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Abstract

Purpose — The purpose of this current paper is to deal with the study of non-constant entire solutions of some
non-linear complex differential equations in connection to Briick conjecture, by using the theory of complex
differential equation. The results generalize the results due to Pramanik et al
Design/methodology/approach — 39B32, 30D35.

Findings — In the current paper, we mainly study the Briick conjecture and the various works that confirm this
conjecture. In our study we find that the conjecture can be generalized for differential monomials under some
additional conditions and it generalizes some works related to the conjecture. Also we can take the complex
number « in the conjecture to be a small function. More precisely, we obtain a result which can be restate in the
following way: Let / be a non-constant entire function such that o3 (f) < oo, 62(f) is not a positive integer and
5(0, ) > 0. Let M[f] be a differential monomial of f of degree y;; and a(z), f(z) € S(f) be such that
max{o(a), 6(f)} < o(f). If M[f] + p and f7v — a share the value 0 CM, then

M| +5__

frv —a ’

where ¢ #0is a constant.

Originality/value — This is an original work of the authors.

Keywords Entire function, Briick conjecture, Small function, Differential monomial
Paper type Research paper

1. Introduction and main results

In this paper, by meromorphic function we shall always mean a meromorphic function in the
complex plane. We adopt the standard notations in the Nevanlinna theory of meromorphic
functions as explained in [1-4]. It will be convenient to let £ denote any set of positive real
numbers of finite linear measure, not necessarily the same at each occurrence.

For any non-constant meromorphic function f(z), we denote by S(r, f) any quantity
satisfying S(r, f) = o(T(r, f)) as r—> oo, r&E, where T(r, f) is the Nevanlinna
characteristic function of /. A meromorphic function « is said to be small with respect to
f)iET(r, a) = S(r, f). We denote by S(f) the collection of all small functions with respect
to f. Clearly C U {oo} ¢ S(f) and S(f) is a field over the set of complex numbers.
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For any two non-constant meromorphic functions f and g, and a € S(f) N S(g), we say
that f and g share o IM(CM) provided that f—a and g—a have the same zeros
ignoring(counting) multiplicities.

For any complex number a, the quantity defined by

mir. 7 NG, 7
8(a, ) = lim inf——2% =1 — limsup——_-%
) = 7 7) TG )
is called the deficiency of a with respect to the function f(z).
We also need the following definitions:

Definition 1.1. Let f(2) be a non-constant entire function, then the order o(f) of f(z) is
defined by

. log T . loglog M
o(f) = limsup BLS) iy 108108 M, /)
roteo 1O ot log 7

and the lower order u(f) of f(z) is defined by
u(f) = limint 8L S) _ pipy g 10808 MG /)

r~+eo  logr r—-tco log r

The type z(f) of an entire function f(z) with 0 < 6(f) = 6 < +oo is defined by

7(f) = limsup log M(r, /) ]\ﬁr, f)7
r—+oo

where and in the sequel

M(r, f) = max|f(z)|.

lzl=r

Definition 1.2. Let f be a non-constant meromorphic function. Then the hyper-order
oo(f) of f(z) is defined as follows:

o loglog T'(, f)
oo(f) = 112 fgp S rra—

Definition 1.3. Let f be a non-constant meromorphic function. A differential monomial
of fis an expression of the form

MIf] = ao(@™ ()" ()" (7). 0

where g, 71, 2, . .., 1, are non-negative integers and ao(z) € S(f). The degree of the
differential monomial is given by y,; = ng + 711 + 12 + ... + 7.

Rubel and Yang [5] proved that if a non-constant entire function fand its derivative f’ share two
distinct finite complex numbers CM, then f = f'. What will be the relation between fand /7, if an
entire function f and its derivative f’ share one finite complex number CM? Briick [6] made a
conjecture that if f is a non-constant entire function satisfying o2(f) < oo, where o3 (f) is not a
positive integer and if fand f” share one finite complex number @ CM, then /' — a = ¢(f — a) for
some finite complex number ¢ # 0. Briick [6] himself proved the conjecture for ¢ = 0. Briick also
proved that the conjecture is true for @ # 0 provided that f satisfies the additional assumption
N(r, },) = S(r, f) and in this case the order restriction on f can be omitted. After that many
researchers [7-10] have proved the conjecture under different conditions.
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In 2017, Pramanik et al. [11] investigated on the non-constant entire solution of some non-
linear complex differential equations related to Briick conjecture and proved the following
theorems:

Theorem 1.1. Let f(z) and a(z) be two non-constant entire functions and satisfy
0 <o(a) =0(f) < +o0 and 7z(f) > 7(a). Also, let P(z) be a polynomial. If f is a
non-constant entire solution of the following differential equation

M[f] —a= (f™ — a)e"?,

then P(z) is a constant.

Theorem 1.2. Let f(z) and a(z) be two non-constant entire functions and satisfy
0 < o(a) =0(f) < +ooandz(f) > 7(a). Also, let P(2) be a polynomial. If fis a non-constant
entire solution of the following differential equation

MIf]+ B(2) — a(z) = (™ — a(z))e"™,
where f(2) is an entire function satisfying 0 < ¢(f) = o(f) < +o0 and z(f) > 7(f), then
P(z) is a constant.

Theorem 1.3. Let f(z) and a(z) be two non-constant entire functions satisfying
o(a) < u(f) and P(z) be a polynomial. If f is a non-constant entire solution of the
following differential equation

MIf]+p) — alz) = (" — a(2)e"?,
where $(2) is an entire function satisfying o(8) < u(f). Then o2(f) = deg P.
Regarding Theorems 1.1-1.3, one can ask the the following
(1) What will happen if P(z) is an entire function?
In this paper we answer the question by proving the following theorems:

Theorem 1.4. Let f(z) be a non-constant entire function such that 62(f) < oo, o2(f) is not
a positive integer and 5(0, /) > 0. Let M[f] be a differential monomial of f of degree y,, as
defined in (1), ¢(2) be an entire function and a(z) € S(f) be such that o(a) < o(f). If fis a
solution of the following differential equation

Mf] = alz) = (/"™ — a(z))e", @

then %5]::((5)) = ¢, where ¢#01is a constant.

Theorem 1.5. Let fbe a non-constant entire function such that oy(f) < oo, 62(f) is not a
positive integer and 5(0, f) > 0. Let M|[f] be a differential monomial of f of degree y;; as
defined in (1), ¢(z) be an entire function and a(z), A(z) € S(f) be such that 6(a) < o(f) and
o(f) < o(f). If fis a solution of the following differential equation

MIf]+5() = (™ — a(2))e’®, ®)

then }%&{j 8 = ¢, where ¢ #01is a constant.

2. Preparatory lemmas
In this section we state some lemmas needed to prove the theorems.

Lemma 2.1. [2]Let f(2) be a transcendental entire function, v(7, f) be the central index of
f(2). Then there exists a set £c (1, +o0) with finite logarithmic measure such that



r &[0, 1] U E, consider z with |z| = 7 and |f(z)| = M (7, f), we get

£96) _ {( f)
e~z

}](1 +0(1)), forj € N.

Lemma 2.2. [12] Let f(2) be an entire function of finite order o(f) = 6 < 40, and let
v(7, f) be the central index of /. Then

. logu(r, f)
P g )

And if f is a transcendental entire function of hyper order o,(f), then

. loglogu(r, /)
limsup == oy = ).

Lemma 2.3. [13] Let f(z) be a transcendental entire function and let £ C [1, +o0) be a set

having finite logarithmic measure. Then there exists {z, =7,¢%} such that

If (z0)| = M(7u,f), 0, €10,21), lirE 0, =0y €|0,27],7, ¢ E and if 0 < 6(f) < 40, then
n—+oo

for any given ¢ > 0 and sufficiently large 7,
ro0=e < y(r,, f) < ro¥)te,

If 6(f) = +o0, then for any given large K > 0 and sufficiently large 7,,
v(ra, f) > k.
Lemma 2.4. [2] Let P(z) = b, 2"+ b,.12" 1 4... 4+ by with b,#0 be a polynomial.
Then for every ¢ > 0, there exists 7y > 0 such that for all » = |z| > 7, the inequalities
(L= &)lbalr” < |P(2)] < (14 €)[ba|r"

hold.

Lemma 2.5. [14] Let f(z) and A(z) be two entire functions with 0 < 6(f) = 6(4) =0 <
+o0, 0 < 7(4) =7(f) < 40, then there exists a set £ C[l, +o0) that has infinite
logarithmic measure such that for all » € £ and a positive number x > 0, we have
M(r, A)
M(r, f)

< exp{—«r°}.

Lemma 2.6. [14] Let g: (0, ) > R, % : (0, 00) — R be monotone increasing functions
such that g(») < h(r) outside an exceptional set £ with finite linear measure, or g(7) <h(7),
r¢ H U (0, 1], where H C (1, o0) is a set of finite logarithmic measure. Then for any a > 1,
there exists 7y such that g(») < h(ar) for all ¥ > 7,

3. Proof of main theorems
In this section we present the proofs of the main results of the paper.

3.1 Proof of Theorem 1.4
We will consider the following two cases:
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Case I Let a(z) =0. Then

M
Fl_ e

f M (4)

Now,
3

My @@ (1)

fru B ottt

O\ " [re\™ ®\ "™
o) () ()

From (4) and (5), it follows that

T(r, &) = m(r, &) = m(r, ]]\{TM]>

k i
< anm (7, ?) +m(7, ao)
=1

= O(log(»T(r, f))),

outside an exceptional set £, of finite linear measure.
Thus there exists a constant K such that

T(r, ¢*) <K log(rT(r, f)) forr ¢ E,.

By Lemma 2.6 there exists 7y > 0 such that for » > 7y, we have
T(r, e®) <K log(nrT(yr, f)) forn > 1. ©)

From (6), we can deduce that 6(e?) < 62(f) < oo and hence ¢(z) is a polynomial.
Proceeding similarly as in [11], Theorem 3, we obtain that o2(f) = deg¢, which is a
contradiction to our assumption that o2(f) is not a positive integer. Hence ¢(z) is only a
constant.
Case II: Let a(z) #0 and d = y,;. Taking the logarithmic derivative of (2), we get

, B M’[f] _ (Z/(Z) dfd—lf/ _ a’(z)
YO M e fioal)

@

Subcase I Let ¢'(z) =0. Then ¢(2) = c1, ¢1 is a constant.

Subcase II: Let ¢'(z) 0. Then it follows from (7) that

m(r, ¢') = S(r, f). ®)
We can rewrite (7) in the following form:
¢ = £ Ml 1 M[fl-dk) 14" -d(e)
| S MU MIf] —az) T - a(z)

_ S MM - M dr —a) | df

a@) | f* M[f]—alz) S - alz) s




We set

- MIM[f]-d@) M[f] df"'f —d(z) LY
Ml —alz) S f—a(z) f
Then we have
m(r, y) = S(r, f).
Therefore it follows from (9) and (10) that
aiz) _ y()
e} "

Since ¢ is an entire function, then we have

()= 57) ol )

which contradicts our hypothesis.
Thus the proof is completed.

3.2 Proof of Theorem 1.5
We will consider the following two cases:
Case I' Let a(z) =0. Then from (3) it follows that

MIf] + B(z) = f71e"®
S0 — MIf] + B(z) .
fVM

Proceeding similarly as in Case I of Theorem 1.4, we can prove that ¢(z) is a constant.
Case II: Let a(z) % 0and d = y,,. Eliminating ¢? from (3) and its derivative, we get

. MPPE & - d)
VEMAT D FoaE) 3

Subcase I: Let ¢'(z) =0. Then ¢(z) = c2, ¢z is a constant.
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AJMS Subcase II: Let ¢’ (z) # 0. Then it follows from (13) that
27,2 m(r, ¢') = S(r, ). (14)

Now,

M +p@ _ S [MU] 1 o
136 M+ A _ﬁ(Z)[fd {M[ﬂ M[/‘]Jrﬂ(Z)}(M i+p (Z”}
_ S {M’U‘] +8@) MM +ﬂ’(2)}
B | 7 FMI +p) |

15)

and

I —dE) 1 o
fd—a(z)z:%[tacz) fd}(fdf «(@)

_ S [dfd‘lf' —d@) 4, a'(z)}

~az) N

[t —a(z) for

(16)

Therefore from (13), (15) and (16) we have
¢ = gl { '] MWM’W+ﬁ'(Z)+ﬂ'(2)}

p) | f ¢ MIf]+pz) S
7 fatr—a)_dr | @@
Ca@) | f-alz) oo

_ S [M’[f] _ MYIM'[f] +ﬂ’(z)} S AT —d(e) df

pe) [ f4 M+ R a@)
Bz aR)
Bz) alz)

[t —a(z) f

:¢,_ﬂ’(2)+a’(2)7 f? [M’[f] MIf] M’[J‘Hﬂ’(i)}

B@) alz) B LS f M +AR)

17)
A [dfd—lf' ~d(z) df

[ —a(2) fl

Let

y, = MV MY M +F)
o M+ )

and
_ dfd—lf/ _ (1’(2) df/
T e T

Then we have m(r, y;) = S(r, f) and m(r, y,) = S(r, f).



Thus it follows from (17) that
¢,_ﬁ(2)+a(2) :fd[ﬂ‘//_l_ﬂ]

5o e 7 |pe) " al
v v 18
1 b@ MJ
AT PG @
Y50 T aw

Since ¢ is an entire function, from (18) we have

1 1 5 1
m<r, f—d)Sm(n %f%)er 7, —_& 7@

"0 el
<m(r, yy) +m(r, yy) + T(r, ¢) +S(r, f)
=S(r, /)
=>m<r, %) = S(r, f). 19
It follows from (19) that
(7, §)
5(0, f) = liminf =0,

= T(r, f)

which is a contradiction.
Hence the proof is completed.

Corollary 3.1. Let f(z) be a non-constant entire function such that o5 (f) < o0, o2(f) is not
a positive integer and 5(0, f) > 0. Let M[f] be a differential monomial of f of degree y,, as
defined in (1), ¢(z) be an entire function and a(z) € S(f) be such that o(a) < u(f). If fis a
solution of the following differential equation

MIf] - ae) = (7" — a(z))e*?),
then %@f_;‘g} = ¢, where ¢ #0 is a constant.
Corollary 3.2. Let fbe a non-constant entire function such that 62(f) < oo, 62(f) is not a
positive integer and §(0, f) > 0. Let M[f] be a differential monomial of f of degree y;, as
defined in (1), ¢(z) be an entire function and a(z), B(z) € S(f) be such that 6(a) < u(f) and
o(p) < u(f). If fis a solution of the following differential equation

MIf] +B@) = (7 — al@)et),

then %yfg 8 = ¢, where ¢ #01is a constant.
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