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Abstract

Purpose – The purpose of this paper is to find a doubly nonlinear parabolic equation of fast diffusion in a
bounded domain.
Design/methodology/approach – For positive and bounded initial data, the authors study the initial
zero-boundary value problem.
Findings – The findings of this study showed the complete extinction of a continuous weak solution at a
finite time.
Originality/value – The extinction time is studied earlier but for the Laplacian case. The authors presented
the finite extinction time for the case of p-Laplacian.

Keywords Doubly nonlinear equation, Degenerate and singular equation, Sobolev critical case,

Finite time extinction

1. Introduction
LetΩ⊂ℝnðn ≥ 3Þbe a bounded domainwith smooth boundary vΩ. For any positiveT ≤ ∞,
let ΩT :¼ Ω3 ð0; TÞ be the space-time cylinder, and let vpΩT be the parabolic boundary
defined by ðvΩ3 ½0; TÞÞ∪ ðΩ3 ft ¼ 0gÞ. Throughout this paper, we fix p∈ ½2; nÞ and
qþ 1 ¼ p�, where p� :¼ np

n− p
is the Sobolev critical exponent. We consider the following

doubly nonlinear parabolic equation8<
:

vtðuqÞ � Δpu ¼ 0 in Ω∞

u ¼ 0 on vΩ3 ð0; ∞Þ
uð$; 0Þ ¼ u0ð$Þ in Ω

(1.1)

Here the unknown function u ¼ uðx; tÞ is a nonnegative real-valued function defined for
ðx; tÞ∈Ω∞ :¼ Ω3 ð0; ∞Þ, and the initial data u0 is assumed to be in the Sobolev space

W
1;p
0 ðΩÞ, positive and bounded in Ω and, Δpu :¼ divðj∇ujp−2∇uÞ is the p-Laplacian.
First of all, we will recall some fundamental results for the Eqn (1.1).
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In the case p ¼ 2, the Eqn (1.1) becomes the so-called porous medium equation or the
plasma equation with the Sobolev critical exponent qþ 1 ¼ 2n

n− 2. The global existence and
continuity of a weak solution of (1.1) in the case p ¼ 2 is proved in [1–3]. In particular, the
extinction at a finite time of a continuous weak solution is shown in [4, 5]. The positivity of the
unique weak solution is demonstrated in [6] and the decay estimation has presented in [6, 7].
The asymptotic behavior at the extinction time is also studied (see [8, 9]). The regularity
results for the porousmedium equations and the p-Laplace equations are also established and
are the fundamental theory for the degenerate and singular parabolic equations (see [10, 11]).
Here we will consider a doubly nonlinear equation (1.1) with the p-Laplacian, the porous
medium operator and the Sobolev critical exponent and study the positivity, boundedness
and finite time extinction of a weak solution of Eqn (1.1). The H€older regularity of a weak
solution to Eqn (1.1) in homogeneous case qþ 1 ¼ p accomplished in [12]. On the other hand,
in the nonhomogeneous case that qþ 1 is not equal to p, the regularity of a weak solution is
remained to be settled.

A doubly nonlinear parabolic equation, like the one considered above, has been studied
before, and the global existence of a weak solution is proved in [13, 14] and, for a positive,
bounded initial data in the Sobolev space W

1;p
0 ðΩÞ, the boundedness, the expansion of

positivity and regularity of a weak solution to Eqn (1.1) are accomplished in [15] in the
Sobolev critical case that qþ 1 ¼ np

n− p
. The finite time extinction is also shown in [13]. These

results are the starting point of our study in the paper and thus, we will recall these
results later.

Now we will explain in details what we mean by complete extinction for solutions of
problem in Eqn (1.1). Our aim here is to show that there exists a positive timeT such that u is
positive inΩ3 ½0; TÞ and u ¼ 0 inΩ3 ½T; ∞Þ. ThisT is called the complete extinction time
for Eqn (1.1). From the preceding results, the expansion of positivity and a finite time
extinction, obtained in [13, 15], we find that a nonnegative weak solution of Eqn (1.1) is
positive in Ω3 ½0; T0Þ for some T0 > 0 and u vanishes in Ω3 ½T�; ∞Þ for some T� > T0.
Here we notice the possibility that a gap T0 < T� may appear and thus, the solution may
have positive portion together with zero one in Ω3 ½T0; T

�Þ. The proof of the finite time
complete extinction is nothing but to show the equalityT0 ¼ T�, that is the main issue in this
paper. Our main assertion is the following:

Theorem 1.1. (Finite time complete extinction). Let n ¼ 3; p∈ ½2; 3Þ and qþ 1 ¼ 3p
3− p

.

Suppose thatΩ is a convex bounded domain. Let u0 be positive, bounded and inW
1;p
0 ðΩÞ. Let

u be a nonnegative, continuous weak solution of (1.1). Then there exists a positive T < ∞

such that T is the complete extinction time for (1.1), that is, u is positive in Ω3 ½0; TÞ and
u vanishes in Ω3 ½T; ∞Þ.
Under the interior positivity and finite time extinction, explained above, our main task is to
devise an appropriate comparison function, rely on the comparison theorem and verify that
T0 ¼ T� above. We follow the construction of comparison function in [6], where the Laplace
operator being p ¼ 2 is studied in any dimensional space domain. Here we shall treat the
doubly nonlinear operator, the p-Laplacian coupled with the porous medium operator with
the Sobolev critical exponent qþ 1 ¼ 3p

3− p
in three dimensional space domain. We shall

compute the p-Laplacain under polar coordinates in the three space dimension, since the
higher dimension case seems to be technically difficult. So far, there is no generalized method
to evaluate the p-Laplacian in higher dimensional case since this operator is nonlinear and we
cannot apply the cylindrical coordinates and the mathematical induction to generalize the
case for higher dimension. The convexity of domain is used for the comparison argument to be
worked well for our demand (see the proof of Theorem 4.1). Here we also need to assume the
continuity of a weak solution to Eqn (1.1), because the regularity for (1.1) is now unknown to
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be valid in the nonhomogeneous case that qþ 1 is not equal to p, stated as before. In the
forthcoming work, we shall study how to remove the assumption of regularity.

The structure of this paper is as follows. In Section 2, we prepare some notations, algebraic
inequalities and the definition of weak solution for future use. In Section 3, we gather the
fundamental properties of a weak solution of Eqn (1.1) such as the global existence of a weak
solution, nonnegativity and boundedness, the so-called expansion of positivity and a finite
time extinction of a weak solution. The final Section 4 is devoted to the main theorem and its
proof. The proof relies on an appropriate choice of comparison function. Here the computation
of the p-Laplace operator is done under the polar-coordinates in three dimensional space
domain.

Remark 1.2. We prove our main theorem for the case of critical Sobolev exponent as we
have used the Talenti’s function which is a unique solution of the stationary equation on all of
space ℝn corresponding to Eqn (1.1) (see [16, 17]) to make bound the extinction time.This
special function is legitimate for the case of critical Sobolev exponent. Using the usual energy
estimates finite extinction time for the subcritical and critical case can be achieved (see [18]).
For the supercritical case finite extinction time cannot work well.

2. Preliminaries
We exhibit in this section some notation, analytic tools, definition and statement of some
basic theorems including the comparison theorem used later.

2.1 Notation
Following the standard text books [19, 20], we set the following notation. LetΩbe a bounded
domain in ℝn ðn ≥ 3Þ with smooth boundary vΩ and for a positive T ≤ ∞ let
ΩT :¼ Ω3 ð0; TÞ be the cylindrical domain. Let us define the parabolic boundary ofΩT by

vpΩT :¼ vΩ3 ½0; TÞ∪Ω3 ft ¼ 0g:
Now, we will present some function spaces, defined on space-time region. For
1 ≤ p; q ≤ ∞; Lqðt1; t2; LpðΩÞÞ is a function space of measurable real-valued functions
on a space-time region Ω3 ðt1; t2Þwith a finite norm

kvk
Lqðt1 ;t2 ;LpðΩÞÞ :¼

8>><
>>:

�Z t2

t1

kvðtÞkqLpðΩÞ dt
�1

q

ð1≤ q < ∞Þ

ess sup
t1≤t≤t2

kvðtÞkLpðΩÞ ðq ¼ ∞Þ;

where

kvðtÞkLpðΩÞ :¼

8><
>:
�Z

Ω
jvðx; tÞjp dx

�1
p

ð1≤ p < ∞Þ

ess sup
x∈Ω

jvðx; tÞj ðp ¼ ∞Þ:

when p ¼ q, we write LpðΩ3 ðt1; t2ÞÞ ¼ Lpðt1; t2; LpðΩÞÞ for brevity. For 1 ≤ p < ∞ the
Sobolev space W 1;pðΩÞ consists of measurable real-valued functions that are weakly
differentiable and their weak derivatives are p-th integrable on Ω, with the norm
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kvkW 1;pðΩÞ :¼
�Z

Ω
jvjp þ j∇vjp dx

�1
p

;

where∇v ¼ ðvx1; . . . ; vxnÞdenotes the gradient of v in a distribution sense, and letW 1;p
0 ðΩÞ

be the closure of C∞

0 ðΩÞwith respect to the norm k$kW 1;p. Also let Lqðt1; t2; W 1;p
0 ðΩÞÞdenote

a function space of measurable real-valued functions on space-time region with a finite
norm

kvk
Lqðt1 ;t2 ;W 1;p

0
ðΩÞÞ :¼

 Z t2

t1

kvðtÞk
q

W 1;pðΩÞ
dt

!1
q

:

Let B ¼ Bρðx0Þ :¼ fx∈ℝn : jx− x0j < ρg denote an open ball with radius ρ > 0 centered at
some x0 ∈ℝn.

The algebraic inequality is often used later on.

Lemma 2.1. (Algebraic inequalities, [10]). For every p∈ ð1; ∞Þ there exist positive
constants C1ðp; nÞ and C2ðp; nÞ such that for any ξ; η∈ℝn

��jξjp−2ξ� jηjp−2η��≤C1ðjξj þ jηjÞp−2jξ� ηj (2.1)

and

�jξjp−2ξ� jηjp−2η�:ðξ� ηÞ≥C2jξ� ηjp; (2.2)

where dot . denotes the inner product in ℝn:

2.2 Weak solution
Here we are going to define a weak solution which is the most basic prerequisite element to
conduct the ongoing research of our Eqn (1.1).

Definition 2.2. Let 0 < T ≤ ∞. A measurable function u defined on ΩT is called a weak
supersolution (subsolution) to (1.1) if the following (D1)–(D3) are satisfied:

(D1) u∈L∞ð0; T; W 1;p
0 ðΩÞÞ; vtðuqÞ∈L2ðΩTÞ;

(D2) For every nonnegative w∈C∞
0 ðΩTÞ,

−

Z
ΩT

uqwt dx dt þ
Z
ΩT

j∇ujp−2∇u$∇w dx dt ≥ ð≤Þ0:

(D3) kuðtÞ−u0kW 1;p → 0 as t→ 0:

A measurable function u defined on ΩT is called a weak solution to Eqn (1.1) if it is
simultaneously a weak sub and supersolution, that is,

−

Z
ΩT

uqwtdx dt þ
Z
ΩT

j∇ujp−2∇u$∇w dx dt ¼ 0

for every w∈C∞

0 ðΩTÞ:
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3. Fundamental facts and results
In this section, let n≥ 3; p∈ ½2; nÞ and qþ 1 ¼ np

n− p
, the Sobolev exponent.

3.1 Existence of a weak solution
We first state the global existence of a weak solution of Eqn (1.1). For the proof see
[14, Theorem 1.1].

Theorem 3.1. (Existence of a weak solution).
For any u0 ∈W 1;p

0 ðΩÞ∩L∞ðΩÞ, there exists a global weak solution of Eqn (1.1).

3.2 Nonnegativity and boundedness
We notice that a weak solution to Eqn (1.1) is nonnegative and bounded provided that the
initial value u0 does so. See [15, Propositions 3.4 and 3.5] for the proof.

Proposition 3.2. (Nonnegativity and boundedness). Suppose that u0 ∈W 1;p
0 ðΩÞ,

nonnegative and bounded in Ω. Then
0≤ u≤ ju0jL∞ðΩÞ inΩT :

3.3 Comparison theorem
Wehere state the comparison theorembeing available for Eqn (1.1), that is used in the proof of
our main theorem later. The proof is given in Appendix. We say that u ≥ v on vpΩT in the
trace sense, if

ð� uðtÞ þ vðtÞÞþ ∈W 1;p
0 ðΩÞ; for every t ∈ ð0; TÞ;

and ð� uqðtÞ þ vqðtÞÞþ → 0 inL1ðΩÞ as ta0:
(3.1)

Theorem 3.3. (Comparison theorem, [15]). Let u and v be a weak supersolution and
subsolution to (1.1) inΩT :¼ Ω3 ð0; TÞ, respectively. If u ≥ v on vpΩ in the sense (3.1), then
it holds true that

u≥ v inΩT :

3.4 Expansion of positivity
In this section, we state some positivity results of a nonnegative weak solution to the doubly
nonlinear Eqn (1.1), that we will use later to prove our main theorem. We recall that the so-
called expansion of positivity holds true for a nonnegative weak solution of Eqn (1.1). This
positivity result is proved in [15]. Here we recall themwithout the proof. The regularity of the
solution can be realized upto the positivity region and after that region we do not know about
the regularity of the solution of Eqn (1.1).

The following is the expansion of positivity in a compact subdomain. For the proof see
[15, Theorem 4.7].

Theorem3.4. Let qþ 1 ¼ np
n− p

, the Sobolev critical exponent. Let u be a nonnegative weak

supersolution of (1.1). LetΩ
0
be a subdomain contained compactly inΩ. Let 0≤ ρ≤ distðΩ0

; vΩÞ
4

and t0 ∈ ð0; T�. Assume that

jΩ0
∩ fuðt0Þ ≥ Lgj ≥ αjΩ0 j (3.2)
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holds for some L > 0 and α∈ ð0; 1�. Then there exist positive integer N ¼ NðΩ0 Þ, positive
numbers δ < 1; η < 1 and positive integers I and J depending on p; n; α and independent of
L, and a time tN > t0 such that

u≥ ηL

almost everywhere in

Ω
0
3

 
tN þ

�
kþ 1

2

�
δðηLÞqþ1−p

2JþI
ρp; tN þ ðkþ 1Þ δðηLÞ

qþ1−p

2JþI
ρp
!

for some k∈ f0; 1; . . . ; 2JþI − 1g, where tN is written as

tN ¼ t0 þ
�
‘þ 3

4

�
δðηLÞqþ1−p

2JþI
ρp

for some ‘∈ f0; 1; . . . ; 2JþI−1g.
If a nonnegative weak supersolution u is positive in Ω at some time t0 ≥ 0, its positivity may
expand in a future time interval starting from t0, that is without any waiting time. See the
proof in [15, Corollary 4.8].

Corollary 3.5. Let qþ 1 ¼ np
n− p

, the Sobolev critical exponent. Let u be a nonnegative weak

supersolution of (1.1). Let Ω
0
be a subdomain contained compactly in Ω. Suppose that

uðt0Þ > 0 almost everywhere inΩ
0
for some t0 ∈ ½0; TÞ. Then there exist positive numbers η0

and τ0 such that

u≥ η0 a:e: in Ω
0
3 ðt0; t0 þ τ0Þ:

Once the interior positivity holds true, the positivity around the boundary can follow from the
usual comparison function. See the proof in [15, Proposition 4.9].

Proposition 3.6. (Positivity of the solution near the boundary). If u0 > 0 in Ω then every
nonnegative weak supersolution u to Eqn (1.1) is positive near the boundary.

3.5 Extinction of solutions
In this section, we will state the definition of finite extinction time and a proposition which
ensures the existence of finite extinction time of a solution to Eqn (1.1). Firstly, the extinction
time is defined as follows:

Definition 3.7. (Extinction time). Let u be a nonnegative weak solution to Eqn (1.1) inΩ∞.
We call a positive number T� an extinction time of u if

(1) uðx; tÞ is nonnegative and not identically zero onΩ3 ð0; T�Þ:
(2) uðx; tÞ ¼ 0 for any x ∈ Ω and for all t ≥T�

The following proposition presents the finite time extinction of the solution of (1.1).

Proposition 3.8. Let qþ 1 ¼ np
n− p

, the Sobolev critical exponent. Suppose the initial data
u0 > 0 in Ω: Then there exists T� > 0 such that u ¼ 0 in Ω3 ½T*; ∞Þ
For the proof see Appendix. Here we use the special function peculiar to the Sobolev critical
case qþ 1 ¼ np

n− p
.
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Proposition 3.9. Let qþ 1 ¼ np
n− p

, the Sobolev critical exponent. Let u be a nonnegative
weak solution to (1.1) in Ω∞. Then there exists an extinction time T� > 0 for u which is
bounded as

T�
≤

q

qþ 1� p

�max
Ω

u0

min
Ω

Y

�qþ1−p

;

where Y is Talenti’s function defined by

Y ðxÞ ¼ Yλ;yðxÞ :¼ 1

λ

 
n

�
n� p

p� 1

�p�1
!1

p
 
1þ

�jx� yj
λ

� p
p�1

!−1

with a positive parameter λ.

Talenti’s function is an unique solution of the stationary equation on all of space ℝn

corresponding to (1.1) (see [16, 17]).

4. Main theorem
Our main result in this paper is the following theorem.

Theorem 4.1. Suppose that n ¼ 3. Let p∈ ½2; 3Þ and qþ 1 ¼ 3p
3− p

, the Sobolev critical

exponent. Let Ω be a convex bounded domain with smooth boundary. Suppose

that the initial data u0 belong to W 1;p
0 ðΩÞ, positive and bounded in Ω. Let u be a

continuous weak solution of Eqn (1.1) in Ω∞ :¼ Ω3 ð0; ∞Þwith the initial and boundary

data u0. Then there exists a positive number T < ∞ such that u > 0 inΩ3 ½0; TÞ
and u ¼ 0 inΩ3 ½T; ∞Þ.
Proof. By Theorem 3.4 and Proposition 3.8, we have the existence of finite positive
T0 andT

� such that u > 0 inΩ3 ½0; T0Þ and u ¼ 0 inΩ3 ½T�; ∞Þ. We notice that the
solution umay have a positive portion and a zero one inΩ3 ½T0; T

�Þ. Therefore, our aim is
to show that T0 ¼ T�. The uniqueness of a weak solution to (1.1) holds true by the
comparison principle, Theorem 3.3. Thus, we may assume the following: for any
t0 ∈ ½T0; T

�Þ, there exists a space point x0 ∈Ω such that u(x0; t0) > 0. Indeed, if
uðt0Þ ¼ 0 inΩ for some t0 ∈ ½T0; T

�Þ, then the function u being extended to zero in
Ω3 ½t0; ∞Þ is also a weak solution of Eqn (1.1). That contradicts the choice of t0 ∈ ½T0; T

�Þ
(see Figures 1 and 2).

For any t0 ∈ ½T0; T
�Þ, let x0 ∈Ω such that uðx0; t0Þ > 0. Since u is continuous, there

exists a ball Bρ0ðx0Þ⊂Ω with center x0 and radius ρ0 > 0 and a positive number δ0 such
that u > 0 in Bρ0ðx0Þ3 ðt0; t0 þ δ0Þ. To proceed our argument, we will work under the
polar coordinates around any boundary point of Ω. Let x1 be any point on vΩ. By a
translation, let x1 be transformed to the origin. We use the polar coordinates around the
origin, where Eqn (1.1) is invariant under a parallel transformation and a rotation and
thus, if necessary, by the rotation around the origin, we may assume that the first
component axis is the line passing through two points, the origin and x0; and the other
component axes are orthogonal to the above first axis and each other. Then, we make
some conic space region with vertex at the origin and small angles around the first axis
such that the final arc like part of the cone is in Bρ0ðx0Þ. This conic space region is denoted
by C and, let R :¼ C3 ðt0; t0 þ δ0Þ: It is verified by the convexity of the domain that
C⊂Ω; if the angles around the first axis are small, and thus,R⊂Ω3 ½T0; T

�Þ for a small
positive δ0.
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Let the comparison function in the three dimension be defined as

wðr; θ; f; tÞ :¼ mðt � t0Þrμcos
�
πθ
2α

�
sin

�
π
2β

�
f� π

2

�
þ π

2

�
(4.1)

in the time-space region R :¼ C3 ðt0; t0 þ δ0Þ given by the variables ðr; θ; f; tÞ in the
range 8>>>>><

>>>>>:

0 < r < R :¼ diamðΩÞ;
π
2
� β < f <

π
2
þ β;

�α < θ < α;

t0 < t < t0 þ δ0;

Figure 2.
One cone with the

coordinate axis x and y

Figure 1.
Domain with boundary

and conic region
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where the positive parameters α; β; δ0; m and μ are determined according to the demand,
later. As before, we choose α; β and δ0 so small that R⊂Ω3 ½T0; T

�Þ. Again, that is
possible by the hypothesis that the domain Ω is convex (see Figures 3–5).

For brevity, we use the abbreviation hereafter

I ¼ πθ
2α

; II ¼ π
2β

�
f� π

2

�
þ π

2
:

Figure 4.
Graph of y ¼ rμ

Figure 5.
Graph of
y ¼ sin�

π
2β

�
f− π

2

�
þ π

2

�

Figure 3.

Graph of y ¼ cos
�
πθ
2α

�
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There holds

j∇wj2 ¼ m2ðt � t0Þ2r2μ−2
	
μ2cos2ðIÞsin2ðIIÞ þ

� π
2β

�2
cos2ðIÞcos2ðIIÞ

þ 1

sin2f

� π
2α

�2
sin2ðIÞ sin2ðIIÞ



;

(4.2)

Δw ¼ wrr þ 1

r2
wff þ 1

r2sin2f
wθθ þ 2

r
wr þ cotf

r2
wf

¼ mðt � t0Þrμ−2
	�

μ2 �
� π
2β

�2
þ μ� 1

sin2f

� π
2α

�2�
cosðIÞsinðIIÞ

þ
� π
2β

� cosf
sinf

cosðIÞcosðIIÞ


:

(4.3)

We know that

Δpw ¼ j∇wjp−4
j∇wj2Δwþ ðp� 2ÞS�;
where

S ¼
Xn
i;j¼1

wxiwxjwxixj

The drift term is computed as

S ¼ m3ðt � t0Þ3r3μ−4
	�
μ4 � μ3

�
cos3ðIÞsin3ðIIÞ

þ 2μ
� π
2β

�2
cos3ðIÞsinðIIÞcos2ðIIÞ

�
� π
2β

�4
cos3ðIÞsinðIIÞcos2ðIIÞ

þ 2

sin2f
μ2
� π
2α

�2
sin2ðIÞcosðIÞsin3ðIIÞ

þ 2

sin2f

� π
2α

�2� π
2β

�2
sin2ðIÞcosðIÞsinðIIÞcos2ðIIÞ

� 1

sin4f

� π
2α

�4
sin2ðIÞcosðIÞ

� μsin3ðIIÞ
� π
2β

�2
cos3ðIÞsinðIIÞcos2ðIIÞ

� 1

sin2f
μ
� π
2α

�2
sin2ðIÞcosðIÞsin3ðIIÞ

� cosf

sin3f

� π
2α

�2� π
2β

�
sin2ðIÞcosðIÞsin2ðIIÞcosðIIÞ
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and thus,

S ¼ m3ðt � t0Þ3r3μ−4cosðIÞsinðIIÞ
	�
μ4 � μ3

�
cos2ðIÞsin2ðIIÞ

þ 2μ2
� π
2β

�2
cos2ðIÞcos2ðIIÞ �

� π
2β

�4
cos2ðIÞcos2ðIIÞ

þ 2

sin2f
μ2
� π
2α

�2
sin2ðIÞsin2ðIIÞ þ 2

sin2f

� π
2α

�2� π
2β

�2
sin2ðIÞcos2ðIIÞ

� 1

sin4f

� π
2α

�4
sin2ðIÞsin2ðIIÞ � μ

� π
2β

�2
cos2ðIÞcos2ðIIÞ

� 1

sin2f
μ
� π
2α

�2
sin2ðIÞsin2ðIIÞ

� cosf

sin3f

� π
2α

�2� π
2β

�
sin2ðIÞsinðIIÞcosðIIÞ




≥ m3ðt � t0Þ3r3μ−4cosðIÞsinðIIÞ
2
4�μ4 � μ3

�
cos2ðIÞsin2ðIIÞ

þ
� π
2β

�2�
2μ2 �

� π
2β

�2
� μ
�
cos2ðIÞcos2ðIIÞ

þ 1

sin2f

0
@μ2 �

ð π
2α

�2
sin2f

� μ

1
A� π

2α

�2
sin2ðIÞsin2ðIIÞ

þ 2

sin2f

� π
2α

�2� π
2β

�2
sin2ðIÞ

� cosf

sin3f

� π
2α

�2� π
2β

�
sin2ðIÞsinðIIÞcosðIIÞ

3
5

¼ m3ðt � t0Þ3r3μ−4cosðIÞsinðIIÞ
2
4�μ4 � μ3

�
cos2ðIÞsin2ðIIÞ

þ
� π
2β

�2�
2μ2 �

� π
2β

�2
� μ
�
cos2ðIÞcos2ðIIÞ

þ 1

sin2f

0
@μ2 �

ð π
2α

�2
sin2f

� μ

1
A� π

2α

�2
sin2ðIÞsin2ðIIÞ

þ 1

sin2f

� π
2α

�2� π
2β

�
sin2ðIÞ

n
2
� π
2β

�
� cosf

sinf
sinðIIÞcosðIIÞ

o35≥ 0
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if we choose as μ2

2 ≥

�
π
2β

�2
which is verified by a large positive μ depending on a small β, and

the lower positive bound of sinf such that 1
2≤ sinf≤ 1 for f∈

�
π
2− β; π

2 þ β
�
.

j∇wjp−4 ¼ mp−4ðt � t0Þp−4rðp−4Þðμ−1Þ
	
μ2cos2ðIÞsin2ðIIÞ

þ
� π
2β

�2
cos2ðIÞcos2ðIIÞ þ 1

sin2f

� π
2α

�2
sin2ðIÞsin2ðIIÞ


p−4
2

≥ 0

and thus, letting Lw ¼ vtw
q −Δpw, we have

−Lw ≥ � vtw
q þ j∇wjp−2Δw

¼ − qmqðt � t0Þq−1rμqcosqðIÞsinqðIIÞ þmp−1ðt � t0Þp−1rðμ−1Þðp−2Þ

3

	
μ2cos2ðIÞsin2ðIIÞ þ

� π
2β

�2
cos2ðIÞcos2ðIIÞ

þ 1

sin2f

� π
2α

�2
sin2ðIÞsin2ðIIÞ


p−2
2

3 rμ−2
	�

μ2 �
� π
2β

�2
þ μ� 1

sin2f

� π
2α

�2�
cosðIÞsinðIIÞ

þ
� π
2β

� cosf
sinf

cosðIÞcosðIIÞ



≥ � qmqðt � t0Þq−1rμqcosqðIÞsinqðIIÞ
þ mp−1ðt � t0Þp−1rμðp−1Þ−pμp−2cosp−2ðIÞsinp−2ðIIÞ

3

	�
μ2 �

� π
2β

�2
þ μ� 1

sin2f

� π
2α

�2�
cosðIÞsinðIIÞ




≥ mp−1ðt � t0Þp−1rμðp−1Þ−pcosp−1ðIÞsinp−1ðIIÞ

3

	
−qmq−ðp−1Þðt � t0Þq−prμðq−pþ1Þþpcosðq−pþ1ÞðIÞsinðq−pþ1ÞðIIÞ

þ μp−2
�
μ2 �

� π
2β

�2
þ μ� 1

sin2f

� π
2α

�2�


≥ mp−1ðt � t0Þp−1rμðp−1Þ−pcosp−1ðIÞsinp−1ðIIÞ

3

	
−qmq−ðp−1Þðt � t0Þq−pRμðq−pþ1Þþp

þ μp−2
�
μ2 �

� π
2β

�2
þ μ� 1

sin2f

� π
2α

�2�

≥ 0:

Here the reasoning is as follows: since 0≤ r≤R ¼ diamðΩÞ and t0 ≤ t ≤ t0 þ δ0, the
parameter m can be so small that the quantity in the bracket is positive. Thus,
Lw ¼ vtw

q −Δpw≤ 0 ¼ Lu inR. The boundary condition of w is verified as follows: On the
lateral boundary, w ¼ 0 because at θ ¼ α; − α;
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πθ
2α

¼ π
2
; � π

2
; cosðIÞ ¼ 0

and at f ¼ π
2
− β; π

2
þ β,

π
2β

�
f� π

2

�
þ π

2
¼ 0; π; sinðIIÞ ¼ 0:

On the arc like boundary of R; w ≤ u if the parameter m is so small that 0 ≤ w ≤ m δ0
ðdiamðΩÞÞμ ≤ minAu, where A ¼ Bρ0ðx0Þ3 ðt0; t0 þ δ0Þ: On the initial boundary C3
ft ¼ t0g; wðx; t0Þ ¼ 0 ≤ uðx; t0Þ. Therefore, w is the subsolution of L in R and thus,
u≥w inR by Theorem 3.3. Hence, the solution u is positive inR:This is true for anyRwith
vertex on the boundary vΩ and thus, u is positive in Ω3 ðt0; t0 þ δ0Þ, because of the
convexity of the domain. Hence the proof is complete. ,
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Appendix
Proofs of Theorem 3.3 and of Proposition 3.9
Here we are going to provide a detailed proof of Theorem 3.3, and Propositions 3.8 and 3.9, since their
results are actually used in the proof of the main theorem.

At first we will depict the proof of Theorem 3.3.

Proof of Theorem 3.3. Following [15], we prove our assertion. For a small δ > 0; let us define the
Lipschitz function fδ by

fδðxÞ: ¼ min
n
1;

xþ
δ

o

Note that fδðv− uÞ∈L∞ðΩTÞ and L∞ð0; T; W 1;p
0 ðΩÞÞ. Let 0 < t1 < t ≤T and σt1 ;t be the Lipschitz cut

off function on time such that

0≤ σt1 ;t≤ 1; σt1 ;t ¼ 1 inðt1 þ δ; t � δÞ and supp �σt1;t

�
⊂ ðt1; tÞ:

Choose an admissible test function σt1 ;t fδðv− uÞ to haveZ
Ωt1 ;t

vtðuqÞσt1 ;t fδðv� uÞ dx dt þ
Z
Ωt1 ;t

j∇ujp−2∇u$∇ðfδðv� uÞÞσt1 ;t dx dt ≥ 0 (A.1)
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and Z
Ωt1 ;t

vtðvqÞσt1;t fδðv� uÞ dx dt þ
Z
Ωt1 ;t

j∇vjp−2∇v$∇ðfδðv� uÞÞσt1 ;t dx dt ≤ 0: (A.2)

Note that

∇ðfδðv� uÞÞ ¼
8<
:

1

δ
ð∇v� ∇uÞ 0 < v� u < δ

0 otherwise

and thus,

∇ðfδðv� uÞÞ ¼ 1

δ
ð∇v� ∇uÞχf0<v−u<δg:

Subtracting (A.1) from (A.2) to haveZ
Ωt1 ;t

vtðvq � uqÞσt1 ;t fδðv� uÞ dx dt þ
Z
Ωt1 ;t

�j∇vjp−2∇v
� j∇ujp−2∇u� 1

δ
3 ð∇v� ∇uÞχf0<v−u<δgσt1 ;t dx dt ≤ 0 (A.3)

by (2.1) in Lemma 2.1, the second term on the left hand side of (A.3) is bounded below as

C

δ

Z
Ωt1 ;t

ðj∇v� ∇ujÞpχf0<v−u<δgσt1 ;t dx dt ≥ 0 (A.4)

for a positive constant C. Thus (A.3) and (A.4) lead toZ
Ωt1 ;t

vtðvq � uqÞfδðv� uÞσt1 ;t dx dt ≤ 0: (A.5)

Since vtðvqÞand vtðuqÞbelong to L2ðΩTÞ, by the Lebesgue dominated convergence theorem, we can take
the limit as δa0 in (A.5) and then obtain, as t1a0,Z

Ω
ðvqðtÞ � uqðtÞÞþdx≤ 0

and thus, vq ≤ uq in Ω, for nonnegative t ≤T, which is equivalent to that vðtÞ≤ uðtÞ in
Ω; for nonnegative t ≤T. Hence the proof is complete. ,

Proposition 3.8 is given by Proposition 3.9. Therefore, we are now going to exhibit the proof of the
Proposition 3.9.

Proof of Proposition 3.9. The proof is similar to [13]. We consider the solution of the corresponding
elliptic equation of (1.1) for the sake of construction of a suitable comparison function and this function
is called Talenti function [17] which is defined as

Ya;b;yðxÞ :¼
�
aþ b jx� yj p

p�1

�−n−p
p

; x; y∈ℝn; (A.6)

where a and b are positive numbers. G. Talenti showed in [17] that this function is the best constant in
Sobolev inequality. Furthermore, a straightforward mathematical calculation reveals that Ya;b is a
solution of the equation

−ΔpYa;b;z ¼ n

�
n� p

p� 1

�p−1

a bp−1Yq
a;b;z in ℝn:
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In [16], Sciunzi showed that solution of this equation is necessarily of the form

Y ðxÞ ¼ Yλ;yðxÞ :¼ 1

λ

�
n

�
n� p

p� 1

�p�1�1
p

 
1þ

�jx� yj
λ

� p
p�1

!−
n−p
p

(A.7)

with a parameter λ > 0. Now what remains to show that a solution of Eqn (1.1) should be extinct at a
finite time.

To proceed further, we assume by a translation that the origin 0∈Ω. Let u ¼ uðx; tÞ be a
nonnegative weak solution to Eqn (1.1). Next, let W ðx; tÞ ¼ XðxÞTðtÞ be a nonnegative separable
solution of

vtW
q � ΔpW ¼ 0 in ℝn 3 ð0; ∞Þ:

Then XðxÞTðtÞ satisfies �
ðTðtÞqÞ0 ¼ μTðtÞp−1 in ð0; ∞Þ
ΔpX ¼ μXq inℝn;

(A.8)

where μ is a separation constant. Applying integration by parts to the first separable function, we see

that the separation constant μ < 0. Let us set X :¼ ð−μÞ− 1
qþ1−pY to obtain

−ΔpY ¼ Yq in ℝn: (A.9)

A finite-energy solution to (A.9) is given by (A.7). By direct computation, we find that

TðtÞ ¼ Tð0Þ
�
1þ μ

qþ 1−p

q
Tð0Þp−ðqþ1Þ

t

� 1
qþ1−p

þ

solves the first equation in (A.8), where Tð0Þ is the initial data. Thus the vanishing time T� of TðtÞ is
given by

T� ¼ ð−μÞ−1 q

qþ 1� p
Tð0Þqþ1−p

:

Let Uðx; tÞ be ð−μÞ− 1
qþ1−pY ðxÞTðtÞ. Then

0 ¼ uðx; tÞ≤Uðx; tÞ on vΩ3 ½0; T�:

We choose the initial data for the ODE in (A.8) as

Tð0Þ :¼
max
Ω

u0

min
Ω

Y
ð−μÞ 1

qþ1−p (A.10)

and therefore, we find that

u0ðxÞ≤Uðx; 0Þ in Ω:

According to Theorem 3.3, we have

uðx; tÞ≤Uðx; tÞ in ΩT
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and thus, the vanishing time T� of uðx; tÞ is estimated as

T�
≤T0 ¼ q

qþ 1� p

�max
Ω

u0

min
Ω

Y

�qþ1−p

;

where (A.10) is used. The proof is complete. ,
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