a surface electric charge of density g, is prescribed on I', X (0, T°). Moreover, we suppose that
the temperature vanishes on (I’ UT2) X (0, T°). Moreover, we suppose that the body forces
and tractions vary slowly in time, and therefore, the accelerations in the system may be
neglected. Neglecting the inertial terms in the equation of motion leads to a quasistatic
approach to the process.

In the reference configuration, the body is in contact with a foundation, over the contact
surface I's. The model of the contact is frictional specified by the normal damped response
conditions and it is associated with the Coulomb’s law of dry friction for the mechanical
contact, an associated temperature boundary condition for the thermal contact and electrical
conditions modeling electric potential exchange between the body and the conductive
foundation.

The classical formulation of the mechanical problem is as follows.

Problem P. Find the displacement field u:Q X [0, 7] - R’ the stress field
6: QX [0, T] - S the electric potential ¢ : Q X [0, T] — R, the electric displacement field
D: QX [0, 7] —» R’ and the temperature 6 : Q X [0, 7] = R such that

6(t) = Ae(u(t))) + Ge(u(t)) + E'Vo(t) — MO(t),inQ X (0, T), 21)
D(t) = Ee(u(t)) — BV(e(t)) + PO(t), inQX(0,7T), (22)
0(t) — divkK(VO(t)) = w(MO(t),u(t)) + gy, QX (0,T), 2.3
Dive +f,=0 nQx(0,T), ©2.4)
divD=¢q, mQx(0,7), (2.5)
u=0 onl; X (0,7), 2.6)
ov=1, onlyX(0,7), 2.7

o, = =p,(W(t)), ||oc]| <p:(,(2)),
o= () w0, 0T 9
—ki0 m; = k,(0(t) — Or) onT3 X (0,T), 29
Dwv=H(e(t)) onT3x(0,7), (2.10)
0 =0 on(lhuly) x(0,T), (2.11)
=0 onl, X (0,7), 212
D-v=¢q, onl,X(0,7T), 2.13)

u(0) =uy, 6(0)=6, nQ. (2.14)



we now describe problem (2.1)—(2.14) and provide explanation of the equations and the
boundary conditions.

Equations (2.1) and (2.2) represent the thermo-electro-viscoelastic constitutive law, the
evolution of the temperature field is governed by differential equation given by the relation
(2.3) where y is the mechanical source of the temperature growth, assumed to be rather
general function of the strains. Next equations (2.4) and (2.5) are the steady equations for the
stress and electric-displacement field, conditions (2.6) and (2.7) are the displacement and
traction boundary conditions. Equation (2.11) means that the temperature vanishes on
(T UT?). Next, (2.12) and (2.13) represent the electric boundary conditions for the electrical
potential on I', and the electric charges on I'; respectively. Equation (2.14) represents the
initial displacement field and the initial temperature field where the initial displacement is uy,
and 6, is the initial temperature.

We turn to the contact conditions (2.8)—(2.10) describe a mixed contact on the potential
contact surface I's. The relation (2.8) describes a normal damped response conditions with the
Coulomb’s law of dry friction (2.9) represents an associated temperature boundary condition
on contact surface. Finally, (2.10) shows models the electric conductivity.

3. Variational formulation
In order to obtain the variational formulation of the Problem P, we use the following notations
and preliminaries

3.1 Notations and preliminaries

We present the notation we recall some preliminary material. For more details, we refer the
reader to [23-26]. In what follows the indices 7 and j run from 1 to d, the summation
convention over repeated indices is used and the index that follows a comma indicates a
partial derivative with respect to the corresponding component of the independent
variable. We denote by S¢ the space of second order symmetric tensors on R? (d = 2, 3). We
recall that the canonical inner products and the corresponding norms on R? and S¢,
respectively are given by

wv = u.;, HVH = /v.v forallu,ve R’
61 = 0,7, |t =zt foralle,7e S".

Let © c R be a bounded domain with outer Lipschitz boundary I' and let v denote the unit
outer normal on dQ = I'. We introduce the spaces
H=LQ)" = {v=():vel’>(Q)},
H={r= (1) 1y =1 €L*(Q)},
H'(Q)' = {v=(n)€H : e(v) e H},
H, ={teH :DivteH},

Here ¢ : H'(Q)* - H and Div: H, — H are the linearized deformation and divergence
operators, respectively, defined by

ev) = (i(v)),  4(v) = 5t +uys), Dive = (1)

The spaces H, H, H\(Q)? and H, are real Hilbert spaces endowed with the canonical inner
products given by:
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(uv V)H =

(U, V) ©
(6,7)y,

P

up.vidx, (6,7); = / 0;T;d%,

= (u, V)H + (8(11), g?v))H’
(6,7)y, + (D 6,Div ), .

and with the associated norms are denoted by || ||g, [|-[|35 [l | ()7 @nd [| - ||, respectively.
We introduce the closed subspaces of H(Q) and H'(Q)? defined by

Vo= {veHl(Q)d:v:OonFI},

a— {qseHl(Q)dzdb:Oonra},

W = {D=(D):D;el*Q),dvDel’(Q)},
Z = {weHl(Q):w:Oa.eonrlurg},

Since measT", > 0 and measI'; > 0, the Korn’s and Friedrichs-Poincaré inequalities hold, thus,

1€l 2 CollVll 1 gyts WWEV, (GAY
VOl 2 Cullfll ), VOEW, 32)
VWl 2 Col Wl ), YWEZ, 33)

where here and below C, C; and G, are positive constants that depend on the problem data
and are independent of the solutions.
On the spaces V, W and Z, we define the following inner products

(u,v), = (e(u), &(v)),, Yu,veV, (3.4)
(‘P> ¢)W = (V(Pa V¢)Wa V¢7 ¢ € Wa (35)
(w,z), = (Vw,Vz),, Vw,z€ Z, 3.6)
where
Q
(D,E),, — / D.Edx + / divD.divEds.

It follows from (3.1) and (3.4) that ||.|| ;1 @ and ||.|| yare equivalent norms on V; (3.2) and (3.5)
follows that ||.|| ;1 g and ||.|| ware equivalent norms on W and from (3.3) and (3.6) we deduce
that ||. || © and ||.|| ; are equivalent norms on Z. Therefore, the spaces (V, (+,)v), (W, (-, )w)
and (Z,(-,-),) are real Hilbert spaces. Moreover, by the Sobolev trace theorem and the
equalities (3.4)—(3.6), there exists Cy, C; and Gy, three positive constants, such that

1]l 200 < Collvll . WV E V., 37

||¢|L2(I“3)Scl||¢”W7V¢EW7 3.8)
lzll2r,) < Collz]| 2, VZE Z. 39)




d

Let Hr = (HY*(T')) and y : H'(I')? - Hy be the trace map. For every element v e H(Q)”,
we also use the notation v to denote the trace map yv of v on I', and we denote by v, and v, the
normal and tangential components of v on I" given by

V,=VV, V,=V-—0U,L. (3.10)

Similarly, for a regular (say C') tensor field 6 : @ — S? we define its normal and tangential
components by

6, = (ov)v, Vv,=o0V—oy, (3.11)

and for all 6 € H;, 8 € H(©Q)? and D € W the following three Green’s formulas holds:

(6, (V) + (Divs, v),, = / svvda WweH Q) (3.12)
(0, VW), + (div®, W) 2, = /Qy.wda vweH'(Q), (3.13)
(D, V), + (divD, )20, = / Dvgda VoeH (Q), (3.14)

where
divd = (0;;), divD = (D;;),

We recall the following definition of an Gelfand triple.

Definition 3.1. Let V and H be real Hilbert spaces such that V' is dense in H and the
injection map is continuous. The space H is identified with its own dual and with a subspace
of the dual V' of V. We write

VcHcV.

and we say that the inclusions above define a Gelfand triple. We denote by ||- |, || - || ;» and
|| |l the norms on the spaces V, Hand V' respectively, and we use ( -, ), 1 for the duality
pairing between V” and V. Note that if f € H then

(foV)yriy = (f,V)y, VVveH. 3.15)

and we recall the following Theorem

Theorem 3.2. Let V. ¢ H C V' be a Gelfand triple. Assume that A: V - V' is a
hemicontinuous and monotone operator that satisfies

(AV, V) y 2 0||V|5+¢ , ¥ve V (3.16)

|Av|[5 <C(Iv]ly +1),¥veV 3.17)
For some constants 0 >0,C>0and ¢ € R Then, givenuy € Handf € L*(0, T; V'), there exists
a unique function u ELZ(O, T; V) NC(0, T; H) satisfies

uel*0,T;V)NCO, T;H),aeL*0,T; V'),
u(t) + Au(t) = f(H)aete(0,7T),
u(0) = uy

Frictional
contact
problem




AJMS

The proof of this abstract result may be found in [3, p. 141], and will be used in the study of
thermal problem presented in Section 5.

Finally, for any real Hilbert space X, we use the classical notation for the spaces Z2(0, T X)
and W*(0, T: X), where 1 < p < oo and & > 1. For 7' > 0 we denote by C(0, 7;X) and
C'(0, T; X) the space of continuous and continuously differentiable functions from[0, 7]to X,
respectively, with the norms

I£llcio.rx) = trél[gi% 1£(D]lx

I8l ) = mae 1)+ mas [0

Moreover, we use the dot above to indicate the derivative with respect to the time variable and
if X; and X are real Hilbert spaces then X; X X5 denotes the product Hilbert space endowed
with the canonical inner product (-, )x, x x,-

3.2 Assumptions on the data
We now list the assumptions on the problem’s data.

The viscosity operator A : Q X S? — S? satisfies

(a) Thereexists L 4 > Osuch that
| A(x, e1) — A(X, )| <Laller — & foralle;, e, €S, a.exeQ.

(b) There exists m 4 > 0such that
(A(x,€1) — A(X, £2))- (1 — £2) Zmaller — &2]° 318
foralle;, e € Sd, a.eXEQ.

(c) The mapping x — A(X, &) is Lebesgue measurable on Q, for any e € S.

(d) The mapping x — A(x, 0) belongs to H.
The elasticity operator G : Q X S — S satisfies

(a) There exists Lg > 0such that

1G(x,e1) — G(x, ). <Lg|ley — & foralle;, e, € S%, a.ex€Q.

(3.19)
(b) The mapping x — G(x, ¢) is Lebesgue measurable on Q, forany e € S¢ .
(c) The mapping x — G(x, 0) belongs to H.
The piezoelectric operator £ : Q X S? — RY satisfies
a)E(x,7) = (eatin), VT = (1;3) €SY, a.e. xin Q.
(@E(.7) = (ena). Yo = (52) 20)
(b)eifk = Cipy €L” (Q)a 1 Sl‘miv k<d.

The thermal expansion operator M : Q X R— R



(a) There exists a constant L, > 0such that

IM(x,6:) — M(X,0,)|| <Ln||61 — 65 forall 6,0, € R, a.e.x Q.

(c) The mapping x - M(x,0) € H
(d) mi = my; elL® (Q)

The nonlinear constitutive function w : Q X R X V — R satisfies

(a) There exists a constant L,, > 0 such that
[y (x, MOy, 1) — (X, MOy, 1p) || <Ly (|| M6 — M6y| + [[w — e
forall9;,0, € R, forallu;,uy € V,a.e.xeQ.

(b) The mapping x — y(x, M8, u) is Lebesgue measurable on Q for any € R,

foranyue V.
(c) The mapping x — y(x, 0,0) € L*(Q).
The electric permittivity operator B = (B;) : Q X R? — R? satisfies
(a) B(x,E) = (B;(x)E)) forallE = (E;) eR’,a.exeQ.
(b)B; = B; €L*(Q),1<i,j<d.
(c) There exists a constant 7 > Osuch that BE.E > mg|E|*
forallE = (E;) € R, a.e.inQ.
The pyroelectric operator P : Q X R? - R?
(a) There exists a constant Lp > 0such that
|P(x,61) — P(x,6,)|| <Lp||6y — 62| foralldy,0, € R, a.exeQ.
(b) The mapping x - P(x, 0) belongs to W.
The thermal conductivity operator K : Q X R - R?
(a) There existsa constant L > Osuch that
IKC(x,71) — K(x,7)|| < Li||r1 — 72| forallry, v, € R, a.e.x €Q.
(b) by = ki eL™(Q),1<i,j<d.
(c) The mapping x — S(x, 0, 0) belongs to L* ().
The contact functions ps: T's X R— R, (s = v, 7) satisfy
(a) There exists L; > 0such that

16s(X, 1) — Do(X, @2) || < Ls||r1 — 72| forallyy, 7, € R, a.e.x €T5.

(b) The mapping X - p,(X, ¢) is Lebesgue measurable onI's, for any 7 € R.

(c) The mapping x — p,(x, 0) belongs to L? (T3).

The electrical conductivity function H : Q X R — R, satisfies

(b) The mapping x — M(X, ) is Lebesgue measurable on Q, for any 6 € R.

3.21)

(3.22)

(3.23)

3.24)

(3.25)

(3.26)
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(a) There exists my, > Osuch that

(H(x,¢,) — H(X, @) (@1 — ¢3) 2myll @) — @y
forall¢;, ¢, ER,a.e.x€Q. 3.27)
(b) The mapping x — H (X, ¢) is Lebesgue measurable on Q, for any ¢ € R.

(c) The mapping x — H (x, 0) belongs to L*(Q).

The density of volume forces, traction, volume electric charges, surface electric charges and
the temperature evolution increase satisfy

f,€C(0, T;H), f ec(o7 T;L2(F2)d>, (3.28)
70 €C(0, T;L*(Q)), ¢,€C(0, T;LA(T)), (3.29)
L, > 0,6 — 6l <Loller — @l foralli € Z, 0, € W, i=1,2.  (3.30)

The initial displacement, the potential of the foundation, the initial temperature and the
temperature of the foundation fields satisfy

weV, g, el* (), 6 €Z, OreL*(I), (3.31)
and the initial temperature field satisfies

an€L7(0,T; 2'). (3.32)

Using the above notation and Green’s formulas given by (3.12)—(3.14), we obtain the
variational formulation of the mechanical problem (2.1)—(2.14) for all functions ve V,w € Z,
¢ € Wand aet€(0,T) given as follows,

3.3 Problem Py

Find the displacement field u: [0, 7] — V, the stress field 6 : [0, T] — H;, the electric potential
¢:[0, TT— W, the electric displacement field D: [0, 7] - H and the temperature 8:[0, 7] - V
such that

o(t) = A(e(a(t))) + Ge(u(t)) + EVo(t) — MO(1), (3.33)

(6(1),&(v) —e(u(t)))y +7(a(t),v) —j(at),at)) > (£(¢), v —a(t)),, (3.34)
(0(), W) 71 z + (K(VO(t)), VW) = (G1(0, W) +w(MO(t), u(l)) + G, W)z 2, (3.35)
D(1) = Ee(u(1)) — BVe(t) + PO(1), (3.36)

(D), V) + (4.(1), D)y = Ga(e, 9), (337

u(0) =uy, 6(0)=6, inQ. (3.38)

wherej : VXV oRE:0,T]-V,q,:[0,T|>W,G: ZX Z->Rand Gy : WX W >R
are respectively, defined by



i) = [ ptwndat [ potw)lolde 839

(£(),v), = /Q (1) ~vdx + /r (1) v, (3.40)
@09 = [agas— [ a0san 341
Gr(0, W) = — /F (0w 0w (342)
Gol.9) = [ Hlo0)da 643

forallu,ve V,0,we Zand ¢ € Wand ¢ €[0, T]. We note that the definitions of f and ¢, are
based on the Riesz representation theorem. Moreover, conditions (3.28) and (3.29) imply that

£eC(0,T; V), ¢, €C(0, T; W). (3.44)

4. Existence and uniqueness of a solution
Now, we propose our existence and uniqueness result.

Theorem 4.1. Assume that (3.18)—(3.32) hold. Then there exists a constant oo which depends
only on Q, 'y, T's and A such that if

(Ly + L;) < a, 1)

where ay = ”E’—g‘ such that m 4 is defined in (3.18) and Cy defined by (3.7). Then there exists a
unique solution {u,c,0, ¢, D} to problem Py . Moreover, the solution satisfies

uec (0, T;V), “2)
6€C(0,T; H,), 43)
0eLl’(0,T;2)nC(0, T;L1(Q)), 4.4)
eeC(0,T; W), 4.5)
De (0, T; W), 4.6)

The proof of Theorem 4.1 is carried in several steps. It is based on results of evolutionary
variational inequalities, ordinary differential equations and fixed point arguments.
To prove the theorem we consider the following three auxiliary problems for given

neC(0,T;V), ye LZ(O, T; Z') we consider the following three auxiliary problems:

4.1 Problem PV,
Find a displacement field u,: [0, 7] — V and a stress field ¢, : [0, 7] = H such that

Gﬂ(t) = A(S(ﬁn(t))) + ge(uﬂ(t)) + n(f), @7
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(A(e(@, (1)), (v — (1)), + (Ge(uy (1)), €(v — 0, (1))),, +5 (0, (1), v) (4§

=70y (), ,(2)) (4.9)
2 (£(8), v — (1)), — (n(t), (v — 1, (1)), (4.10)
1,(0) =uy, inQ. 4.11)
forallu, ve Vandte(0,7),
4.2 Problem PV,
Find the temperature 6, : [0, 7] - Z which is solution of the variational problem
<9x(f)7 W) + (K(VO@), VW) 5z = () + (1), W) 2 25 (4.12)
Z'XZ
0,(0) =6,, inQ. 4.13)
forall9,,we Z,aete (O, 1),
4.3 Problem PV,
Find an electrical potential ¢: [0, 7] — W, D : [0, T] - W such that
D,(t) = Ee(u,(t)) — BVe(t) + PO, 4.14)

(BVo(t), Vo), — (Ee(uy(1)), V), — (PO,VY), + Gole,d) = (4,(t), §)y.  (4.15)

forall g, ¢ € W, te (0, 7).

We begin with an auxiliary result on the properties of the functionalsj : V' X ¥V — Rand
Gy : Z X Z - Rdefined by (3.39) and (3.42), respectively.

Lemma 4.2. Under the hypotheses (3.18)—(3.32), the functionals j and G, satisfy
7(u, .) is convex and lower semicontinuous on V, (4.16)
j(a1, v2) +j(uz, vi) —j(ur, vi) — j(uz, v2)

4.17)
<Co (Il ey + 1)l = Wl |1vs = Velly, forallug, v, vi, vo € V

1G1 (61, W) — G1(02, W) 12,y < Co, 161 (£) — 62(2)]| 5, for all 61, 65, we 2 4.18)

Proof (Lemima 4.2). We use the assumption (3.26) and inequality (3.7) to see that the functional
7 defined by (3.39) is a seminorm on V and moreover,

(s, v) —j(ue, v)| < CO(L, + Lo) [ — wly||v]ly

Thus, the seminorm j is continuous on V and, therefore, (4.16) hold.
From the definition of the functional j given by (3.39), we have



J(uy, vo) +j(ug, vi) —j(uy, vi) — j(uz, v)

J
= [ o)~ ()]~ e w9

T / (5, (11) — B, () ([[¥el| — |[Varl )l Yy 1y, v, v €V,
I3

Using (3.39), the last equality becomes
j(a1, v2) +j(uz, vi) — j(ar, vi) —j(uz, v2)

< | Lufury — | [[v2] — [v1,]|da
3 lo1, — w2, |[v2| — [0 | (4.20)

+ /LT|M1D — M2y||.|||V1T|| — ||V2,|||dd, fora11u17u27v1,V2 (S V,
I's

Next, we use the following inequalities
|11, — | < ||u; — wg ],
[|v2] = [ow|] £ o1 — V2| < |[V1 = V2|, 4.21)
Vel = Vel < f[vie = vael | < [[va = val|,
The inequality (4.20) becomes
J(ar, vo) +j(uz, vi) —j(w, vi) —j(uz, vz)

< / (L + Lo) [ — ] [[v, — v jda,

I3

which implies

J(uy, va) +j(ug, vi) —j(uy, vi) —j(uz, vo)
S (Lo + Lo)lfw — ol 2y [V = Vol 2, da,

Using (3.7) and (4.1), we conclude

J(uy, vo) +j(ug, vi) — j(ug, vi) — j(uz, vs)
< Coaollur — o |y..[[v1 — vy da.

Moreover, the functional Gy defined in (3.42) by
(0, w) = — / k(0. — Op.v)wda, forall 0, 0p, W Z,
I3

Thus by the assumption (3.32) and inequality (4.21), we get

G101, ) = Gr(O2 W)z Ikl ey |18) = 02Oy

From the inequality (3.8), we obtain
G1L(61, W) = G1(02, W) | 2,y <Cillkel| oy

01(t) — O=(1)| 5,

Thus, we can write
[G1(61, W) — G1(02, W) |2,y <Co,

where Cg, = Ci k|| 1, O
We have the following result for Problem PV,

01(t) — 05(1)|| 5, forall 01,0, € 2.
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Lemma 4.3. Under the hypotheses (3.18)~(3.32), for everyn € C(0, T'; V'), Problem PV, has a
unique weak solution {u,,6,}, such that

u,€C(0,T;V),6,€C(0, T; Hy). 4.22)

Moreover, if {w;, 6;} are the solutions of Problem PYV),, correspondingn = n; €C(0,T; V) for
i=1,2then

T
[[wi (£) —uz(l‘)llvﬁc/o ll1(s) = my(s)ll v ds (4.23)

Proof [of Lemma (4.3)]. Choosing v =11, (¢) = £ in (4.10), where feD(Q)d is arbitrary,
we find

(0,(t).€(®)),, = (£(1), @)y

Using the definition (3.40) for f, we deduce
Dive, () +1£,(t) =0, te (0, T), 4.24)

With the regularity assumption (3.28) on f,, we see that Dive,(f) € H. Therefore, 6, (¢) € H..
Now, we use Riesz Representation Theorem to define the operators A: V— V,B: V- V
and the function £, : [0, 7] - V by

(Au,v) = (Ae(u),&(v))y, (4.25)
(Bu,v) = (Ge(u),€(V))y, (4.26)
(£:(8),v) = (£®), )y = (1(8),€(V))y, (427)
forallu, ve Vandte|0, 7).
It follows from (4.25) and (3.18(«)) that
|[Au — Av||, <L4llu—v]|,, (4.28)

Which shows that A: V' — Vis Lipschitz continuous. Now, by (4.25) and (3.18(b)) we find
(Au—Av,u—V)VZWZAHu—VH?/,Vu,VE v, (4.29)

ie. that A: V' — Vis a strongly monotone operator on V. Moreover, using (4.26) and (3.19(z))
we find

||Bu—Bv|, <Lg|lu—v|,,VuveV. (4.30)

if (4.1) is satisfied, since A is a strongly monotone and Lipschitz continuous operator on V'
and B is Lipschitz continuous operator on V, j(u, .) satisfies conditions (4.16) and (4.17), uy
satisfies the assumption (3.31), and we note that for any fixed n € C(0, T; V) we use the
definitions 3.44 and (4.27) to show that f, € C(0, T'; V) we deduce from classical results for
evolutionary elliptic variational inequalities (see for example [27]) that there exists a unique
function u, € C'(0, T; V). Moreover, for w; = u,, solutions of the Problem PV,; for i = 1,
2, then

18 (£) — ()l < C(l[w (£) — vy + [Im (&) — m:(®)lly) (4.31)
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w(t) = [ a(syds-+w vee.7) problem

We have

s (t) — ws(t)]], <C / iy (5) — ()] s *32)

Recent modeling Using (4.31) the inequality (4.32) becomes

||u1<t>—uz<t>||vs0(/0t|u1< — (o)l + / Ins(s) = m,(9)] ds)

Next, we apply Gronwall’s inequality to deduce
o)~ w®l <€ [ (s) - sl 3

O
For the Problem PV, we have the following result.

Lemma4.4. Under the hypotheses (3.18)~(3.32), for every y € L* (0, T; Z), Problem PV, has
a unique weak solution such that

0,€L*(0,T;2)nC(0, T;L(Q)), (4.34)

Moreover, if 0; are the solutions of Problem PV, corresponding y = y;€C(0,T; Z') fori=1,
2, then , T ,

160001y <C [ (5122l s 435

Proof [of Lemma (4.4)) The inclusion mapping of (Z,|.||;) into (LZ(Q), II1I Lz(g)) is
continuous and its range is dense. We can write the Gelfand triple

ZclXQ) = (X)) cz.

The problem (4.12)—(4.13) may be written as

0,(t) +Ko,(1) = Q(1),
9){(0) = 60,
where, K : Z— Z'and @ : [0, T] - Z' are defined as
(K Z/k ot aWdH/T da .36
T,W) gy 5 = 2 i 3 s wda, .
(Q7 W)Z’XZ = (){(t) + qth(t)7w)z’><27 (437)

It follows from the definition of the operator K, and (3.15) the assumption (3.25(b)) that
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|Kt — Kw||, <Ly|lt — wl, Vi, we 2, 4.39)

which shows that K : Z — Z’is continuous and so is hemicontinuous
Now, by (4.36) and (3.25(c)), we find

(KT —KwW,T— W), , >m||t-w|% VT, we Z, (4.39)

Which shows that is K a strongly monotone operator. Choosing w = 0 in (4.39), we obtain

2
(BT,0)z 55 2 m||tlz= KOz 7]l ;

1, 1
= émK”T”Z_m”KOZHZ/ VTIEZ,

Thus, K satisfies condition (3.16) with @ = Z£and { = —ﬁHK 0z|| 5
Next, by (4.38) we deduce that

K7z <Lilltl|z + [|1KOz] 2, VT € Z.

This inequality implies that K satisfies condition (3.17).

Moreover, for y(t)€L*(0,T;2') and g, () €L?(0, T;L*(Q)) which implies Q€ L’
(0, T; 2')and 6, € L*(Q).

It follows now from Theorem 3.2 that there exists a unique function 6, €L’
(0, T; 2) N C(0, T; L*(2)), which satisfies the Problem PV,

Now, to provide the estimate (4.35), we take the substitution y = y; and y = y»in (4.12) and

subtracting the two obtained equations, we deduce by choosing w = 6;(¢) — 6-(¢) as test
function.

(em o000 - ezm) T (KOL(t) — KO(0),6:(t) — 0:(6) . »

4

= (1 () = 20, 0:(5) = 05(D) 3 5

Then integrating the last property over (0,¢), using (3.15),(4.38) and (4.39), we deduce
(4.35). O
For the last Problem PV, we have the following result.

Lemma 4.5. Under the hypotheses (3.18)-(3.32), for every n e C(0, T'; V'), Problem PV, has
a unique weak solution { ¢,, Dy} such that

¢, €C(0,T; W), D, €C(0, T; W), (4.40)

Moreover, if { @;, D;} are the solutions of problem PV, corresponding n = n; €C(0,T; V) for
1=1,2 then

le1(8) = @) ||y < C(llwa(2) — wa(D)]ly), (4.41)

Proof [of Lemima (4.5)]. First, for the functional G, : W X W — R defined in (3.43):
Let ¢1, o € W, we find that

1Goler, 8) — Golns )20y = / H(gy)pda — / H(gy)pda.

We use the definition on the functional A given in (1.5) to obtain



1G2(@1,9) — G, ¢)||L2(r3) = /F(G"l — @o)pda — /r (@2 — ¢o)¢da, Frgg;ﬁg?%

which implies problem
1G2(1,8) = Galz: D)l = ller = eallizgey
Using the inequality (3.8), we get
1G2(1,9) = Gal @, 120 < Ciller — @2l (442)
We use Riesz representation theorem to define the operator F* W — Wby
(Fo,9)y = (BVe(t), V), — (Ee(uy(t)), V), + Go(e, §), Vo, de W, (443)
Let ¢1, o2 € W. Using the assumption (3.23) and (3.27), we find that
(For = ez, ¢y = ba)y > (ms + mu) @1 — @iy, Ve, g€ W. (444)
On the other hand, using the assumptions (3.20), (3.23) and the inequality (4.42), we have
(Fer = Fy,0)y < (Ce + C1)llor = @allip Dy Voo, g €W,
where C¢ and C are a positives constants. Thus,
1F@r = Feolly < (Ce + C)ller — @l (445)

Thus, by (4.44) and (4.45) we conclude that F(¢) is a strongly monotone and Lipschitz
continuous operator on W and, therefore, there exists a unique element ¢, € W such that

Ft)e,(t) = q. + PO;Yo, e W. (4.46)

Let n,,1,€C(0, T; V). Using the last equality, we get
[Fer — Feolly < |40 — delly + Lel|01 — 62|
Moreover, we use the assumption (3.30), to obtain
1Fer — Folly <1 — deellw + LrLoll@r — @2llw,
We conclude that ¢, (¢) is a solution of PV,.. It follows from (3.20), (3.23) and (4.15) that
(mp + mur)ller — @alliy < Cellw(t) —w(®)llyller — @2l

Flga — gollwller — eallw

+/FS|(4>1 = 0) = (@2 — @)|-le1 — @olda

+Lp||0r — 02|z ller — @2l
Using (3.2) and (3.30), we get

2 2
(mp +mp)ller — @l < Cellm@) —w@)llyller — @llw + Ciller — @l
2
Hga — qellwller — @2l + LoLolley — @2ll%,
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which implies
e = @allyy <Cllm (@) = w(®)ly + 1194 (2) — dea(®)llw), (4.47)

Then, for every u, eCl(O, T; V), the previous inequality and the regularity of g, imply
that ¢, € C(0, T; W).
We now use (3.41) and definition of the divergence operator div to see that

(divD'ﬁ ¢)H = (qev ¢)H ) V¢ EHI (Q)a (44—8)

This shows that D, € C(0, T; W).
Let ,,7, €C(0, T; V) and let w; € C(0, T; V), for i = 1, 2, We use (4.15) and arguments
similar to those used in the proof of (4.47) to obtain (4.41) O
Finally, as a consequence of these results and using the properties of the operators &€, M
and the function y for ¢ € [0, 77, we consider the element

A1) = (M(,2)(8), Ae(m. ) (1) €V X L2 (Z)), (4.49)

defined by
A, x) (1) = EVe,(t) — MO, Vte |0, T], (4.50)
Ao(i, )(t) = G1(0, W) +w(MO(t),u(t)),vte [0, T], 4.51)

We have the following result.

Lemma 4.6. Let (41) be satisfied. Then for (5,y) €C(0, T;V X L*(Z")), the function
A(,y) : [0, T] = V X L*(2') is continuous, and there is a unique element (*, y*) € C(0, T;
V X L*(2")). Such that ¥, y*) = (7%, x*)

Proof [of Lemma 4.6]. Let (5,y)€C(0,T;V XL*(2"), and t,t;€0,T]. Using the
assumptions (3.19)—(3.22) and (3.24), we have

NGRS A(’]Za)(z)(t)HVXLZ(Z’)
<Celler(t) = @Dy + (Lvk + LauLy ) 61 — 02120 (4.52)
+ Ly |lwi (2) —w(d)|ly + [|Gi(01, w1) — Gi(02, W2) || 2 ry)

The last inequality and (4.18), implies

1A, 20)(8) — A(',IZa)(Z)(t)HVXLZ(Z’)

<Cellei(t) = @a(B)llw + (Lt + LaaLyy + Ce, ) 161 = O2ll 20
+ Lyllwm(f) —u (D)

Using Holder’s inequality, we get

IAGH,20)(8) = Al 22) D 122

<C(llgr(6) = @Oy + 110: = 2l ) + 1 ()—e(0)})
For the electric potential field, we use (4.33) and (4.41), we obtain

lea(t) = @0l <C [ n(s) = )l 45

For the displacement, we use (4.23) to get

4.53)



T
s ()= (1), < C/O l1(s) = m15(5) [, (4.55)

Moreover, using the inequality (4.35) obtained in Lemma 4.4 for the temperature.
Applying Young’s, Holder’s inequalities, the increases (4.35), (4.54) and (4.55), then the
inequality (4.53) becomes

IAGE ) (&) =N, x2) (¢ )Hvxb(z’)
) 4.56)
<C/ (m,0)( (Uz»ﬂfz)(s)HvxLz(z’)ds’

Thus, for m sufficiently large, A™ is a contraction on C(0, T; V X L*(Z")), and so A has a
unique fixed point in this Banach space. O

Now, we have all the ingredients to prove Theorem 4.1.

Proof [of Theorem (4.1)]. Existence

Let (1%, y*) €C(0, T; V X L*(Z")) be the fixed point of A defined by (4.49)~(4.51) and
denote

u*:u*,9*29*7%:§0*,

a*zA(( ))+Be( )-Q—E*ch* M.,
D*:gs(u*)—BVgo*—Pe*.

Let {ux,0x},6% and {qo*,D*} be the solutions of the problems PV,’*JDV* and PVx
X

@
respectively, obtained in Lemmas 4.3, 4.4 and 4.5. The equalities A;(7*, y*) = n* and A,
¥¥) = y* combined with 4.49-4.51 show that 3.33-3.38 are satisfied. Next, the regularity 4.2-4.6
follows from Lemmas 4.3, 4.4 and 4.5. O

Uniqueness

Proof. The uniqueness part of solution is a consequence of the uniqueness of the fixed
point of the operator A defined by (4.49)—(4.51) and the unique solvability of the problems
PV,, PV, and PV, which completes the proof. O
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