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Abstract

Purpose —Let by 3(), which enumerates the number of (2, 3)-regular overcubic bipartition of 72. The purpose of
the paper is to describe some congruences modulo 8 for b2 3(%). For example, for each a > 0 and » > 1,
bo3(8n +5) =0 (mod 8), b23(2-3%3n + 4-34+2) =0 (mod 8).

Design/methodology/approach — H.C. Chan has studied the congruence properties of cubic partition

function a(), which is defined by };Oa(n)q” = m

Findings — To establish several cor;gruence modulo 8 for 5213 (n), here the author keeps to the classical spirit of
g-series techniques in the proofs.

Originality/value — The results established in the work are extension to those proved in ¢-regular cubic
partition pairs.
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1. Introduction
A partition A of a natural number # is a finite non-increasing sequence of positive integer
parts 4; (1 <7 < m) such that

%:}.1+/12+).3++ﬂm

In this case, we write |A] = 7. The number of partitions of 7 is denoted by p(#) and the
generating function is given by as follows:

> n 1
n)q" = ———.
2P =1,
Ramanujan’s three famous congruences of p(#) are as follows:
p(Gn+4) =0 (mod>5),
p(Tn+5) =0 (mod7),
p(11n+6) =0 (mod 11).
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In [1-3], H.C. Chan has studied the congruence properties of cubic partition function a(x),
which is defined by as follows:

ia(n)q” S - Ty

‘— (0:90)0(¢% 6%)

B. Kim [4] studied its overpartition analog, the overcubic partition function @(#), which is

defined by as follows:

® . 2.2
an)g = LDl Bl Jo

wr (4:9) (0% ¢%)

n

In[5], M.D. Hirschhorn obtained the results satisfied by a(#), which appeared in Kim’s paper
[4], and Sellers [6] has proved a number of arithmetic properties of a(n) by employing
elementary generating function methods. Zhao and Zhong [7] studied cubic partition pairs,
which are denoted by b(r), and the generating function is as follows:

L) —

=0 (@:9)% (g% ¢®)%

Recently, Kim [8] studied congruence properties of b(n), which denotes overcubic partition
pairs of 7, whose generating function is given by as follows:

o e N2 (2. 2 2

S by _ q,q)go( Zq 72612)00.

g (¢:0) (0% ")
More recently, Lin [9] studied various arithmetic properties of 5(7) modulo 3 and 5. For
example, for any a > 2,7 > 0,

b(3%(3n 4+ 2)) =0 (mod 3),

for a > 0,

b(380-5%) =0 (mod 3).

In [10], Naika and Nayaka have established some congruences for ¢-regular cubic partition
pairs. Let bz3(n) denote the number of (2, 3)-regular overcubic bipartitions of 7, whose
generating function is given by as follows:
00 2 4 4 2
S bsn)g” = (0% 0@’ %) (@' 4") (@5 6% @)
; o 2 2 i :
par (@:9)0 (a5 a°)2, (% 65)2 (0% 42),

In this paper, we establish several congruences modulo 8 for b, 3(12). These results can be found
in Theorems (3.1), and we keep to the classical spirit of g-series techniques in our proofs.

2. Preliminaries
For |ab| < 1, Ramanujan’s general theta function f(g, b) is defined as follows:

f(a, b) — Z a?l(ﬂ+1)/2b7l(ﬂ—l)/2.

Nn=-—00



Some special cases of f(a, b) are as follows: (2, 3)-regular

i overcubic

o(q) oo (% 0%) bipartitions

0

3 n(n+1)/2 (0"
w(a)=flg.¢') =) q =
n=0 (C],C] )°°

121

and

o0

f(=0)=f(-a,=¢") = D> (-1)"q"" " = (g;0),.

Nn=-—0co

Where the product representation of fla, b) arises from Jacobi’s triple product identity
[11, p. 35, Entry 19] as follows:

f(a,b) = (—a;ab) (-b;ad)_(ab;ad),.

The following dissection formulas to prove our main results.

Lemma 2.1. For each prime p and n > 1,

(@:0) = (@s¢). (mod p"). @1)

Lemma 2.2. The following 2-dissections holds:

R U qz) (4" q8)5 g (@50), (@4 ) 99
e e @ “

LS 7' PP C T <q16;q16>2. 03
@©0%  (¢5d)L@%4%) (% %) (0% %)

Lemma (2.2) is a consequence of dissection formulas of Ramanujan, which is collected in
Berndt’s book [11, p. 40, Entry 25].

Lemma 2.3. The following 2-dissections holds:

(@:d)e _ (a" 61) (@) , (%47 o4
@0 (P)L0%0D), @) .
@0s  _ (@40 o @0)e0%d") 25)
(@d)e  @%0%e T (g44)u(d )

(i) _ (@5 g @O0 g

(@05 (@)@ (@),
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Hirschhorn, Garvan and Borwein [12] proved (2.4) and (2.5). For proof of (2.6), see [13].
Lemma 2.4. The following 2-dissections holds:

2 5
1 (qs;qS)m(qlz;qm)oc

. 3.3 2 4 2
(G000 (60 0(0"10") (0% %) (67 6™

5 2
+q (6]4;6]4)00(41245 24)00 @7
1 2 2 .
(0% 0%) (0% 4%) (0% ¢°) (@' 67)
2 4
( . ) ( 3. 3) _ (qz;qz)m(qs;qg)m(‘]u’ 12)00
TV )0 = =0 55 24, 24\2
754 (050") (@507 )
4. 4 6. 6 24, 24\2
(050)0(@:0") (@507 ) 98
B e 8. 82 ( 12, 122 @8)
(050900 (@%07)

Eqn (2.7) was proveg by Baruah and Ojah [14]. Replacing ¢ by — ¢ in (2.7) and using the fact
that (-¢; —q),, = ]%, we get (2.8).
Lemma 2.5. The following 3-dissection hold:
; 4
_ (6%4°)(d% )
- 2
(@ ¢%) (¢ ™)

(0:9), (0% 0 —9(¢%4") o (@"%:4"®)

3. 3\ (18, 184 @9
_Zqz(q TOMUT N
.
(@°:0°) (0" 0"
One can see this identity in [15].
Lemma 2.6. [11, p. 345, Entry 1 (iv)] We have the following 3-dissection
(0% = (@ d")5L (" - 3q +44°8), (2.10)

where

(0% %) (0" %),
‘- (45 0%) (2% )%, @1

3. Congruences modulo 8 for by 3(#n)

Theorem 3.1. Foreach a > 0 and n > 1, we have
by3(6n 4+ 5)=0 (mod 8), 3.1



by3(87 4 5)=0 (mod 8),
by3(12n 4+ 7)=0 (mod 8),
by.3(187 + 15) =0 (mod 8),
by.3(36n +21) =0 (mod 8),
by3(72n + 38) =0 (mod 8),
by.3(72n +51) =0 (mod 8),
by.3(72n +57) =0 (mod 8),
by.3(216n 4+ 99) =0 (mod 8),
b23(216n +171) =0 (mod 8),
by3(8-9%2n 4 57-9*1) =0 (mod 8),
by3(8-9%"n 4 35-9"2) =0 (mod 8),
bo3(2-37n 4 4-372) =0 (mod 8),
bo3(72n + 3) = by3(24n + 1) (mod 8),

by3(36n + 3) =by3(122 + 1) (mod 8).

Proof. Employing (2.4) and (2.5) in (1.1), we have

o _ 4. N8B, 6. 6\3 24, 2412
ZbZ‘S (n)qn — (q27qz)go(q87q8);o(q12aq12);o
=0 (@5 0°) (@50 (0% 07

9 2

AT NUETSNUST N

a qz.q2)7 (qs,qs)z (q12, 12)3

5 2
+3 2(q4;q4)w(q12;q12)00(q24;q24)°o
q(2,25 6. 6 8. 8\2
q 7q )oo(q 7q )oo(q 7q )oo
which implies the generating function as follows:

o0

_ 2. .2\ (3.3
Zb2,3(2n+ 1)qn _ 4((] q );o(q47q4);o - -
=0 (4:9)(@% 4" (0% ¢°)

(32)
(33)
(34)

(3.5)

(3.16)

317

3.18)
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Invoking (2.1) in (3.18), we obtain the generating function as follows:
D a2 £ 10 20005l a0 ) (00 B, 319
Substituting (2.8) into (3.19), we get the generating function as follows:
S s (GO,
= (6% 0"l 0.,

(3.20)

4 (q )L (a5 q") 61) (mod 8).

(%) a (% a™)

Extracting the terms in which powers of ¢ are congruent to 1 modulo 2 from (3.20), we have
the generating function as follows:

i'= (6% 0@ 1)) 0% 0)5,
;b234n+3) =4 vy (qqu(i)m (mod 8). 321)

Invoking (2.1) in (3.21), we obtain as follows:

i bos(4n + 3)q" = 4(¢%; ¢°). (¢°: ¢°). (mod 8). (322)

n=0

Extracting the terms involving ¢** from (3.22), replacing ¢° by ¢, we have the generating
function as follows:

bo(120 + 3)¢" =4(; 9% (¢%: 4°)- (mod 8). (3.23)

Mg

Il
o

n

Employing (2.2) into (3.23), we find the generating function as follows:

szg 121+ 3)g" =4 (;" qq)) (5;6 Zw)) (mod 8). (3.24)
n=0

Extracting the terms involving ¢?* from (3.24), replacing ¢ by ¢, we have the generating
function as follows:

@, (0:9)% (g% q")5,
boa(24n + 3)g" =4 LD s (1154 8y 395
2 b+ "=t sy (Mod®) 629

Invoking (2.1) in (3.25), we get the generating function as follows:

>~ n— (q27 q2)i
> bys(24n +3)g" =4~ (mod 8). (3.26)
= (4:9) s



Ramanujan recorded the following identity in his third note book; for proof, one can see
[11, p. 49].

(@¢)s _ (@5)sd50) , (a%4"), 620
(@0 (@%6°)(0%6%)  ~ (@%¢)

w(g) =

Substituting (3.27) into (3.26), we obtain the generating function as follows

= (6°0%) ("1 ). (%)
bos(24n + 3)q" =4 & o 14 © (mod 8). (3.28)
; 23l = E DS, @, Y

Congruence (3.7) follows from (3.28).

Extracting the terms in which powers of ¢ are congruent to 1 modulo 3 from (3.28), we have
the generating function as follows:

= (% ¢°):

bos(72n + 27)q" =4 =

; 2.3( )q (@ d)..

The results (3.9) and (3.10) follow from (3.29).
From (3.29), we obtain the generating function as follows:

(mod 8). (3.29)

szg 2161 + 27)q v 240

n=0 (q’q o0

(mod 8). (3.30)

Using the congruences (3.30) and (3.26), we can see that
bo3(2160 + 27) = by 3(24n + 3) (mod 8).

By mathematical induction on a, we find that
by3(216-9%n 4 27-9%) = by 3(24n + 3) (mod 8). 3.31)

Using (3.7) in (3.31), we get (3.12).
Extracting the terms involving ¢ from (3.28), replacing ¢> by ¢, we have the generating
function as follows:

s 2
r 2y 0)e(T:0 )

bo3(72n+ 3)q" = TR0 (mod 8). 332

NgE

Il
o

Invoking (2.1) in (3.32), we get the generating function as follows:

i bo3(72n + 3)q" =4(q;q), (mod 8). 3.33)

n=0

From (3.20), we can see that

[=S)

(@:0)% (% 0" (a5 %) s
5(4n +1)g" =4 d8). 3.34
2:; " (4% 2% (0% ¢'2)7, od £) 059
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Invoking (2.1) in (3.34), we have the generating function as follows:

Zb234n+1 =4(¢% %) (q"; 4", (mod 8). (3.35)

Congruence (3.2) follows from (3.34).
Extracting the terms involving ¢ from (3.35), replacing ¢> by ¢, we have the generating
function as follows:

Z bo3(8n +1)q" =4(q;9) . (4% ¢°),, (mod 8). (3.36)
n=0

Employing (2.9) into (3.36), we obtain the generating function as follows:
o 6. 6 9. 9
S b= o Rl

oy (@%0") (a7 g

+49(¢% ¢°) (4" 6") , (mod 8).

4

8

™o

) (337)

Extracting the terms in which powers of ¢ are congruent to 1 modulo 3 from (3.37), we have
the generating function as follows:

Z bo3(24n +9)¢" =4(¢% ¢*) . (¢% ¢°), (mod 8). (3.39)
n=0
The results (3.6) and (3.8) follow from (3.38).
From (3.38), we have the generating function as follows:

by3(24n + 9)¢" =4(4; 9) (6% ¢*), (m0d 8). (3:39)

Ms

Il
o

n

Using the congruences (3.39) and (3.36), we can see that
by5 (721 + 9) = by5(8n + 1) (mod 8).

By mathematical induction on a, we obtain the generating function as follows:

bo5(8-:9 4+ 9"1) =by3(8n + 1) (mod 8). (3.40)

Using (3.8) in (3.40), we get (3.11).
Extracting the terms involving ¢*” from (3.37), replacing ¢° by ¢, we have the generating
function as follows:

0 2. 2 3. 3\
S by (240 + 1) "—4W (mod 8). (3.41)
=0 q:9)\0°:9° )

Invoking (2.1) in (3.41), we get the generating function as follows:

o0

> bya(24n +1)q"=4(q;q)., (mod 8). (342

n=0



Using the congruences (3.33) and (3.42), we obtain (3.14).
From (3.19), it can be rewritten as follows:

0

> bos(2n 4+ 1)q" =4(¢:0) o (6% 6°) (03 6°)s, (mod 8). (343)

n=0

Employing (2.9) into (3.43), we obtain the generating function as follows:

i:5243(2n+1)q”5 4(6133‘]3)’( b) ( )

n=0 (

+4q(q3;qg)w(qg;qg)w(qls;qw)w (mod 8).

(344)

Congruence (3.1) follows from (3.44).
Extracting the terms in which powers of ¢ are congruent to 1 modulo 3 from (3.44), we have
the generating function as follows:

)

D 260+ 3)q" =4(4:0) (0% 0°) (% 0°). (mod 8), (345)

=0
which implies as follows:
S Boal6n + 3)¢" =4(g:0)°. (¢ 4°), (mod ). (3.46)
n=0

Substituting (2.10) into (3.46), we obtain the generating function as follows:

> () (D),
J6n+3)g"= 4 o
2 ual6n @ q) 347)

+4q(¢% ¢°) (% ¢°)2, (mod 8).

Congruence (3.4) follows from (3.47).
Extracting the terms in which powers of g are congruent to 1 modulo 3 from (3.47), we get
the generating function as follows:

> bos(181 +9)q" =4(g: )%, (% ¢°)-, (mod 8). (349)
n=0
Using the congruences (3.48) and (3.46), we find that
52‘3(1874 + 9) = 5213 (6% + 3) (mod 8)

By mathematical induction on a, we obtain the generating function as follows:

bo3(2-3"n + 3°"%) = by5(6n + 3) (mod 8). 349
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Using (3.4) in (3.49), we get (3.13).
From (3.47), we have the generating function as follows:

o V2 (2 g2 3. 13)0
S by (180 + 3)g" =412 )“(fqg.qqi‘;z(q e (1mod 8). (350)
n=0 ’ )

Invoking (2.1) in (3.50), we find that

Zb% 187 + 3)¢" = 4(¢% ¢). (mod 8). (351)

n=0

Congruence (3.5) follows from (3.51).
Extracting the terms involving ¢> from (3.43), replacing ¢° by ¢, we have the generating
function as follows:

= C N2 (2. 2 3. 3\4
Z 61’l-|- 1 n_4(Q7q)OO(?qé_qq2;;(q q )oo (mod 8) (352)
n=0 ) 0

Invoking (2.1) in (3.52), we obtain the generating function as follows:
3" bos(6n + 1)g" =4(¢% ¢?)2, (mod 8). (353)
n=0

Congruence (3.3) easily follows from (3.53).

From (3.51) and (3.53), we have the generating function as follows:

> " b25(36n 4 3)g" =4(g; 9)2, (mod 8) (3.54)
and "

bys(12n 4 1)q" =4(q; ¢)%, (mod 8). (3.55)

[Me

Il
S

n

Using the congruences (3.54) and (3.55), we get internal congruence (3.15).
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