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Abstract

Purpose –The purpose of this article is to determine necessary and sufficient conditions in order that (D,K) to
be an S-accr pair, where D is an integral domain and K is a field which contains D as a subring and S is a
multiplicatively closed subset of D.
Design/methodology/approach – The methods used are from the topic multiplicative ideal theory from
commutative ring theory.
Findings – Let S be a strongly multiplicatively closed subset of an integral domain D such that the ring of
fractions of D with respect to S is not a field. Then it is shown that (D, K) is an S-accr pair if and only if K is
algebraic overD and the integral closure of the ring of fractions ofDwith respect to S inK is a one-dimensional
Pr€ufer domain. Let D, S, K be as above. If each intermediate domain between D andK satisfies S-strong accr*,
then it is shown thatK is algebraic overD and the integral closure of the ring of fractions ofDwith respect to S
is a Dedekind domain; the separable degree ofK over F is finite andK has finite exponent over F, where F is the
quotient field of D.
Originality/value – Motivated by the work of some researchers on S-accr, the concept of S-strong accr* is
introduced and we determine some necessary conditions in order that (D, K) to be an S-strong accr* pair. This
study helps us to understand the behaviour of the rings between D and K.
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1. Introduction
The rings considered in this article are commutative with identity. Modules considered are
unitary modules over commutative rings. We use the abbreviation m.c. subset for
multiplicatively closed subset. The m.c. subsets considered in this article are assumed that
they do not contain the zero element of the ring. This article ismotivated by the researchwork
presented in Refs. [1–4]. LetR be a ring and letM be amodule overR. Recall from [3, Definition
1] that M is said to satisfy (accr) (respectively, (accr*)) if for every submodule N of M and
every finitely generated (respectively, principal) ideal B of R, the increasing sequence of
residuals (N :MB) ⊆ (N :MB

2) ⊆ (N :MB
3) ⊆� � � terminates. We say that a ring satisfies (accr)

(respectively, (accr*)) if it satisfies (accr) (respectively. (accr*)) as amodule over itself. Various
important properties of Noetherian modules and rings were generalized in Refs. [3, 4] to
modules and rings satisfying (accr). It was proved in [3, Theorem 1] that for any R-moduleM,
the properties (accr) and (accr*) are equivalent.

Let M be a module over a ring R. Let S be a m.c. subset of R. We use f.g. for finitely
generated. Recall from [2, pp. 409 and 410] thatM is said to be S-finite if sM⊆ F for some s∈ S
and some f.g. submodule F of M. Also, recall from Ref. [2] that M is called S-Noetherian if
every submodule ofM is anS-finitemodule.We say thatR isS-Noetherian if it isS-Noetherian
as a module over itself. That is, R is S-Noetherian if each ideal of R is S-finite. In Ref. [2],
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D.D. Anderson and T. Dumitrescu stated and proved S-variant of several well-known results
on Noetherian rings to S-Noetherian rings (see [2, Corollaries 5, 7 and Propositions 9, 10]).

Let S be a m.c. subset of a ring R and letM be an R-module. In Ref. [1], Hamed Ahmed and
Hizem Sana introduced the following definition in order to generalize some known results
about Noetherianmodules. An increasing sequence of submodules ofM,N1⊆N2⊆N3⊆� � � is
said to be S-stationary if there exist s ∈ S and k∈N such that sNn ⊆ Nk for all n ≥ k
[1, Definition 2.1]. A submodule N ofM is said to be an extended submodule if there exists an
ideal I of R such thatN5 IM. In [1, Theorem 2.1], it was shown that an S-finite R-moduleM is
S-Noetherian if every extended submodule of M is S-finite. Also, in Ref. [1], the concept of
S-accr modules and S-accr* modules were introduced and investigated. Recall from
[1, Definition 3.1] thatM is said to satisfy S-accr (respectively, S-accr*) if for every submodule
N of M and every f.g. (respectively, principal) ideal B of R, the increasing sequence of
submodules ofM, (N :MB)⊆ (N :MB

2)⊆ (N :MB
3)⊆� � � is S-stationary. In Ref. [1], several results

on (accr) modules were generalized to S-accr modules (see [1, Theorems 3.1, 3.2, and 3.3]).
It was shown in [1, Proposition 3.1] that the properties S-accr and S-accr* are equivalent.

LetM be amodule over a ringR. Recall from Ref. [5] thatM is said to satisfy strong accr* if
for every submodule N of M and every sequence < rn > of elements of R, the increasing
sequence of submodules ofM, (N :Mr1) ⊆ (N :Mr1r2) ⊆ (N :Mr1r2r3) ⊆� � � terminates. Let S be a
m.c. subset of R. We say that M satisfies S-strong accr* if for every submodule N of M and
every sequence< rn >of elements ofR, the increasing sequence of submodules ofM, (N :Mr1)
⊆ (N :Mr1r2) ⊆ (N :Mr1r2r3) ⊆� � � is S-stationary [5]. The ring R is said to satisfy strong accr*
(respectively, S-strong accr*) if R satisfies strong accr* (respectively, S-strong accr*) as a
module over itself. In Ref. [5], some basic properties of rings and modules satisfying S-strong
accr* were proved.

LetM be a module over a ring R. Recall from [6, Exercise 23, p. 295] thatM is said to be a
Laskerian R-module if M is a f.g. R-module and any proper submodule of M is a finite
intersection of primary submodules ofM. R is said to be a Laskerian ring if R is Laskerian as
an R-module.

Let N be a p-primary submodule of an R-module M. N is said to be strongly primary if
pkM ⊆N for some k≥ 1. Recall from [6, Exercise 28, p. 298] that anR-moduleM is said to be a
strongly Laskerian R-module ifM is a f.g. R-module and any proper submodule ofM is a finite
intersection of strongly primary submodules ofM.R is said to be a strongly Laskerian ring ifR
is strongly Laskerian as an R-module.

Let S be a m.c. subset of a ring R. Inspired by the research work presented on S-prime
ideals of R in Ref. [7], the concept of S-primary ideal of R was introduced and its properties
were investigated in Ref. [8]. Recall from Ref. [8] that an ideal q of Rwith q \ S ¼ ∅ is said to
be an S-primary ideal of R if there exists s ∈ S such that for all a, b ∈ R with ab∈ q, we have
either sa∈ q or sb∈

ffiffiffi
q

p
. An S-primary ideal q is said to be S-strongly primary if there exist

s0 ∈ S and n∈N such that s0ð ffiffiffi
q

p Þn ⊆ q. (In Ref. [8], an S-strongly primary ideal of a ring was
referred to as a strongly S-primary ideal.) Let I be an ideal of R such that I ∩ S5 ∅. We say
that I is S-decomposable (respectively, S-strongly decomposable) if I can be expressed as
a finite intersection of S-primary (respectively, S-strongly primary) ideals of R. Recall from
Ref. [8] that R is said to be S-Laskerian (respectively, S-strongly Laskerian) if for any ideal I of
R, either I ∩ S ≠ ∅ or (I :Rs) is S-decomposable (respectively, S-strongly decomposable) for
some s∈ S (In Ref. [8], an S-strongly Laskerian ring was referred to as a strongly S-Laskerian
ring.). Let f : R → S�1R denote the usual homomorphism of rings given by f ðrÞ ¼ r

1. For an
ideal I of R, f�1(S�1I) is called the saturation of I with respect to S and is denoted by SatS(I) or
by S(I).

Let P be a property of rings. Whenever, a ring R is a subring of a ringT, we assume that R
contains the identity element ofT. We denote the collection of all intermediate rings between
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R and T by [R, T]. We say that (R, T) is a P-pair if A satisfies P for each A ∈ [R, T]. For
example, we say that (R, T) is an accr pair (respectively, accr* pair) if A satisfies (accr)
(respectively, (accr*)) for each A ∈ [R, T]. It follows from [3, Theorem 1] that (R, T) is an accr
pair if and only if (R,T)is an accr* pair. Let S be a m.c. subset of a ring R. We say that (R,T) is
an S-accr pair (respectively, S-accr* pair) if A satisfies S-accr (respectively, S-accr*) for each
A∈ [R,T]. It follows from [1, Proposition 3.1] that (R,T) is an S-accr pair if and only if (R,T) is
an S-accr* pair. We use the abbreviation ACCRP (respectively, ACCR*P) for accr pair
(respectively, accr* pair). We use the abbreviation S-ACCRP (respectively, S-ACCR*P) for
S-accr pair (respectively, S-accr* pair). Similarly, one can define the concept of strong accr*
pair (respectively, S-strong accr* pair). We use the abbreviation SACCR*P (respectively,
S-SACCR*P) for strong accr* pair (respectively, S-strong accr* pair). We use the abbreviation
LP (respectively, SLP) for Laskerian pair (respectively, strongly Laskerian pair). We use the
abbreviation S-LP (respectively, S-SLP) for S-Laskerian pair (respectively, S-strongly
Laskerian pair). We use the abbreviation NP (respectively, S-NP) for Noetherian pair
(respectively, S-Noetherian pair).We know from [8, Corollary 3.9(1)] that any S-Laskerian ring
satisfies S-accr. Therefore, it follows that any S-LP is an S-ACCRP. We know from
[8, Corollary 3.9(2)] that any S-strongly Laskerian ring satisfies S-strong accr*. Hence, we
obtain that any S-SLP is anS-SACCR*P. LetR be a subring of a ringT. In Ref. [9] (respectively
[10]), for certain pairs of rings R ⊆ T, necessary and sufficient conditions were determined in
order that (R, T) to be an LP (respectively, ACCRP). A ring R is said to satisfy ACCP if every
increasing sequence of principal ideals of R is stationary. Let S be a m.c. subset of an integral
domainD.We say thatD satisfies S-ACCP if every increasing sequence of principal ideals ofD
is S-stationary [11]. Let T be an integral domain which contains D as a subring. We say that
(D,T ) is an S-ACCP pair ifA satisfies S-ACCP for eachA∈ [D,T]. In Ref. [11], for certain pairs
of domainsD⊆T, necessary and sufficient conditions were determined in order that (D,T) to
be an S-ACCP pair, where S is a m.c. subset of D.

LetD be an integral domain and let S be a m.c. subset ofD. LetK be a field which contains
D as a subring. The aim of this article is to investigate the conditions under which (D,K) is an
S-ACCRP (respectively, S-SACCR*P). In Section 2 of this article, we focus on determining
necessary and sufficient conditions in order that (D, K) to be an S-ACCRP. Recall from
[7, Definition 2] that a m.c. subset S of a ring R is said to be a strongly multiplicatively closed if

for any given elements ðsαÞα∈Λ of S,
� T
α∈Λ

Rsα

�
\ S ≠∅ (equivalently,

 T
s∈S

Rs

!
\ S ≠∅). If S

is a strongly m.c. subset of D such that S�1D is not a field, then it is proved in Theorem 2.12
that the statements (1) (D, K) is an S-ACCRP and (2) K is algebraic over D and the integral
closure of S�1D in K is a one-dimensional Pr€ufer domain are equivalent. Let D, S, K be as in
the statement of Theorem 2.12. It is shown in Corollary 2.14 that the statements (1) (D,K) is an
S-LP and (2)K is algebraic over D and the integral closure of S�1D inK is a Laskerian Pr€ufer
domain are equivalent. Let S be am.c. subset of an integral domainD such that S�1D is a field.
Let us denote S�1D by F. Let K be an extension field of F. If (D, K) is an S-ACCRP, then it is
verified in Lemma 2.17 that tr. deg K/F ≤ 1, where tr. deg K/F denotes the transcendence
degree ofK overF. IfK is algebraic overF, then it is shown in Proposition 2.19 that (D,K) is an
S-SLP and hence, (D,K) is an S-SACCR*P. Several examples are given to illustrate the results
proved in this section (see Examples 2.15, 2.16 and 2.20).

Let S be a m.c. subset of an integral domain D. Let K be a field which contains D as a
subring. The aim of Section 3 of this article is to discuss some results regardingwhen (D,K) is
an S-SACCR*P. Suppose thatD is not a field. Let F denote the quotient field ofD. If (D,K) is an
SACCR*P, then it is proved in Theorem 3.3 that the following statements hold: (1) K is
algebraic overD and the integral closure ofD inK is a Dedekind domain and (2) The separable
degree ofK over F is finite andK has finite exponent over F. Suppose that S�1D is not a field.
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If (D, K) is an S-SACCR*P, then it is deduced in Corollary 3.4 that the following statements
hold: (1)K is algebraic overD and the integral closure of S�1D inK is a Dedekind domain and
(2) The separable degree ofK over F is finite andK has finite exponent over F. It is verified in
Example 3.5 that the field L, an infinite algebraic extension field of Q, constructed by R.
Gilmer [12, Example, p. 520] is such that ðZ;LÞ is an ACCRP but it is not an SACCR*P. Let S
be a countable m.c. subset of an integral domainD such that S�1D is integrally closed but not
a field. Let F be the quotient field of D with char(F) 5 0 (where char(F) denotes the
characteristic of F). With the above hypotheses, it is proved in Corollary 3.6 that the following
statements (1) (D,K) is an S- SLP; (2) (D, K) is an S-SACCR*P; (3) For any T ∈ [D, K] and any
ideal I of T, there exists s ∈ S (depending on I) such that S(I) 5 (I :Ts), K is a finite algebraic
extension of F and moreover, S�1D and the integral closure of S�1D in K are Dedekind
domains; and (4) (D,K) is an S-NP are equivalent. LetD be an integrally closed domain which
is not a field. Let F be the quotient field ofDwith char(F)5 0. LetK be an extension field of F.
With the above hypotheses, it is deduced in Corollary 3.7 that the statements (1) (D, K) is an
SLP; (2) (D,K) is an SACCR*P; (3) [K : F] <∞, and moreoverD and the integral closure ofD in
K are Dedekind domains; and (4) (D, K) is an NP are equivalent. An integral domain T is
provided in Example 3.8 such that the integral closure of T in its quotient field is a Dedekind
domain but T does not satisfy strong accr*. Let S be a m.c. subset of an integral domain D.
Suppose that S�1D 5 F is the quotient filed of D. Let K be an extension field of F. If tr. deg
K/F5 1 and if (D, K) is an S-SACCR*P, then it is deduced in Corollary 3.9 that the following
statements hold. (1) For each α∈K such that α is transcendental overF, the integral closure of
F[α] inK is a Dedekind domain and (2) The separable degree ofK over F(α) is finite andK has
finite exponent overF(α). IfF is a perfect field andK is an extension field of F such that tr. deg
K/F5 1, then it is shown in Corollary 3.10 that the statements (1) (F,K) is an SLP; (2) (F,K) is
an SACCR*P; and (3) (F, K) is an NP are equivalent.

For a ringR, we denote the set of all prime ideals ofR by Spec(R) andwe denote the set of all
maximal ideals ofR byMax(R).Whenever a setA is a subset of a setB andA≠B, we denote it
byA ⊂ B. For a ring R, we denote the group of units of R byU(R) and we denote the set of all
zero-divisors of R by Z(R). The Krull dimension of a ring R is simply referred to as the
dimension of R and is denoted by dim R. For concepts and notations from commutative ring
theory that are not specified in this article, the reader can refer standard text-books in
commutative ring theory (for example [13, 14]).

2. When is (D, K) an S-ACCRP?
Asmentioned in the introduction, the m.c. subsets considered in this article are assumed that
they do not contain 0. Let S be a m.c. subset of an integral domain D. Let K be a field which
containsD as a subring andK is not necessarily the quotient field ofD. The aim of this section
is to determine necessary and sufficient conditions in order that (D, K) to be an S-ACCRP. In
Proposition 2.4, we determine a necessary condition for (D, K) to be an S-ACCRP, where D is
an integral domain such that S�1D is not a field.We use Lemma 2.1 in the proof of Proposition
2.4. For a ring R, we denote the polynomial ring in one variable X over R by R[X].

Lemma 2.1. Let S be a m.c. subset of a ring R. Let r be a non-zero-divisor of R. Let
T 5 R þ (1 þ rX)R[X]. If T satisfies S-accr, then Rr ∩ S ≠ ∅.

Proof. We use some arguments similar to those that were used in the proof of [10, Proposition
1.3]. Let us denote the ideal (1þ rX)T of T by I. By hypothesis, T satisfies S-accr. Hence, the
increasing sequence of ideals of T, (I :Tr) ⊆ (I :Tr

2) ⊆ (I :Tr
3) ⊆� � � is S-stationary. Therefore,

there exist s ∈ S and k∈N such that s(I :Tr
n) ⊆ (I :Tr

k) for all n ≥ k. In particular, s(I :Tr
kþ1) ⊆

(I :Tr
k). Notice that (1 þ rX)Xkþ1

∈ T is such that (1 þ rX)Xkþ1
∈ (I :Tr

kþ1). Hence, s(1 þ rX)
Xkþ1

∈ (I :Tr
k). This implies that s(1þ rX)rkXkþ15 (1þ rX)t for some t ∈ T. Since there is no
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non-zero y ∈ R such that y(1þ rX)5 0, we obtain from [15, Theorem 2] that 1þ rX is a non-
zero-divisor of R[X] and hence a non-zero divisor of T. Hence, it follows from s(1þ rX)rkXkþ1

5 (1þ rX)t, we get that srkXkþ1
∈ T. Notice that srk�1Xk5 s(1þ rX)rk�1Xk� srkXkþ1. From

(1 þ rX)R[X] ⊂ T and srkXkþ1
∈ T, we obtain that srk�1Xk

∈ T. This implies that
sX ∈ T if k5 1. If k ≥ 2, then from srk�2Xk�1 5 s(1þ rX)rk�2Xk�1 � srk�1Xk, it follows that
srk�2Xk�1

∈ T. Proceeding like this, we obtain that sX ∈ T. Hence, sX 5 y þ (1 þ rX)f(X)
for some y ∈ R and f(X) ∈ R[X]. It is clear that f(X) ≠ 0. Since r∉Z(R) by hypothesis, we get
that deg((1þ rX)f(X))5 1 þ deg(f(X)). From 15 deg(sX)5 deg(yþ (1þ rX)f(X)), it follows
that f(X) ∈ R. By comparing the coefficient of X on both sides of sX 5 y þ (1 þ rX)f(X), it
follows that s5 rf(X) ∈ Rr. This proves that s ∈ Rr ∩ S and so, Rr ∩ S ≠ ∅. ,

Corollary 2.2. Let S be am.c. subset of an integral domainD such that S�1D is not a field. Let
K be a field such that D is a subring of K. If K is not algebraic over D, then (D, K) is not an
S-ACCRP.

Proof. By hypothesis, S�1D is not a field. Let d ∈ D\{0} and s ∈ S be such that d
s
∉UðS−1DÞ.

As S ⊆ U(S�1D), it follows that d∉U(S�1D). We are assuming that K is not algebraic over D.
Let α ∈ K be such that α is transcendental over D. Notice that T ¼ D þ ð1þ dαÞ
D½α�∈ ½D;K�. We claim that T does not satisfy S-accr. Suppose that T satisfies S-accr. Since
d is a non-zero-divisor ofD, we obtain from Lemma 2.1 thatDd∩ S≠∅. Therefore, there exist
s1∈ S and d1∈D such that s15 dd1. This implies that d∈U(S�1D) and this is in contradiction
to the choice of d. This proves that T does not satisfy S-accr and so, (D, K) is not an
S-ACCRP. ,

Lemma 2.3. Let S be a m.c. subset of a valuation domain V. If V satisfies S-accr, then dim
(S�1V) ≤ 1.

Proof. If S�1V is a field, then it is clear that dim (S�1V)5 0 < 1. Hence, we can assume that
S�1V is not a field. Hence, dim (S�1V) ≥ 1. We are assuming that V satisfies S-accr. Suppose
that dim (S�1V) > 1. Then it follows that there existsP∈ SpecðS−1V Þ such that heightP > 1
in S�1V. It follows from [13, Proposition 3.11(iv)] that there exist non-zero prime ideals p1 ⊂ p2
ofVwith p2 \ S ¼ ∅ andP ¼ S−1p2. Let x∈ p2n p1. Let y∈ p1 with y ≠ 0. Let us denote the
ideal Vy by I. Notice that for any n∈N, xn ∉ p1 and so, xn∉Vy. Since the set of ideals of V is
linearly ordered by inclusion, we get that y 5 xnvn for some non-unit vn of V. As we are
assuming that V satisfies S-accr, the increasing sequence of ideals of V, (I :Vx) ⊆ (I :Vx

2) ⊆ (I
:Vx

3) ⊆� � � is S-stationary. Hence, there exist s ∈ S and k∈N such that s(I :Vx
n) ⊆ (I :Vx

k)
for all n ≥ k. In particular, s(I :Vx

kþ1) ⊆ (I :Vx
k). It is clear that for any n∈N, (I :Vx

n)5 (Vxnvn
:Vx

n)5Vvn. From y ¼ xnvn ∈ p1 and x
n ∉p1, we get that vn ∈p1. From s(I :Vx

kþ1)⊆ (I :Vx
k), we

obtain that sVvkþ1 ⊆ Vvk. Hence, svkþ1 5 vkw for some w ∈ V. It follows from
y 5 xkþ1vkþ1 5 xkvk that vk 5 xvkþ1. From svkþ1 5 vkw, we get that svkþ1 5 xvkþ1w and
this implies that s ¼ xw∈p2. This is a contradiction, since p2 \ S ¼ ∅. Therefore, if V
satisfies S-accr, then dim (S�1V) ≤ 1. ,

Proposition 2.4. Let S be a m.c. subset of an integral domain D such that S�1D is not a field.
Let K be a field such that D is a subring of K. If (D,K) is an S-ACCRP, then K is algebraic over D
and the integral closure of S�1D in K is a one-dimensional Pr€ufer domain.

Proof.We are assuming that (D.K) is an S-ACCRP. By hypothesis, S�1D is not a field. Hence,
we obtain fromCorollary 2.2 thatK is algebraic overD. LetF be the quotient field ofD. Then F
is also the quotient field of S�1D. Let T ∈ [S�1D, F] with T ≠ F. It is clear that dim T ≥ 1. If
dim T > 1, then we obtain from [12, Corollary 19.7(1)] that there exists a valuation domain
V∈ [S�1D, F] such that dim V> 1. As S�1D⊆V, it follows thatV5 S�1V. By assumption,V
satisfies S-accr. Hence, we obtain from Lemma 2.3 that dim V 5 dim (S�1V) ≤ 1. This is a
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contradiction and so, dim T ≤ 1. Therefore, dim T 5 1 for each T ∈ [S�1D, F] with T ≠ F.
Hence, we obtain from [16, Theorem 6] that the integral closure of S�1D in F is a one-
dimensional Pr€ufer domain. Since the fieldK is an algebraic extension of the field F, using [12,
Theorem 22.3], it can be shown as in the proof of [9, Proposition 2.1] that the integral closure of
S�1D inK is a one-dimensional Pr€ufer domain. ,

Proposition 2.5. Let S be a m.c. subset of a ring R. Let I be an ideal of R with I ∩ S5∅.The
following statements are equivalent:

(1) There exist s ∈ S and an ideal J of R such that J is S-decomposable (respectively,
S-strongly decomposable) and sI ⊆ J ⊆ I.

(2) The ideal S�1I of S�1R admits a primary (respectively, strong primary) decomposition
in S�1R and there exist s0 ∈ S and primary (respectively, strongly primary) ideals
Q1; . . . ;Qn of R such that SðIÞ ¼ ðI :Rs0Þ ¼

Tn
i¼1 Qi withQi \ S ¼ ∅ for each i∈ {1,

. . ., n}.

Proof. (1) 0 (2) We are assuming that there exist s ∈ S and an ideal J of R such that J is S-
decomposable (respectively, S-strongly decomposable) and sI⊆ J⊆ I. Thus, there exist n∈N

and S-primary (respectively, S-strongly primary) ideals q1; . . . ; qn ofR such that J ¼ Tn
i¼1 qi.

Let i ∈ {1, . . ., n}. It follows from (1) 0 (2) of [8, Proposition 2.6] that S−1qi is a primary
(respectively, strongly primary) ideal of S�1R and there exists ti ∈ S such that
SðqiÞ ¼ ðqi:RtiÞ. It follows from [13, Proposition 3.11(v)] that S−1J ¼ Tn

i¼1 S
−1qi. This

proves that S�1J admits a primary (respectively. strong primary) decomposition in S�1R. As
s
1∈UðS−1RÞ, we obtain from sI⊆ J⊆ I that S�1I5 S�1J. Therefore, we get that the ideal S�1I

of S�1R admits a primary (respectively, strong primary) decomposition in S�1R. Let
t ¼Qn

i¼1 ti. Then t ∈ S. Let i ∈ {1, . . ., n}. Notice that ðqi:RtiÞ is a primary (respectively

strongly primary) ideal of R with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðqi:RtiÞ

p \ S ¼ ∅. It is clear that t ¼ tið
Q

j∈f1;...;ngn figtjÞ.
Hence, we obtain from [13, Lemma 4.4 (iii)] that ðqi:RtiÞ ¼ ðqi:RtÞ. This shows that
SðqiÞ ¼ ðqi:RtÞ is a primary (respectively. strongly primary) ideal of R. From J ¼ Tn

i¼1 qi, it
follows that SðJÞ ¼ Tn

i¼1 SðqiÞ ¼
Tn

i¼1ðqi:RtÞ ¼ ððTn
i¼1 qiÞ:RtÞ ¼ ðJ :RtÞ. Let i ∈ {1, . . ., n}.

As s∉
ffiffiffiffiffiffiffiffiffiffiffiffiffiðqi:RtÞ

p
, it follows from [13, Lemma 4.4 (iii)] that ðqi:RtÞ ¼ ðqi:RstÞ. Therefore, we

obtain that S(J)5 (J :Rst). FromS�1I5S�1J and J⊆ I, we get that S(I)5 S(J)5 (J :Rst)⊆ (I :Rst)⊆
S(I). Thus with s0 5 st and Qi ¼ ðqi:Rs0Þ for each i ∈ {1, . . ., n}, we obtain that s0 ∈ S and
SðIÞ ¼ ðI :Rs0Þ ¼

Tn
i¼1 Qi is a primary (respectively. strong primary) decomposition of S(I) in

R with Qi \ S ¼ ∅ for each i ∈ {1, . . ., n}.
(2) 0 (1) By assumption, there exist s0 ∈ S and primary (respectively strongly primary)

idealsQ1; . . . ;Qn of R such that SðIÞ ¼ ðI :Rs0Þ ¼
Tn

i¼1 QiwithQi \ S ¼ ∅ for each i∈ {1,
. . ., n}. Let i ∈ {1, . . ., n}. Let us denote s0Qi by qi. It is clear that qi \ S ¼ ∅. As Qi is a

primary ideal ofRwith
ffiffiffiffiffiffi
Qi

p
\ S ¼ ∅, it follows that ðs0Qi:Rs

0Þ ¼ Qi. Hence, we obtain from
(2)0 (1) of [8, Proposition 2.4] that qi is an S-primary (respectively, S-strongly primary) ideal

ofR. Let us denote s0(I :Rs0) by J. SinceQi is a primary ideal ofR and
ffiffiffiffiffiffi
Qi

p
\ S ¼ ∅, we obtain

that J ¼ s0ðI :Rs0Þ ¼ s0ðTn
i¼1 QiÞ ¼

Tn
i¼1 s

0Qi ¼
Tn

i¼1 qi is S-decomposable (respectively.
S-strongly decomposable). Notice that s0I ⊆ s0(I :Rs0)5 J ⊆ I. ,

Corollary 2.6. Let S be a m.c. subset of a ring R. The following statements are equivalent:

(1) R is S -Laskerian (respectively, S -strongly Laskerian).

(2) Given an ideal I of R with I ∩ S5 ∅, there exist s ∈ S and an ideal J of R such that J is
S -decomposable (respectively, S-strongly decomposable) with sI ⊆ J ⊆ I.
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(3) S�1R is Laskerian (respectively. strongly Laskerian) and for any ideal I of R with I ∩
S 5 ∅, there exists s0 ∈ S such that S(I) 5 (I :Rs

0).

Proof. (1) 5 (3) This is (1) 5 (2) of [8, Proposition 3.2].
(2)0 (3) Let A be any proper ideal of S�1R. Then it follows from [13, Proposition 3.11

(i) and (ii)] that there exists an ideal I of R such that I ∩ S5 ∅ and A 5 S�1I. By (2), there
exist s ∈ S and an ideal J of R such that J is S-decomposable (respectively. S-strongly
decomposable) with sI ⊆ J ⊆ I. Hence, we obtain from (1) 0 (2) of Proposition 2.5 that
A 5 S�1I admits a primary (respectively, strong primary) decomposition in S�1R and
there exists s0 ∈ S such that S(I)5 (I :Rs

0) admits a primary (respectively, strong primary)
decomposition in R. This proves that S�1R is Laskerian (respectively, strongly
Laskerian) and given an ideal I of R with I ∩ S 5 ∅, there exists s0 ∈ S such that S(I)
5 (I :Rs

0).
(3)0 (2) Let I be an ideal of Rwith I ∩ S5∅. It was shown in the proof of (2)0 (1) of [8,

Proposition 3.2] that there exist n ≥ 1 and primary (respectively, strongly primary) ideals
q1; . . . ; qn ofR such that SðIÞ ¼ ðI :Rs0Þ ¼

Tn
i¼1 qiwith qi \ S ¼ ∅ for each i∈ {1, . . ., n}. Let

J 5 s0(I :Rs0). Then it is already verified in the proof of (2) 0 (1) of Proposition 2.5 that J is
S-decomposable (respectively, S-strongly decomposable) and s0I ⊆ J ⊆ I.

,
Recall from Ref. [7] that a m.c. subset S of a ring R is said to be strongly multiplicatively

closed if

 T
s∈S

Rs

!
\ S ≠∅. In Ref. [17], strongly multiplicatively closed subsets are referred to

as m.c. subsets satisfying maximal multiple condition. Let S be a strongly m.c. subset of an
integral domain D such that S�1D is not a field. In Theorem 2.12, we provide a necessary and
sufficient condition in order that (D,K) to be an S-ACCRP, whereK is a field which containsD
as a subring.

Lemma 2.7. Let S be a strongly m.c. subset of a ring R. Then there exists s ∈ S such that S(I)
5 (I :Rs) for any ideal I of R.

Proof.By hypothesis, S is a stronglym.c. subset ofR. Hence, there exists s∈ S such that s∈Rt
for all t ∈ S. Let I be any ideal of R. It is clear that (I :Rs) ⊆ S(I). Let r ∈ S(I). Then there
exists t∈ S such that tr∈ I. As s∈Rt, it follows that sr∈ I. This shows that S(I)⊆ (I :Rs) and so,
S(I) 5 (I :Rs). ,

Lemma 2.8. Let S be a m.c. subset of a ring R. If S�1R satisfies (accr) and if for any ideal I of
R, there exists s ∈ S (depending on I) such that S(I) 5 (I :Rs), then R satisfies S-accr.

Proof. It can be proved using arguments similar to those that were used in the proof of
[5, Lemma 2.6] that R satisfies S-accr*. We know from [1, Proposition 3.1] that the properties
S-accr and S-accr* are equivalent. Therefore, we obtain that R satisfies S-accr. ,

Lemma 2.9. Let S be a m.c. subset of a ring R. If S�1R is Laskerian (respectively, strongly
Laskerian) and if for any ideal I of R, there exists s ∈ S (depending on I) such that S(I)5 (I :Rs),
then R is S-Laskerian (respectively, S-strongly Laskerian).

Proof. This follows from (3) 0 (1) of Corollary 2.6. ,

Corollary 2.10. Let S be a strongly m.c. subset of a ring R. The following statements are
equivalent:

(1) R satisfies S-accr.

(2) S�1R satisfies (accr).
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Proof. (1)0 (2)We are assuming thatR satisfies S-accr. If a ringT satisfiesM-accr, whereM
is any m.c. subset of T, then we know from [1, Example 3.1(3)] that M�1T satisfies (accr*).
Hence, we get that S�1R satisfies (accr*). Since the properties (accr) and (accr*) are equivalent
by [3, Theorem 1], we obtain that S�1R satisfies (accr).

(2)0 (1) We are assuming that S�1R satisfies (accr). By hypothesis, S is a strongly m.c.
subset ofR. Hence, we obtain from Lemma 2.7 that there exists s∈ S such that S(I)5 (I :Rs) for
all ideals I of R. It now follows from Lemma 2.8 that R satisfies S-accr. ,

Corollary 2.11. Let S be a strongly m.c. subset of a ring R. The following statements are
equivalent:

(1) R is S-Laskerian (respectively, S-strongly Laskerian).

(2) S�1R is Laskerian (respectively, strongly Laskerian).

Proof. (1) 0 (2) This follows from (1) 0 (3) of Corollary 2.6.
(2)0 (1) With the help of Lemmas 2.7 and 2.9, this can be proved as in the proof of (2)0

(1) of Corollary 2.10. ,

Theorem2.12. Let S be a strongly m.c. subset of an integral domain D such that S�1D is not
a field. Let K be a field which contains D as a subring. The following statements are equivalent:

(1) (D, K) is an S-ACCRP.

(2) K is algebraic over D and the integral closure of S�1D in K is a one-dimensional Pr€ufer
domain.

Proof. (1)0 (2) This follows from Proposition 2.4. The proof of (1)0 (2) does not need the
assumption that S is a strongly m.c. subset of D.

(2)0 (1) LetT∈ [D,K]. We claim that S�1T satisfies (accr). This is clear if S�1T is a field.
Hence, we can assume that S�1T is not a field. Therefore, dim (S�1T) ≥ 1. Let D1 denote the
integral closure of S�1D in K and let D2 denote the integral closure of S

�1T in K. As S�1D ⊆
S�1T, it is clear thatD1 is a subring of D2. FromK is algebraic over D, we obtain thatK is the
quotient field ofDi for each i∈ {1, 2}. ThusD2 is an overring ofD1. By assumption,D1 is a one-
dimensional Pr€ufer domain. Hence, we obtain from [12, Theorem 26.1(1)] that D2 is a Pr€ufer
domain and dim D2≤ dim D15 1. AsD2 is integral over S

�1T, we obtain from [12, 11.8] that
dim (S�1T) 5 dim D2. From dim (S�1T) ≥ 1, we get that dim D2 ≥ 1 and so, dim D2 5 1.
Therefore, it follows that dim (S�1T)5 1. As S�1T is a one-dimensional integral domain, we
obtain from [3, Theorem 6] that S�1T satisfies (accr). Since S is a strongly m.c. subset of D, it
follows that S is a strongly m.c.subset ofT. As S�1T satisfies (accr), we obtain from (2)0 (1)
of Corollary 2.10 that T satisfies S-accr. This proves that (D, K) is an S-ACCRP. ,

Let D be an integral domain which is not a field. It is clear that S5U(D) is a strongly m.c.
subset of D. Let K be a field which contains D as a subring. Notice that S�1D 5 D and if
T ∈ [D, K], then T satisfies S-accr if and only if T satisfies (accr). Hence, the following
Corollary 2.13 is an immediate consequence of Theorem 2.12.

Corollary 2.13. [10, Proposition 2.1] Let D be an integral domain which is not a field. Let K
be a field which contains D as a subring. The following statements are equivalent:

(1) (D, K) is an ACCRP.

(2) K is algebraic over D and the integral closure of D in K is a one-dimensional Pr€ufer
domain.

Corollary 2.14. Let S be a strongly m.c. subset of an integral domain D such that S�1D is not
a field. Let K be a field which contains D as a subring. The following statements are equivalent:

When is (D, K)
an S-accr pair?

107



(1) (D, K) is an S-LP.

(2) K is algebraic over D and the integral closure of S�1D in K is a Laskerian Pr€ufer
domain.

Proof. (1) 0 (2) Let T ∈ [D, K]. By hypothesis, T is S-Laskerian. Hence, we obtain from [8,
Corollary 3.9(1)] that T satisfies S-accr* and so, we obtain from [1, Proposition 3.1] that T
satisfies S-accr. This shows that (D,K) is an S-ACCRP. Therefore, it follows from (1)0 (2) of
Theorem 2.12 that K is algebraic over D and the integral closure of S�1D in K is a one-
dimensional Pr€ufer domain. Moreover, for anyT∈ [D,K],T is S-Laskerian and so, we obtain
from (1)0 (3) of Corollary 2.6 that S�1T is Laskerian. If A ∈ [S�1D, K], then A5 S�1T for
some T ∈ [D, K]. Hence, we get that A is Laskerian and so, (S�1D, K) is an LP. Therefore, we
obtain that the integral closure of S�1D in K is a Laskerian Pr€ufer domain. Notice that the
proof of (1)0 (2) of this proposition does not need the assumption that the m.c. subset S is
strongly multiplicatively closed.

(2)0 (1) Let S−1D denote the integral closure of S�1D in K. By (2), K is algebraic over D

and S−1D is a Laskerian Pr€ufer domain. By hypothesis, S�1D is not a field. Hence, we obtain
from the if part of [9, Proposition 2.1] that (S�1D, K) is an LP. Let T ∈ [D, K]. Then S�1T is
Laskerian. As S is a strongly m.c. subset of D, we get that S is a strongly m.c. subset of T.
Hence, we obtain from (2) 0 (1) of Corollary 2.11 that T is S-Laskerian. This proves that
(D, K) is an S-LP. ,

Example 2.15. Let fpig∞i¼1 be the sequence of positive primes ofZ. In [12, Example 42.6] R.

Gilmer constructed an infinite algebraic extension F ofQ such thatZ*, the integral closure of

Z in F, is such that Z* is an almost Dedekind domain with the property that p1 belongs to

infinitely many maximal ideals of Z*. Notice that dimZ* ¼ 1 and as Z*p1 admits an infinite

number of prime ideals minimal over it, we get that Z* is not Laskerian. Hence, ðZ;FÞ is not
an LP. Since F is algebraic overZand the integral closure ofZ inF is a one-dimensional Pr€ufer
domain, we obtain from (2) 0 (1) of Corollary 2.13 that ðZ;FÞ is an ACCRP.

,
In Example 2.16, we provide an example of a domain T and a m.c. subset S of T such that

S�1T is a one-dimensional valuation domain but (T, L) is not an S-ACCRP (where L is the
quotient field of T) thereby illustrating that (2)0 (1) of Theorem 2.12 can fail to hold if the
hypothesis in Theorem 2.12 that S is a strongly m.c. subset is omitted.

Example 2.16. LetK be a field and letK(X) be the field of rational functions in one variable
X overK. LetV5K(X)[[Y]] be the power series in one variableY overK(X). Letm ¼ VY . Let
D5K[X]XK[X] and letT ¼ D þm. Let S ¼ Tnm. Then S is am.c. subset ofT and (T,L) is not
an S-ACCRP, where L is the quotient field of T.

Proof. It is well-known that V5 K(X)[[Y]] is a discrete valuation ring (for example, refer [18,
p. 322]). Notice that m ¼ VY is the only non-zero prime ideal of V. It is clear that
V ¼ KðXÞ þm. We know from [13, Example (2), p. 94] that D 5 K[X]XK[X] is a discrete
valuation ring. Since D is a valuation domain with quotient field K(X), it follows from [19,
Theorem 2.1(h)] thatT ¼ D þm is a valuation domain and as dim D5 dim V5 1, we obtain
from [19, Theorem 2.1(f)] that dim T5 2. Since T

m≅D as rings andD is an integral domain, we
get thatm∈ SpecðTÞ. Let S ¼ Tnm. Fromm∈ SpecðTÞ, it follows that S is am.c. subset ofT.
Notice that S−1T ¼ Tm. We claim that Tm ¼ V . It is clear that Tm ⊆V . Let v ∈ V. As
V ¼ KðXÞ þmandK(X) is the quotient field ofD, it follows that v ¼ a

b
þm for some a, b∈D

with b≠ 0 andm∈m. This implies that v ¼ aþbm
b
. From aþ bm∈T and b∈Tnm, we get that
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v∈Tm. This proves that V ⊆Tm and so, V ¼ Tm. Hence, S
�1T is a one-dimensional

valuation domain. We know from [13, Proposition 5.18 (iii)] that S�1T is integrally closed.
Thus ifL is the quotient field ofT, thenS�1T is the integral closure of S�1T inL and it is a one-
dimensional valuation domain. We claim that T does not satisfy S-accr. Suppose that T
satisfies S-accr. Let us denote the ideal TY by I. As T satisfies S-accr by assumption, the
increasing sequence of ideals ofT, (I :TX)⊆ (I :TX

2)⊆ (I :TX
3)⊆� � � is S-stationary. Hence, there

exist s∈ S and k∈N such that s(I :TX
n)⊆ (I :TX

k) for all n≥ k. Let r∈N. Notice thatY ¼ Y
XrX

r

and hence, it follows that ðI :TXrÞ ¼
�
T
�
Y
Xr

�
Xr:TX

r
�
¼ T Y

Xr. From s(I :TX
n) ⊆ (I :TX

k) for all

n ≥ k, we obtain that sT Y
Xn ⊆T Y

Xk. This implies that s∈
T∞

r¼1 TX
r. It is clear thatT∞

r¼1 TX
r ¼ ðT∞

r¼1 DX
rÞ þm. Since D is a discrete valuation ring, we get thatT∞

r¼1 DX
r ¼ ð0Þ. Hence, we obtain that s∈

T∞

r¼1 TX
r ¼ m. This is impossible, since

S ¼ Tnm. Therefore, we obtain that T does not satisfy S-accr and so, (T, L) is not an
S-ACCRP. ,

Let F be a field and let K be an extension field of F. Let S be a m.c. subset of F. As each
element of S is a unit in F, it follows that (F, K) is an S-ACCRP (respectively, S-LP) if and
only if (F,K) is an ACCRP (respectively, LP). The reader can refer [10, p. 320] (respectively,
[9, pp. 94 and 95]) for the solution to the problem of when (F, K) is an ACCRP
(respectively, LP).

LetK be an extension field of a field F. We denote the transcendence degree ofK over F by
the notation tr. deg K/F.

Let S be a m.c. subset of an integral domain D such that S�1D is a field. Then S�1D is
necessarily the quotient field of D. Let K be a field which contains D as a subring. Let us
denote S�1D by F. It is clear thatK is an extension field of F. If (D,K) is an S-ACCRP, then we
verify in Lemma 2.17 that tr. deg K/F ≤ 1. If K is algebraic over F, then we verify in
Proposition 2.19 that (D, K) is an S-SACCR*P. We use Lemma 2.18 in the proof of
Proposition 2.19.

Lemma 2.17. Let S be a m.c. subset of an integral domain D such that S�1D is a field. Let K
be an extension field of S�1D. If (D,K) is an S-ACCRP, then tr. deg K/S�1D≤ 1. In particular, if
(D, K) is an S-LP, then tr. deg K/S�1D ≤ 1.

Proof. Let us denote S�1D by F. Then F is necessarily the quotient field of D. Suppose that
tr. deg K/F > 1. Then it is possible to find X, Y ∈ K such that {X, Y} is algebraically
independent overF. Observe thatS is am.c. subset ofF[X] and S⊆U(F)5U(F[X]). As (D,K) is
an S-ACCRP by hypothesis, it follows that (F[X], F(X, Y)) is an S-ACCRP. From S ⊆ U(F[X]),
we get that (F[X], F(X, Y)) is an ACCRP. Since F[X] is not a field, we obtain from (1)0 (2) of
Corollary 2.13 that F(X,Y) is algebraic overF[X]. This is a contradiction and so, we obtain that
tr. deg K/S�1D ≤ 1.

Assume that (D, K) is an S-LP. We know from [8, Corollary 3.9(1)] and [1, Proposition 3.1]
that any S-Laskerian ring satisfies S-accr. Hence, (D, K) is an S-ACCRP and therefore, we
obtain that tr. deg K/S�1D ≤ 1.

,

Lemma2.18. Let S be am.c. subset of an integral domain D such that S�1D is a field. Then D
is S-strongly Laskerian and so, D satisfies S- strong accr*.

Proof.As S�1D is a field, we get that S�1D is strongly Laskerian. Let I be any ideal ofDwith I
∩ S5∅. Then S�1I5 (0) and so, I5 (0). It is clear that S(I)5 (0)5 ((0) :Ds) for any s∈S. Hence,
we obtain from (3) 0 (1) of Corollary 2.6 that D is S-strongly Laskerian. We know from [8,
Corollary 3.9(2)] that any S-strongly Laskerian ring satisfies S-strong accr*. Hence, we obtain
that D satisfies S-strong accr*. ,
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Proposition 2.19. Let S be a m.c. subset of an integral domain D such that S�1D is a field.
Let K be an extension field of S�1D such that K is algebraic over D.Then (D,K) is an S-SLP and
so, (D, K) is an S-SACCR*P.

Proof. Let T ∈ [D, K]. Then S is a m.c. subset of T. If T is a field, then it is clear that T is
S-strongly Laskerian. Suppose that T is not a field. By hypothesis, K is algebraic over D and
as S�1D is a field, it follows that K is integral over S�1D. Notice that S�1T ∈ [S�1D, K]. As
S�1T is integral over S�1D, we obtain from [13, Proposition 5.7] that S�1T is a field. It now
follows from Lemma 2.18 thatT is S-strongly Laskerian. This proves that (D,K) is an S-SLP.
As any S-strongly Laskerian ring satisfies S-strong accr* by [8, Corollary 3.9(2)], we obtain
that (D, K) is an S-SACCR*P. ,

In Example 2.20, we provide an example of a domain T and a m.c. subset S of T such that
(T, L) is an S-SACCR*P but (T, L) is not an ACCRP, where L is the quotient field of T.

Example 2.20. Let V ;T;m be as in the statement of Example 2.16. Let
S ¼ fYnj n∈N∪f0gg. Then S is a m.c. subset of T, (T, L) is an S-SACCR*P but (T, L) is
not an ACCRP, where L is the quotient field of T.

Proof. In the notation of Example 2.16,m ¼ VY andm is the only non-zero prime ideal of V.
The integral domain T ¼ D þm is such that m is an ideal of both T and V. Now,
S ¼ fYnj n∈N∪f0gg is a m.c. subset of T. Notice that S�1T 5 S�1V 5 L, where L is the
quotient field ofT. It now follows from Proposition 2.19 that (T, L) is an S-SLP and so, (T, L) is
an S-SACCR*P. It is clear that if a ring satisfies S-strong accr*, then it satisfies S-accr*. We
know from [1, Proposition 3.1] that the properties S-accr and S-accr* are equivalent.
Therefore, we obtain that (T, L) is an S-ACCRP. AsT is a two-dimensional valuation domain,
it follows from Lemma 2.3 that T does not satisfy (accr). Indeed, it is already observed in the
proof of Example 2.16 that T does not satisfy S1-accr, where S1 ¼ Tnm. Thus (T, L) is an
S-SACCR*P but (T, L) is not an ACCRP. ,

Proposition 2.21. Let S be a stronglym.c. subset of an integral domainD such that S�1D is a
field. Let us denote S�1D by F. Let K be an extension field of F such that tr. deg K/F5 1. Then
the following statements are equivalent:

(1) (D, K) is an S-ACCRP.

(2) For each α∈K such that α is transcendental over F, the integral closure of F[α] in K is a
one-dimensional Pr€ufer domain.

Proof. (1) 0 (2) We are assuming that (D.K) is an S-ACCRP. Let α ∈ K be such that
α is transcendental over F. Notice that F[α] is not a field. Now, (F[α], K) is an S-ACCRP. As
S ⊆U(F[α]), it follows that (F[α],K) is indeed an ACCRP. Therefore, we obtain from (1)0 (2)
of Corollary 2.13 that the integral closure of F[α] inK is a one-dimensional Pr€ufer domain. It is
clear that (1)0 (2) of this proposition does not need the assumption that them.c. subset S ofD
is a strongly m.c. subset of D.

(2) 0 (1) Let T ∈ [D, K]. Let L denote the quotient field of T. By hypothesis,
tr. deg K/F5 1. Hence, either L is algebraic over F or tr. deg L/F5 1. If L is algebraic over
F, then it follows from Proposition 2.19 that (D, L) is an S-SLP and asT∈ [D, L], we get that
T satisfies S-strong accr* and so,T satisfies S-accr. Suppose that tr. deg L/F5 1. Let t∈T
be such that t is transcendental over F. Notice that T ∈ [D[t], K]. It is clear that S is
a strongly m.c. subset of D[t] and S�1(D[t]) 5 F[t] is not a field. From tr. deg K/F 5 1, it
follows thatK is algebraic over D[t]. By assumption, the integral closure of S�1(D[t]) inK is
a one-dimensional Pr€ufer domain. Hence, we obtain from (2) 0 (1) of Theorem 2.12 that
(D[t],K) is an S-ACCRP. Since T ∈ [D[t],K], we get that T satisfies S-accr. This proves that
(D.K) is an S-ACCRP. ,
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Proceeding as in the proof of Proposition 2.21, the following Proposition 2.22 can be
proved with the help of Corollary 2.14 and Proposition 2.19.

Proposition 2.22. Let S be a stronglym.c. subset of an integral domainD such that S�1D is a
field. Let us denote the field S�1Dby F.Let K be an extension field of F such that tr. deg K/F5 1.
The following statements are equivalent:

(1) (D, K) is an S-LP.

(2) For each α∈K such that α is transcendental over F, the integral closure of F[α] in K is a
Laskerian Pr€ufer domain.

3. When is (D, K) an S-SACCR*P?
Let S be a m.c. subset of an integral domain D such that S�1D is not a field. Let K be a field
which contains D as a subring. The aim of this section is to determine when (D, K) is an
S-SACCR*P. Let S be a m.c. subset of a ring R such that R satisfies S-strong accr*. Then it is
clear that R satisfies S-accr* and hence, it follows from [1, Proposition 3.1] that R satisfies
S-accr. Thus if (D, K) is an S-SACCR*P, then (D, K) is an S-ACCRP. In Corollary 3.4, we
determine some necessary conditions for (D,K) to be anS-SACCR*P. First, we state and prove
some preliminary results that are useful for solving some of the problems considered in this
section.

Let R be a ring. It is well-known that the set of all nilpotent elements of R forms an ideal of
R and is called the nilradical of R [13, Proposition 1.7]. We denote the nilradical of R by nil(R).
Recall from [20, p. 466] that a sequence< xn >of elements ofR is said to beT-nilpotent if there

exists k∈N such that
Qk

i¼1 xi ¼ 0.

Lemma3.1. Let S be am.c. subset of a ring R. If R satisfies S-strong accr*, then for any ideal I
of R and for any sequence< xn >of elements of

ffiffi
I

p
, there exist s∈ S and k∈N (depending on I

and the sequence < xn >) such that s
Qn

j¼1 xj ∈ I for all n ≥ k.

Proof. Let I be any ideal of R and let< xn > be any sequence of elements of
ffiffi
I

p
. We consider

the following cases.

Case(1): I ∩ S ≠ ∅.

Let s ∈ I ∩ S. Then s
Qn

j¼1 xj ∈ I for all n ≥ 1.

Case(2): I ∩ S 5 ∅.

As I ∩ S5∅, we obtain from [13, Proposition 3.11 (ii)] that S�1I ≠ S�1R. As R satisfies S-
strong accr* by hypothesis, it follows from [5, Lemma 2.4] that S�1R satisfies strong accr*.

That is, S�1R satisfies (C) in the notation of [21]. From S�1R satisfies (C), it follows that S−1R
S−1I

satisfies (C). Hence, we obtain from [21, Lemma 1.2] that nil
 
S−1R
S−1I

!
is T-nilpotent. Notice that

nil
 
S−1R
S−1I

!
¼

ffiffiffiffiffiffiffi
S−1I

p
S−1I

.We know from [13, Proposition 3.11 (v)] that S−1
ffiffi
I

p ¼
ffiffiffiffiffiffiffiffiffi
S−1I

p
. It is clear that

for each n∈N, xn1 þ S−1I ∈ nil
 
S−1R
S−1I

!
. From nil

 
S−1R
S−1I

!
is T-nilpotent, we get that there exists

k∈N such that
Qk

j¼1

�
xj
1 þ S−1I

�
¼ 0þ S−1I. This implies that

Qk
j¼1

xj
1 ∈S−1I. Hence, there

exists s ∈ S such that s
Qk

j¼1 xj ∈ I. Let n ≥ k. Then it is clear that s
Qn

j¼1 xj ∈ I. ,

Let S be a m.c. subset of a ring R such that R is S-Laskerian. In Lemma 3.2, we determine
necessary and sufficient conditions in order that R to satisfy S-strong accr*.
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Lemma 3.2. Let S be a m.c. subset of a ring R such that R is S-Laskerian. The following
statements are equivalent:

(1) R satisfies S-strong accr*.

(2) For any ideal I of R and for any sequence< xn >of elements of
ffiffi
I

p
, there exist s∈ S and

k∈N such that s
Qn

j¼1 xj ∈ I for all n ≥ k.

(3) For any primary ideal qof R and for any sequence< xn >of elements of
ffiffiffi
q

p
, there exist

s ∈ S and k∈N such that s
Qn

j¼1 xj ∈ q for all n ≥ k.

Proof. (1) 0 (2) This follows from Lemma 3.1.
(2) 0 (3) This is clear.
(3)0 (1) Let I be any ideal of R and < rn > be any sequence of elements of R. We verify

that the increasing sequence of ideals of R, (I :Rr1)⊆ (I :Rr1r2)⊆ (I :Rr1r2r3)⊆� � � is S-stationary.
First, we verify the above assertion in the case I ¼ q is a primary ideal of R. Let q be
p-primary. Observe that p ¼ ffiffiffi

q
p

. We consider the following cases:

Case(i): There exists k∈N such that ri ∉ p for each i∈Nwith i ≥ k.

In such a case, for any n∈Nwith n≥ k,
Qn

i¼k ri ∉p. Hence, we obtain from [13, Lemma 4.4
(iii)] that ðq:R

Qn
i¼k riÞ ¼ q for all n ≥ k. Therefore, for all n ≥ k, ðq:R

Qn
i¼1 riÞ ¼ q in the case

k 5 1. If k ≥ 2, then for all n ≥ k, ðq:R
Qn

i¼1 riÞ ¼ ðq:R
Qk−1

i¼1 riÞ.
Case(ii): There exist positive integers k1 < k2 < k3 < � � � such that rkj ∈ p for each j ≥ 1.

By (3), there exist s ∈ S and j0 ∈N such that s
Qj

i¼1 rki ∈ q for all j ≥ j0. Hence, for all

n≥ kj0, sðq:R
Qn

i¼1 riÞ⊆Rs⊆ ðq:R
Qkj0

i¼1 riÞ.
This shows that for any primary ideal qofR and for any sequence< rn >of elements ofR,

the increasing sequence of ideals ofR, ðq:Rr1Þ⊆ ðq:Rr1r2Þ⊆ ðq:Rr1r2r3Þ⊆ � � � is S-stationary.
Let I be any ideal ofR and let< rn >be any sequence of elements ofR. Suppose that I∩ S≠

∅. Let s ∈ I ∩ S. Then for all n ≥ 1, sðI :R
Qn

i¼1 riÞ⊆Rs⊆ I ⊆ ðI :Rr1Þ. Suppose that I ∩ S5 ∅.
Since R is S-Laskerian by hypothesis, we obtain from the proof of (2) 0 (3) of Corollary 2.6
that there exists s0 ∈S such that (I :Rs

0) admits a primary decomposition inR. Hence, there exist

t ∈N and primary ideals q1; . . . ; qt ofR such that ðI :Rs0Þ ¼
Tt

i¼1 qi. Let i∈ {1, . . ., t}. Since qi
is a primary ideal of R, it follows as shown above that there exist si ∈ S and ki ∈N such that

siðqi:R
Qn

j¼1 rjÞ⊆ ðqi:R
Qki

j¼1 rjÞ for all n ≥ ki. Let s ¼
Qt

i¼1 si and let k 5 max(k1, . . ., kt).

Now, s∈Sandforalln≥k, sððI :Rs0Þ:R
Qn

j¼1 rjÞ ¼ sððTt
i¼1 qiÞ:R

Qn
j¼1 rjÞ⊆

Tt
i¼1 siðqi:R

Qn
j¼1 rjÞ

⊆
Tt

i¼1ðqi:R
Qk

j¼1 rjÞ ¼ ððTt
i¼1 qiÞ:R

Qk
j¼1 rjÞ ¼ ððI :Rs0Þ:R

Qk
j¼1 rjÞ. This implies that for all

n≥k,ss0ðI :R
Qn

i¼1 riÞ⊆ ðI :R
Qk

i¼1 riÞ.
This shows that for any ideal I of R and for any sequence < rn > of elements of R, the

increasing sequence of ideals of R, (I :Rr1) ⊆ (I :Rr1r2) ⊆ (I :Rr1r2r3) ⊆� � � is S-stationary.
Therefore, we obtain that R satisfies S-strong accr*. ,

Theorem3.3. Let D be an integral domain which is not a field. Let F be the quotient field of D.
Let K be an extension field of F. If (D, K) is an SACCR*P, then the following hold:

(1) K is algebraic over F and the integral closure of D in K is a Dedekind domain.

(2) The separable degree of K over F is finite and K has finite exponent over F.

Proof. (1) If a ringT satisfies strong accr*, thenT satisfies (accr*) and hence by [3, Theorem 1],
we get thatT satisfies (accr). We are assuming that (D,K) is an SACCR*P. Therefore, (D,K) is
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an ACCRP. Hence, we obtain from (1)0 (2) of Corollary 2.13 thatK is an algebraic extension
of F and the integral closure of D in K is a one-dimensional Pr€ufer domain. Let �D denote the
integral closure of D in K. Notice that �D is a Pr€ufer domain, dim �D ¼ 1, and it satisfies strong
accr*. That is, the Pr€ufer domain �D satisfies (C) in the notation of [21]. Hence, we obtain from
[21, Proposition 2.3] that �D is Noetherian. Therefore, each non-zero fractional ideal of �D is f.g.
and as �D being a Pr€ufer domain, it follows that each non-zero fractional ideal of �D is invertible.
Hence, we obtain from [13, Theorem 9.8] that �D is a Dedekind domain. Let S5 {1}. It follows
from (2)0 (1) of Corollary 2.14 that (D,K) is an S-LP. As S5 {1}, we get that (D,K) is an LP.

(2) Let L be the maximal separable subfield ofK over F. We claim that [L: F] <∞. Suppose
that [L: F] is not finite. Let α1∈ L\F. Let [F(α1): F]5 n1. Then n1 > 1. Notice that L is an infinite
algebraic and separable extension of F(α1). Hence, we obtain from [22, Lemma 1, p. 194] that
there exists α2 ∈ L such that [F(α1, α2): F(α1)] 5 n2 > n1. Since the separable algebraic
extension L over F is assumed to be an infinite extension, by repeated use of [22, Lemma 1,
p. 194], it is possible to find positive integers 1 < n1 < n2 < n3 < � � � and an infinite sequence
< αk > of elements from L such that [F(α1): F] 5 n1 and for each k ≥ 2, [F(α1, α2, . . ., αk):
F(α1, . . ., αk�1)] 5 nk.

The remaining part of the proof is suggested by the proof of [23, Lemma 3] and the proof of
[9, Proposition 2.12]. Notice that as F is the quotient field ofD, there exists y1∈D\{0} such that
the irreducible polynomial of y1α1 overF has coefficients inD and its degree isn1. It is clear that
y1α1 ∈ F(α1) is integral over D. Set z15 y1α1. It is clear that D[z1] is a free D-module with basis

f1; z1; . . . ; zn1−11 g. By hypothesis,D is not a field. Hence, it is possible to find a non-zero element
d∈D such that d∉U(D). Let us denote the ringD[dz1] byD1. It is clear thatF(α1) is the quotient
field of D1, D1 is a free D-module with basis f1; dz1; . . . ; ðdz1Þn1−1g, and D1 is an integral
extension ofD. Observe that the irreducible polynomial of α2 over F(α1) is of degree n2 and it is
possible to find y2 ∈ D1\{0} such that the irreducible polynomial of y2α2 over F(α1) has
coefficients in D1. Set z2 5 y2α2. It is clear that z2 is integral over D1 and D1[z2] is a free D1-

module with basis f1; z2; . . . ; zn2−12 g. Let us denote D1[dz2] by D2. Notice that F(α1, α2) is the
quotient field ofD2,D2 is a freeD1-module with basis f1; dz2; . . . ; ðdz2Þn2−1g, andD2 is integral
overD1. Proceeding like this, we obtain a strictly increasing sequence of subrings of L,D1⊂D2

⊂ D3 ⊂ � � � such that for each k ≥ 1, Dk 5 Dk�1[dzk] (with D0 5 D) is a free Dk�1- module with

basis f1; dzk; . . . ; ðdzkÞnk−1g, andDk is integral overDk�1. Also,F(α1, . . ., αk) is the the quotient
field ofDk for each k∈N and by the choice of zk, it is clear that zk is integral overDk�1 for each
k≥ 1. Let us denote the ring

S∞

k¼1 Dk byT. SinceD1 is integral overD andD2 is integral overD1,
it follows from [13, Corollary 5.4] thatD2 is integral overD. Let k≥ 2. Assume it is verified that
Dk is integral overD. AsDkþ1 is integral overDk, we obtain from [13, Corollary 5.4] thatDkþ1 is
integral over D. This proves that T ¼ S∞

k¼1 Dk is integral over D. Also, observe that zk is
integral over D for each k ≥ 1. Notice that

S∞

k¼1 Fðα1; . . . ; αkÞ is the quotient field of T. Now,
T∈ [D, L] and asL is a subfield ofK and (D,K) is an SACCR*P by hypothesis, it follows thatT

satisfies strong accr*. Let I ¼ Td þP∞

k¼1 Tdzk. We assert that
ffiffi
I

p ¼ ffiffiffiffiffiffi
Td

p
. As Td ⊆ I, it is

clear that
ffiffiffiffiffiffi
Td

p
⊆

ffiffi
I

p
. Let p∈ SpecðTÞ be such that d∈ p. Let us denote the ring

S∞

k¼1 D½zk�by
T1. Notice thatT is a subring ofT1. From zk is integral overD for each k≥ 1, it follows thatT1 is
integral over T. Now, it follows from [13, Theorem 5.10] that there exists q∈SpecðT1Þ such
that q \ T ¼ p. Notice that d∈ q and as zk ∈ T1 for each k ≥ 1, it follows that IT1 5 T1d.
Therefore, IT1 ⊆ q. Hence, I ⊆ IT1 \ T ⊆ q \ T ¼ p. Let VðTdÞ ¼ fp∈ SpecðTÞj p⊇Tdg.
We know from [13, Proposition 1.14] that

ffiffiffiffiffiffi
Td

p ¼ Tp∈V ðTdÞp and so, we get that I ⊆
ffiffiffiffiffiffi
Td

p
. It

follows from [13, Exercise 1.13 (ii), page 9] that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Td

pp ¼ ffiffiffiffiffiffi
Td

p
. Hence, we obtain thatffiffi

I
p

⊆
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Td

pp ¼ ffiffiffiffiffiffi
Td

p
. Therefore,

ffiffi
I

p ¼ ffiffiffiffiffiffi
Td

p
. Now,T satisfies strong accr* and< dzn > is a
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sequence of elements of T such that dzn ∈
ffiffi
I

p ¼ ffiffiffiffiffiffi
Td

p
for each n∈N. Hence, by applying

Lemma 3.1 with S 5 {1}, we obtain that there exists k∈N such that
Qn

i¼1 dzi ∈Td for each

n ≥ k. Thus
Qk

i¼1 dzi ∈Td \ Dk. Observe that Dj is a free Dj�1-module with basis

f1; dzj; . . . ; ðdzjÞnj−1g for each j ≥ 1 (where, D0 5 D) and from d ∈ D, it follows that

Djd∩Dj�15Dj�1d for each j≥ 1. Hence, we obtain from
Qk

i¼1 dzi ∈Td \ Dk that
Qk

i¼1 dzi ∈Dkd.

If k 5 1, then we get that dz1 ∈ D1d. Observe that D1d ¼ Dd þ Ddðdz1Þ þ � � � þ Ddðdz1Þn1−1.
Therefore, dz1 ∈Dd þ Ddðdz1Þ þ � � � þ Ddðdz1Þn1−1—— (1). Hence, by comparing the coefficient
of dz1 on both sides of (1), it follows that 1∈Dd. This is impossible, since d is not a unit ofD. Suppose

that k ≥ 2. Notice that
Qk−1

i¼1 dzi ∈Dk−1. It is clear that ðQk−1
i¼1 dziÞdzk ∈Dkd ¼ Dk−1dþ

Dk−1dðdzkÞ þ � � � þ Dk−1dðdzkÞnk−1——- (2). Hence, by comparing the coefficient of dzk on both

sides of (2), it follows that
Qk−1

i¼1 dzi ∈Dk−1d. Proceeding like this, we get that dz1 ∈ D1d and this is
already verified to be impossible. Therefore,T does not satisfy strong accr*. This is in contradiction
to the assumption that (D,K) is an SACCR*P. Therefore, the separable degree ofK over Fmust be
finite.

If char(F) 5 0, then K is separable over F and so, L 5 K, where L is the maximal
separable subfield of K over F. Suppose that char(F) 5 p > 0. We claim that Kpn ⊆L

for some n ≥ 1. Suppose that Kpn?L for each n ≥ 1. Then it is possible to find a sequence
< βk > of elements of K and positive integers 1 < n1 < n2 < n3 < � � � such that n1 is

least with the property that βp
n1

1 ∈L and for each k ≥ 2, nk is least with the property

that βp
nk

k ∈Lðβ1; . . . ; βk−1Þ. Notice that ½Lðβ1Þ : L� ¼ pn1 and for each k ≥ 2, ½Lðβ1; . . . ; βkÞ :
Lðβ1; . . . ; βk−1Þ� ¼ pnk. Since �D is the integral closure of D in K, it follows that �D \ L is the
integral closure of D in L. It is convenient to denote �D \ L by E. As L is algebraic over F, it
follows that L is the quotient field ofE. Observe that the irreducible polynomial of β1 over L
is Xpn1 − βp

n1

1 . Since L is the quotient field of E, there exists v1 ∈ E\{0} such that the
irreducible polynomial of v1β1 has coefficients in E. Set w1 5 v1β1. It is clear that w1 is

integral over E and E[w1] is a free E-module with basis f1;w1; . . . ;w
pn1−1
1 g. Since E is

integral over D andD is not a field, we obtain from [13, Proposition 5.7] that E is not a field.
Let a ∈ E\{0} be such that a∉U(E). Let us denote the ring E[aw1] by A1. Notice that A1 is a

freeE-module with basis f1; aw1; . . . ; ðaw1Þp
n1−1g. Since L(β1) is the quotient field ofA1, it is

possible to find v2 ∈ A1\{0} such that the irreducible polynomial of v2β2 has coefficients in
A1. Set w2 5 v2β2. It is clear that w2 is integral over A1 and A1[w2] is a free A1-module with

basis f1;w2; . . . ;w
pn2−1
2 g. Let us denote the ringA1[aw2] byA2. Observe thatA2 is a freeA1-

module with basis f1; aw2; . . . ; ðaw2Þp
n2−1g, A2 is integral over A1 and L(β1, β2) is the

quotient field ofA2. Proceeding like this, it is possible to find a strictly increasing sequence
of subringsA1 ⊂ A2 ⊂ A3 ⊂ � � � ofK such that for each k ≥ 1, Ak5Ak�1[awk] is a freeAk�1-

module with basis f1; awk; . . . ; ðawkÞp
nk−1g (where we set A0 5 E). Let us denote the ringS∞

k¼1 Ak by A. It is clear that A ∈ [E, K] and it can be shown as in the previous paragraph
thatA does not satisfy strong accr*. This is in contradiction to the assumption that (D,K) is
an SACCR*P. Therefore, there exists n ≥ 1 such that Kpn ⊆L.

Thus if (D,K) is an SACCR*P, thenK is algebraic overD, the integral closure ofD inK is a
Dedekind domain, the separable degree ofK over F is finite andK has finite exponent over F,
where F is the quotient field of D. ,

Corollary 3.4. Let S be am.c. subset of an integral domainD such that S�1D is not a field. Let
F be the quotient field of D. Let K be an extension field of F. If (D,K) is an S-SACCR*P, then the
following hold:
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(1) K is algebraic over F and the integral closure of S�1D in K is a Dedekind domain.

(2) The separable degree of K over F is finite and K has finite exponent over F.

Proof. LetA∈ [S�1D,K]. Notice thatA5 S�1T for someT∈ [D,K]. By hypothesis,T satisfies
S-strong accr*. Hence, we obtain from [5, Lemma 2.4] that S�1T satisfies strong accr*. This
shows that (S�1D,K) is an SACCR*P. By hypothesis, S�1D is not a field and it is clear that F is
the quotient field ofS�1D. Hence, (1) and (2) of this corollary follow from (1) and (2) of Theorem
3.3. ,

In Example 3.5, we provide an infinite algebraic extension field L ofQ such that ðZ;LÞ is
an ACCRP but ðZ;LÞ is not an SACCR*P.

Example 3.5. In [12, Example, p. 520], R. Gilmer showed that it is possible to find a
sequence ftig∞i¼1 of algebraic integers such that the integral closure ofZ inL ¼ Qðftig∞i¼1Þ is a
Dedekind domain. Since anyDedekind domain is a one-dimensional Pr€ufer domain, we obtain
from (2)0 (1) of Corollary 2.13 that ðZ;LÞ is an ACCRP. SinceQ is the quotient field ofZand
L is an infinite separable extension field ofQ , we obtain fromTheorem 3.3(2) that ðZ;LÞ is not
an SACCR*P. ,
Let S be a countable m.c. subset of an integral domain D such that S�1D is integrally closed
but it is not a field. Let F be the quotient field ofD. Let char(F)5 0. LetK be an extension field
of F. We verify in Corollary 3.6 that (D, K) is an S-SACCR*P if and only if (D, K) is an S- NP.

Corollary 3.6. Let S be a countable m.c. subset of an integral domain D such that S�1D is not
a field and S�1D is integrally closed. Let F be the quotient field of D and let char(F)5 0. Let K be
an extension field of F. The following statements are equivalent:

(1) (D, K) is an S-SLP.

(2) (D, K) is an S-SACCR*P.

(3) For any T∈ [D,K] and any ideal I of T, there exists s∈ S (depending on I) such that S(I)
5 (I :Ts) and K is a finite algebraic extension of F. Moreover, S�1D and the integral
closure of S�1D in K are Dedekind domains.

(4) (D, K) is an S-NP.

Proof. (1) 0 (2) Let T ∈ [D, K]. Then by assumption, T is S-strongly Laskerian. Hence, we
obtain from [8, Corollary 3.9(2)] thatT satisfies S-strong accr*. This shows that (D,K) is an S-
SACCR*P.

(2)0 (3)We are assuming that (D,K) is an S-SACCR*P. LetT∈ [D,K]. As S is a countable
m.c. subset of T and T satisfies S-strong accr*, we obtain from (i)0 (ii) of [5, Theorem 2.7]
that for any ideal I ofT, there exists s∈ S (depending on I) such that S(I)5 (I :Ts). As (D,K) is
an S-SACCR*P, we obtain from Corollary 3.4(1) that K is algebraic over F and the integral
closure of S�1D in K is a Dedekind domain. Notice that (D, F) is an S-SACCR*P. By
hypothesis, S�1D is integrally closed. Hence, S�1D is the integral closure of S�1D in F.
Therefore, we obtain from Corollary 3.4(1) that S�1D is a Dedekind domain. By hypothesis,
char(F)5 0. Hence,K is a separable extension of F. Therefore, we obtain from Corollary 3.4(2)
that [K : F] < ∞.

(3) 0 (4) Now, as S�1D is a Dedekind domain, S�1D is Noetherian and dim S�1D 5 1.
Since [K : F] <∞, it follows from Krull-Akizuki Theorem [24, Theorem 11.7] that (S�1D,K) is
an NP. LetT∈ [D,K]. Then S�1T∈ [S�1D,K] and so, S�1T is Noetherian. By (3), for any ideal
I of T, there exists s ∈ S (depending on I) such that S(I) 5 (I :Ts). Hence, we obtain from [2,
Proposition 2.2(f)] that T is S-Noetherian. This proves that (D, K) is an S-NP.

(4)0 (1) We are assuming that (D,K) is an S-NP. LetT∈ [D,K]. AsT is S-Noetherian, we
obtain from [8, Corollary 3.3] thatT is S-strongly Laskerian. Therefore, (D,K) is an S-SLP.,
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Applying Corollary 3.6 with S 5 {1}, we obtain the following corollary.

Corollary 3.7. Let D be an integrally closed domain which is not a field. Let F be the quotient
field of D with char(F) 5 0. Let K be an extension field of F. The following statements are
equivalent:

(1) (D, K) is an SLP.

(2) (D, K) is an SACCR*P.

(3) K is a finite algebraic extension of F.Moreover, D and the integral closure of D in K are
Dedekind domains.

(4) (D, K) is an NP.

Example 3.8 mentioned below provides an integral domainT such that the integral closure of
T in its quotient field is a Dedekind domain but T does not satisfy strong accr*.

Example 3.8. Let L ¼ Qðftig∞i¼1Þ be as mentioned in Example 3.5. The field L was
constructed by R. Gilmer (see [12, Example, p. 520]). Notice that L is an infinite algebraic
extension ofQ. It was already verified in [12, Example, p. 520] that any integrally closed domain
betweenZandL is either a field or a Dedekind domain. SinceL is an infinite separable extension
ofQ, proceeding as in the proof of Theorem 3.3(2), it is possible to find a subringT ofL such that
T does not satisfy strong accr*. It follows from [8, Corollary 3.9(2)] that T is not strongly
Laskerian. Observe that the integral closure of T in its quotient field is a Dedekind domain.

As the integral closure of Z in L is a Dedekind domain (and hence, a one-dimensional Pr€ufer
domain), it follows from (2)0 (1) of Corollary 2.13 that ðZ;LÞ is an ACCRP (indeed, it follows
from [9, Proposition 2.1] that ðZ;LÞ is an LP). It is noted in the previous paragraph that
T ∈ ½Z;L� is such that T does not satisfy strong accr* and hence, ðZ;LÞ is not an SACCR*P.
Thus the ring T is Laskerian and it does not satisfy strong accr*. As T is not strongly
Laskerian, we get that ðZ;LÞ is not an SLP. ,

Corollary 3.9. Let S be a m.c. subset of an integral domain D such that S�1D is a field. Let us
denote S�1D by F. Let K be an extension field of F such that tr. deg K/F 5 1. Let α ∈ K be
transcendental over F. If (D, K) is an S-SACCR*P, then the following hold.

(1) The integral closure of F[α] in K is a Dedekind domain.

(2) The separable degree of K over F(α) is finite and K has finite exponent over F(α).

Proof.Weare assuming that (D,K) is anS-SACCR*P. Letα∈K be such thatα is transcendental
over F. As S ⊆ U(F) 5 U(F[α]), it follows that S�1(F[α]) 5 F[α] is not a field. By hypothesis,
tr. deg K/F5 1 and so, K is algebraic over F(α). As (F[α], K) is an SACCR*P, we obtain from
Theorem 3.3(1) that the integral closure of F[α] in K is a Dedekind domain. This proves (1).

From Theorem 3.3(2), we get that the separable degree of K over F(α) is finite and K has
finite exponent over F(α). This proves (2). ,

Recall from [22, p. 190] that a field F is said to be perfect if either char(F) 5 0 or if
char(F) 5 p > 0, then Fp 5 F.

Corollary 3.10. Let K be an extension field of a perfect field F such that tr. deg K/F 5 1.
Then the following statements are equivalent:

(1) (F, K) is an SLP.

(2) (F, K) is an SACCR*P.

(3) (F, K) is an NP.
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Proof. (1) 0 (2) This is clear, since we know from [8, Corollary 3.9(2)] that any strongly
Laskerian ring satisfies strong accr*.

(2)0 (3) Let T ∈ [F, K]. If T is algebraic over F, then it follows from [13, Proposition 5.7]
that T is a field. Suppose that T is not algebraic over F. Let t ∈ T be such that t is
transcendental over F. Since (F[t], K) is an SACCR*P, it follows from Theorem 3.3(2) that the
separable degree ofK overF(t) is finite andK has finite exponent overF(t). By hypothesis,F is
a perfect field. Hence, it can be shown as in the proof of [9, Corollary 2.16] that [K : F(t)] <∞.
Now, A5 F[t] is a Noetherian domain and dim A5 1 (indeed, A is a principal ideal domain).
Notice that K is a finite algebraic extension of the quotient field of A and hence, we obtain
fromKrull-Akizuki Theorem [24, Theorem 11.7] that (F[t],K) is an NP. AsT∈ [F[t],K], we get
that T is Noetherian. This shows that (F, K) is an NP.

(3)0 (1) This is clear, since any Noetherian ring is strongly Laskerian. ,
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