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Abstract

Purpose –The purpose of this current paper is to deal with the study of non-constant entire solutions of some
non-linear complex differential equations in connection to Br€uck conjecture, by using the theory of complex
differential equation. The results generalize the results due to Pramanik et al.
Design/methodology/approach – 39B32, 30D35.
Findings – In the current paper, wemainly study the Br€uck conjecture and the variousworks that confirm this
conjecture. In our study we find that the conjecture can be generalized for differential monomials under some
additional conditions and it generalizes some works related to the conjecture. Also we can take the complex
number a in the conjecture to be a small function. More precisely, we obtain a result which can be restate in the
following way: Let f be a non-constant entire function such that σ2ðf Þ < ∞, σ2ðf Þ is not a positive integer and
δð0; f Þ > 0. Let M ½f � be a differential monomial of f of degree γM and αðzÞ; βðzÞ∈ Sðf Þ be such that
maxfσðαÞ; σðβÞg < σðf Þ. If M ½f � þ β and f γM − α share the value 0 CM, then

M ½f � þ β

f γM � α
¼ c;

where c≠ 0 is a constant.
Originality/value – This is an original work of the authors.

Keywords Entire function, Br€uck conjecture, Small function, Differential monomial

Paper type Research paper

1. Introduction and main results
In this paper, by meromorphic function we shall always mean a meromorphic function in the
complex plane. We adopt the standard notations in the Nevanlinna theory of meromorphic
functions as explained in [1–4]. It will be convenient to let E denote any set of positive real
numbers of finite linear measure, not necessarily the same at each occurrence.

For any non-constant meromorphic function f ðzÞ, we denote by Sðr; f Þ any quantity
satisfying Sðr; f Þ ¼ oðTðr; f ÞÞ as r→∞; r∉E, where Tðr; f Þ is the Nevanlinna
characteristic function of f. A meromorphic function α is said to be small with respect to
f ðzÞ ifTðr; αÞ ¼ Sðr; f Þ. We denote by Sðf Þ the collection of all small functions with respect
to f. Clearly ℂ ∪ f∞g⊂ Sðf Þ and Sðf Þ is a field over the set of complex numbers.
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For any two non-constant meromorphic functions f and g, and α∈ Sðf Þ ∩ SðgÞ, we say
that f and g share α IM(CM) provided that f − α and g − α have the same zeros
ignoring(counting) multiplicities.

For any complex number a, the quantity defined by

δða; f Þ ¼ lim inf
r→∞

mðr; 1
f�a

Þ
Tðr; f Þ ¼ 1� lim sup

r→∞

Nðr; 1
f�a

Þ
Tðr; f Þ

is called the deficiency of a with respect to the function f ðzÞ.
We also need the following definitions:

Definition 1.1. Let f ðzÞ be a non-constant entire function, then the order σðf Þ of f ðzÞ is
defined by

σðf Þ ¼ lim sup
r→þ∞

logTðr; f Þ
log r

¼ lim sup
r→þ∞

log logMðr; f Þ
log r

and the lower order μðf Þ of f ðzÞ is defined by

μðf Þ ¼ lim inf
r→þ∞

logTðr; f Þ
log r

¼ lim inf
r→þ∞

log log Mðr; f Þ
log r

:

The type τðf Þ of an entire function f ðzÞwith 0 < σðf Þ ¼ σ < þ∞ is defined by

τðf Þ ¼ lim sup
r→þ∞

logMðr; f Þ
rσ

;

where and in the sequel

Mðr; f Þ ¼ max
jzj¼r

jf ðzÞj:

Definition 1.2. Let f be a non-constant meromorphic function. Then the hyper-order
σ2ðf Þ of f ðzÞ is defined as follows:

σ2ðf Þ ¼ lim sup
r→þ∞

log logTðr; f Þ
log r

:

Definition 1.3. Let f be a non-constant meromorphic function. A differential monomial
of f is an expression of the form

M ½f � ¼ a0ðzÞf n0
�
f ð1Þ
�n1�

f ð2Þ
�n2

. . .
�
f ðkÞ
�nk

; (1)

where n0; n1; n2; . . . ; nk are non-negative integers and a0ðzÞ∈Sðf Þ. The degree of the
differential monomial is given by γM ¼ n0 þ n1 þ n2 þ . . .þ nk.

Rubel andYang [5] proved that if a non-constant entire function f and its derivative f 0 share two
distinct finite complex numbers CM, then f ≡ f 0. What will be the relation between f and f 0, if an
entire function f and its derivative f 0 share one finite complex number CM? Br€uck [6] made a
conjecture that if f is a non-constant entire function satisfying σ2ðf Þ< ∞, where σ2ðf Þ is not a
positive integer and if f and f 0 share one finite complex number aCM, then f 0 − a ¼ cðf − aÞ for
some finite complex number c≠ 0. Br€uck [6] himself proved the conjecture for a ¼ 0. Br€uck also
proved that the conjecture is true for a≠ 0 provided that f satisfies the additional assumption
Nðr; 1

f 0Þ ¼ Sðr; f Þ and in this case the order restriction on f can be omitted. After that many
researchers [7–10] have proved the conjecture under different conditions.
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In 2017, Pramanik et al. [11] investigated on the non-constant entire solution of some non-
linear complex differential equations related to Br€uck conjecture and proved the following
theorems:

Theorem 1.1. Let f ðzÞ and αðzÞ be two non-constant entire functions and satisfy
0 < σðαÞ ¼ σðf Þ < þ∞ and τðf Þ > τðαÞ. Also, let PðzÞ be a polynomial. If f is a
non-constant entire solution of the following differential equation

M ½f � � α ¼ ðf γM � αÞePðzÞ;
then PðzÞ is a constant.

Theorem 1.2. Let f ðzÞ and αðzÞ be two non-constant entire functions and satisfy
0 < σðαÞ ¼ σðf Þ < þ∞and τðf Þ > τðαÞ.Also, let PðzÞbe a polynomial. If f is a non-constant
entire solution of the following differential equation

M ½f � þ βðzÞ � αðzÞ ¼ ðf γM � αðzÞÞePðzÞ;
where βðzÞ is an entire function satisfying 0 < σðβÞ ¼ σðf Þ < þ∞ and τðf Þ > τðβÞ, then
PðzÞ is a constant.

Theorem 1.3. Let f ðzÞ and αðzÞ be two non-constant entire functions satisfying
σðαÞ < μðf Þ and PðzÞ be a polynomial. If f is a non-constant entire solution of the
following differential equation

M ½f � þ βðzÞ � αðzÞ ¼ ðf γM � αðzÞÞePðzÞ;
where βðzÞ is an entire function satisfying σðβÞ < μðf Þ. Then σ2ðf Þ ¼ degP.

Regarding Theorems 1.1–1.3, one can ask the the following

(1) What will happen if PðzÞ is an entire function?

In this paper we answer the question by proving the following theorems:

Theorem 1.4. Let f ðzÞbe a non-constant entire function such that σ2ðf Þ < ∞, σ2ðf Þ is not
a positive integer and δð0; f Þ > 0. Let M ½f � be a differential monomial of f of degree γM as
defined in (1), fðzÞ be an entire function and αðzÞ∈ Sðf Þ be such that σðαÞ < σðf Þ. If f is a
solution of the following differential equation

M ½f � � αðzÞ ¼ ðf γM � αðzÞÞefðzÞ; (2)

then M ½f �− αðzÞ
f γM − αðzÞ ¼ c, where c≠ 0 is a constant.

Theorem 1.5. Let f be a non-constant entire function such that σ2ðf Þ < ∞, σ2ðf Þ is not a
positive integer and δð0; f Þ > 0. Let M ½f � be a differential monomial of f of degree γM as
defined in (1), fðzÞ be an entire function and αðzÞ; βðzÞ∈ Sðf Þ be such that σðαÞ < σðf Þ and
σðβÞ < σðf Þ. If f is a solution of the following differential equation

M ½f � þ βðzÞ ¼ ðf γM � αðzÞÞefðzÞ; (3)

then M ½f �þβðzÞ
f γM − αðzÞ ¼ c, where c≠ 0 is a constant.

2. Preparatory lemmas
In this section we state some lemmas needed to prove the theorems.

Lemma 2.1. [2] Let f ðzÞ be a transcendental entire function, νðr; f Þ be the central index of
f ðzÞ. Then there exists a set E ⊂ ð1; þ∞Þ with finite logarithmic measure such that
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r∉ ½0; 1� ∪ E, consider z with jzj ¼ r and jf ðzÞj ¼ Mðr; f Þ, we get
f ðjÞðzÞ
f ðzÞ ¼

�
νðr; f Þ

z

�j

ð1þ oð1ÞÞ; for j ∈ N :

Lemma 2.2. [12] Let f ðzÞ be an entire function of finite order σðf Þ ¼ σ < þ∞, and let
νðr; f Þ be the central index of f. Then

lim sup
r→þ∞

log νðr; f Þ
log r

¼ σðf Þ:

And if f is a transcendental entire function of hyper order σ2ðf Þ, then

lim sup
r→þ∞

log log νðr; f Þ
log r

¼ σ2ðf Þ:

Lemma 2.3. [13] Let f ðzÞ be a transcendental entire function and let E ⊂ ½1;þ∞Þ be a set
having finite logarithmic measure. Then there exists fzn ¼ rne

iθng such that
jf ðznÞj ¼ Mðrn; f Þ; θn ∈ ½0; 2πÞ; lim

n→þ∞
θn ¼ θ0 ∈ ½0; 2π�; rn ∉E and if 0 < σðf Þ < þ∞, then

for any given ε > 0 and sufficiently large rn,

rσðf Þ−εn < νðrn; f Þ < rσðf Þþε
n :

If σðf Þ ¼ þ∞, then for any given large K > 0 and sufficiently large rn,

νðrn; f Þ > rKn :

Lemma 2.4. [2] Let PðzÞ ¼ bn zn þ bn−1 z
n−1 þ . . .þ b0 with bn ≠ 0 be a polynomial.

Then for every ε > 0, there exists r0 > 0 such that for all r ¼ jzj > r0 the inequalities

ð1� εÞjbnjrn ≤ jPðzÞj ≤ ð1þ εÞjbnjrn

hold.

Lemma 2.5. [14] Let f ðzÞ and AðzÞ be two entire functions with 0 < σðf Þ ¼ σðAÞ ¼ σ <
þ∞; 0 < τðAÞ ¼ τðf Þ < þ∞, then there exists a set E ⊂ ½1; þ∞Þ that has infinite
logarithmic measure such that for all r∈E and a positive number κ > 0, we have

Mðr; AÞ
Mðr; f Þ < expf−κrσg:

Lemma 2.6. [14] Let g : ð0; ∞Þ→ℝ; h : ð0; ∞Þ→ℝ be monotone increasing functions
such that gðrÞ ≤ hðrÞ outside an exceptional set Ewith finite linear measure, or gðrÞ≤ hðrÞ,
r∉ H ∪ ð0; 1�, where H ⊂ ð1; ∞Þ is a set of finite logarithmic measure. Then for any α > 1,
there exists r0 such that gðrÞ≤ hðαrÞ for all r≥ r0.

3. Proof of main theorems
In this section we present the proofs of the main results of the paper.

3.1 Proof of Theorem 1.4
We will consider the following two cases:
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Case I: Let αðzÞ≡ 0. Then

M ½f �
f γM

¼ efðzÞ: (4)

Now,

M ½f �
f γM

¼
a0ðzÞf n0

�
f ð1Þ
�n1

. . .
�
f ðkÞ
�nk

f n0þn1þ...þnk

¼ a0ðzÞ
 
f ð1Þ

f

!n1
 
f ð2Þ

f

!n2

. . .

 
f ðkÞ

f

!nk

:

(5)

From (4) and (5), it follows that

Tðr; efÞ ¼ mðr; efÞ ¼ m

�
r;

M ½f �
f γM

	

≤
Xk
i¼1

nim

 
r;

f ðiÞ

f

!
þmðr; a0Þ

¼ OðlogðrTðr; f ÞÞÞ;
outside an exceptional set E0 of finite linear measure.

Thus there exists a constant K such that

Tðr; efÞ≤K logðrTðr; f ÞÞ for r∉E0:

By Lemma 2.6 there exists r0 > 0 such that for r≥ r0, we have

Tðr; efÞ≤K logðηrTðηr; f ÞÞ for η > 1: (6)

From (6), we can deduce that σðefÞ≤ σ2ðf Þ < ∞ and hence fðzÞ is a polynomial.
Proceeding similarly as in [11], Theorem 3, we obtain that σ2ðf Þ ¼ degf, which is a

contradiction to our assumption that σ2ðf Þ is not a positive integer. Hence fðzÞ is only a
constant.

Case II: Let αðzÞu0 and d ¼ γM . Taking the logarithmic derivative of (2), we get

f0ðzÞ ¼ M 0½f � � α0ðzÞ
M ½f � � αðzÞ � df d−1f 0 � α0ðzÞ

f d � αðzÞ : (7)

Subcase I: Let f0ðzÞ≡ 0. Then fðzÞ ¼ c1; c1 is a constant.
Subcase II: Let f0ðzÞu0. Then it follows from (7) that

mðr; f0Þ ¼ Sðr; f Þ: (8)

We can rewrite (7) in the following form:

f0 ¼ f d

"
M ½f �
f d

:
1

M ½f �:
M 0½f � � α0ðzÞ
M ½f � � αðzÞ � 1

f d
df d−1f 0 � α0ðzÞ

f d � αðzÞ

#

¼ f d

αðzÞ

"
M ½f �
f d

:
M 0½f � � α0ðzÞ
M ½f � � αðzÞ �M 0½f �

f d
� df d−1f 0 � α0ðzÞ

f d � αðzÞ þ df 0

f

#
:

(9)

AJMS
27,2

134



We set

ψ ¼ M ½f �
f d

:
M 0½f � � α0ðzÞ
M ½f � � αðzÞ �M 0½f �

f d
� df d−1f 0 � α0ðzÞ

f d � αðzÞ þ df 0

f
: (10)

Then we have

mðr; ψÞ ¼ Sðr; f Þ:
Therefore it follows from (9) and (10) that

αðzÞ
f d

¼ ψðzÞ
f0ðzÞ : (11)

Since f is an entire function, then we have

m

�
r;

1

f d

	
≤ m

�
r;

αðzÞ
f d

	
þm

�
r;

1

αðzÞ
	

≤ m
�
r;

ψðzÞ
f0ðzÞ

�
þ Sðr; f Þ

≤ mðr; ψðzÞÞ þm

�
r;

1

f0ðzÞ

	
þ Sðr; f Þ

¼ Tðr; f0ðzÞÞ þ Sðr; f Þ
¼ mðr; f0Þ þ Sðr; f Þ
¼ Sðr; f Þ

0m

�
r;

1

f

	
¼ Sðr; f Þ: (12)

It follows from (12) that

δð0; f Þ ¼ lim inf
r→∞

mðr; 1
f
Þ

Tðr; f Þ ¼ 0;

which contradicts our hypothesis.
Thus the proof is completed.

3.2 Proof of Theorem 1.5
We will consider the following two cases:

Case I: Let αðzÞ≡ 0. Then from (3) it follows that

M ½f � þ βðzÞ ¼ f γM efðzÞ

0efðzÞ ¼ M ½f � þ βðzÞ
f γM

:

Proceeding similarly as in Case I of Theorem 1.4, we can prove that fðzÞ is a constant.
Case II: Let αðzÞu 0 and d ¼ γM . Eliminating ef from (3) and its derivative, we get

f0 ¼ M 0½f � þ β0ðzÞ
M ½f � þ βðzÞ � df d−1f 0 � α0ðzÞ

f d � αðzÞ : (13)

Subcase I: Let f0ðzÞ≡ 0: Then fðzÞ ¼ c2; c2 is a constant.
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Subcase II: Let f0ðzÞu 0. Then it follows from (13) that

mðr; f0Þ ¼ Sðr; f Þ: (14)

Now,

M 0½f � þ β0ðzÞ
M ½f � þ βðzÞ ¼ f d

βðzÞ


M ½f �
f d



1

M ½f � �
1

M ½f � þ βðzÞ
�
ðM 0½f � þ β0ðzÞÞ

�

¼ f d

βðzÞ


M 0½f � þ β0ðzÞ

f d
�M ½f �

f d
:
M 0½f � þ β0ðzÞ
M ½f � þ βðzÞ

�
;

(15)

and

df d−1f 0 � α0ðzÞ
f d � αðzÞ ¼ f d

αðzÞ



1

f d � αðzÞ �
1

f d

��
df d−1f 0 � α0ðzÞ

�

¼ f d

αðzÞ

"
df d−1f 0 � α0ðzÞ

f d � αðzÞ � df 0

f
þ α0ðzÞ

f d

#
:

(16)

Therefore from (13), (15) and (16) we have

f0 ¼ f d

βðzÞ


M 0½f �
f d

�M ½f �
f d

:
M 0½f � þ β0ðzÞ
M ½f � þ βðzÞ þ β0ðzÞ

f d

�

� f d

αðzÞ

"
df d−1f 0 � α0ðzÞ

f d � αðzÞ � df 0

f
þ α0ðzÞ

f d

#

¼ f d

βðzÞ


M 0½f �
f d

�M ½f �
f d

:
M 0½f � þ β0ðzÞ
M ½f � þ βðzÞ

�
� f d

αðzÞ

"
df d−1f 0 � α0ðzÞ

f d � αðzÞ � df 0

f

#

þ β0ðzÞ
βðzÞ �

α0ðzÞ
αðzÞ :

0f0 � β0ðzÞ
βðzÞ þ

α0ðzÞ
αðzÞ ¼ f d

βðzÞ


M 0½f �
f d

�M ½f �
f d

:
M 0½f � þ β0ðzÞ
M ½f � þ βðzÞ

�

� f d

αðzÞ

"
df d−1f 0 � α0ðzÞ

f d � αðzÞ � df 0

f

#
:

(17)

Let

ψ 1 ¼
M 0½f �
f d

�M ½f �
f d

:
M 0½f � þ β0ðzÞ
M ½f � þ βðzÞ

and

ψ 2 ¼
df d−1f 0 � α0ðzÞ

f d � αðzÞ � df 0

f
:

Then we have mðr; ψ1Þ ¼ Sðr; f Þ and mðr; ψ2Þ ¼ Sðr; f Þ.
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Thus it follows from (17) that

f0 � β0ðzÞ
βðzÞ þ

α0ðzÞ
αðzÞ ¼ f d

ψ 1

βðzÞ �
ψ 2

αðzÞ

 �

0
1

f d
¼

ψ 1

βðzÞ �
ψ 2

αðzÞ

 �

f0 � β0ðzÞ
βðzÞ þ

α0ðzÞ
αðzÞ

:

(18)

Since f is an entire function, from (18) we have

m

�
r;

1

f d

	
≤m

�
r;

ψ 1

βðzÞ �
ψ2

αðzÞ
�
þm r;

1

f0 � β0ðzÞ
βðzÞ þ

α0ðzÞ
αðzÞ

0
BB@

1
CCA

≤ mðr; ψ 1Þ þmðr; ψ 2Þ þ Tðr; f0Þ þ Sðr; f Þ
¼ Sðr; f Þ

0m

�
r;

1

f

	
¼ Sðr; f Þ: (19)

It follows from (19) that

δð0; f Þ ¼ lim inf
r→∞

mðr; 1
f
Þ

Tðr; f Þ ¼ 0;

which is a contradiction.
Hence the proof is completed.

Corollary 3.1. Let f ðzÞbe a non-constant entire function such that σ2ðf Þ < ∞, σ2ðf Þ is not
a positive integer and δð0; f Þ > 0. Let M ½f � be a differential monomial of f of degree γM as
defined in (1), fðzÞ be an entire function and αðzÞ∈ Sðf Þ be such that σðαÞ < μðf Þ. If f is a
solution of the following differential equation

M ½f � � αðzÞ ¼ ðf γM � αðzÞÞefðzÞ;
then M ½f �− αðzÞ

f γM − αðzÞ ¼ c, where c≠ 0 is a constant.

Corollary 3.2. Let f be a non-constant entire function such that σ2ðf Þ < ∞, σ2ðf Þ is not a
positive integer and δð0; f Þ > 0. Let M ½f � be a differential monomial of f of degree γM as
defined in (1), fðzÞ be an entire function and αðzÞ; βðzÞ∈ Sðf Þ be such that σðαÞ < μðf Þ and
σðβÞ < μðf Þ. If f is a solution of the following differential equation

M ½f � þ βðzÞ ¼ ðf γM � αðzÞÞefðzÞ;
then M ½f �þβðzÞ

f γM − αðzÞ ¼ c, where c≠ 0 is a constant.
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