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100 Abstract

Purpose — The purpose of this article is to determine necessary and sufficient conditions in order that (D, K) to
be an S-accr pair, where D is an integral domain and K is a field which contains D as a subring and S'is a
Eec?ivzdzysluly 2%21 o091 multiplicatively closed subset of D.
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Accopted 21 September 2021 geiglﬁgrgszli?éotlgegym?pproach The methods used are from the topic multiplicative ideal theory from
Findings — Let S be a strongly multiplicatively closed subset of an integral domain D such that the ring of
fractions of D with respect to S is not a field. Then it is shown that (D, K) is an S-accr pair if and only if K is
algebraic over D and the integral closure of the ring of fractions of D with respect to Sin K is a one-dimensional
Priifer domain. Let D, S, K be as above. If each intermediate domain between D and K satisfies S-strong accr*,
then it is shown that K is algebraic over D and the integral closure of the ring of fractions of D with respect to S
is a Dedekind domain; the separable degree of K over F'is finite and K has finite exponent over F, where F'is the
quotient field of D.
Originality/value — Motivated by the work of some researchers on S-accr, the concept of S-strong accr™* is
introduced and we determine some necessary conditions in order that (D, K) to be an S-strong accr* pair. This
study helps us to understand the behaviour of the rings between D and K.
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1. Introduction

The rings considered in this article are commutative with identity. Modules considered are
unitary modules over commutative rings. We use the abbreviation m.c. subset for
multiplicatively closed subset. The m.c. subsets considered in this article are assumed that
they do not contain the zero element of the ring. This article is motivated by the research work
presented in Refs.[1-4]. Let R be a ring and let M be a module over R. Recall from [3, Definition
1] that M is said to satisfy (accr) (respectively, (accr*)) if for every submodule N of M and
every finitely generated (respectively, principal) ideal B of R, the increasing sequence of
residuals (V :B) € (N :3B%) € (N :3,B%) C- - - terminates. We say that a ring satisfies (accr)
(respectively, (accr*)) if it satisfies (accr) (respectively. (accr*)) as a module over itself. Various
important properties of Noetherian modules and rings were generalized in Refs. [3, 4] to
modules and rings satisfying (accr). It was proved in [3, Theorem 1] that for any R-module M,
the properties (accr) and (accr*) are equivalent.

Let M be a module over a ring R. Let S be a m.c. subset of R. We use f.g. for finitely
generated. Recall from [2, pp. 409 and 410] that M is said to be S-finite if sM C F for some s € S
and some f.g. submodule F of M. Also, recall from Ref. [2] that M is called S-Noetherian it
every submodule of M is an S-finite module. We say that R is S-Noetherian if it is S-Noetherian
as a module over itself. That is, R is S-Noetherian if each ideal of R is S-finite. In Ref. [2],
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D.D. Anderson and T. Dumitrescu stated and proved S-variant of several well-known results
on Noetherian rings to S-Noetherian rings (see [2, Corollaries 5, 7 and Propositions 9, 10]).

Let Sbheam.c. subset of a ring R and let M be an R-module. In Ref. [1], Hamed Ahmed and
Hizem Sana introduced the following definition in order to generalize some known results
about Noetherian modules. An increasing sequence of submodules of M, Ny C N, C N3 C- - - is
said to be S-stationary if there exist s € S and k€ N such that sN,, C N, for all n > k
[1, Definition 2.1]. A submodule N of M is said to be an extended submodule if there exists an
ideal I of R such that N = IM. In[1, Theorem 2.1], it was shown that an S-finite R-module M is
S-Noetherian if every extended submodule of M is S-finite. Also, in Ref. [1], the concept of
S-accr modules and S-accr® modules were introduced and investigated. Recall from
[1, Definition 3.1] that M is said to satisfy S-accr (respectively, S- accr*) if for every submodule
N of M and every f.g. (respectively, principal) ideal B of R, the increasing sequence of
submodules of M, N :3B) € (N ;8% € (N ;a4 Bg - -1s S-stationary. In Ref. [1], several results
on (accr) modules were generalized to S-accr modules (see [1, Theorems 3.1, 3.2, and 3.3)).
It was shown in [1, Proposition 3.1] that the properties S-accr and S-accr™* are equivalent.

Let Mbe a module over a ring R. Recall from Ref. [5] that M is said to satisfy strong accr* if
for every submodule N of M and every sequence < 7, > of elements of R, the increasing
sequence of submodules of M, (IV :p71) € (N ppr172) € (N pp17073) C- - - terminates. Let She a
m.c. subset of R. We say that M satisfies S-strong accr* if for every submodule NV of M and
every sequence < 7, > of elements of R, the increasing sequence of submodules of M, (V1)
C (N :pr170) © (N :ppri7ors) C- - - is S-stationary [5]. The ring R is said to satisfy strong accr*
(respectively, S-strong accr*) if R satisfies strong accr* (respectively, S-strong accr*) as a
module over itself. In Ref. [5], some basic properties of rings and modules satisfying S-strong
accr* were proved.

Let M be a module over a ring R. Recall from [6, Exercise 23, p. 295] that M is said to be a
Laskerian R-module if M is a f.g. R-module and any proper submodule of M is a finite
intersection of primary submodules of M. R is said to be a Laskerian ring if R is Laskerian as
an R-module.

Let N be a p-primary submodule of an R-module M. N is said to be strongly primary if
p*M C N for some % > 1. Recall from [6, Exercise 28, p. 298] that an R-module M is said to be a
strongly Laskerian R-module if M is a f.g. R-module and any proper submodule of M is a finite
intersection of strongly primary submodules of M. R is said to be a strongly Laskerian ving if R
is strongly Laskerian as an R-module.

Let S be a m.c. subset of a ring R. Inspired by the research work presented on S-prime
ideals of R in Ref. [7], the concept of S-primary ideal of R was introduced and its properties
were investigated in Ref. [8]. Recall from Ref. [8] that an ideal g of R with ¢ N S = @ is said to
be an S-primary ideal of R if there exists s € S such that for all @, b € R with ab € q, we have
either sa € q or sb € /9. An S-primary ideal ¢ is said to be S-strongly primary if there exist
s’ € Sandn € Nsuch thats'(/q )" € q.(InRef.[8], an S-strongly primary ideal of a ring was
referred to as a strongly S-primary ideal.) Let I be an ideal of R such that In S = @&. We say
that [ is S-decomposable (respectively, S-strongly decomposable) if I can be expressed as
a finite intersection of S-primary (respectively, S-strongly primary) ideals of R. Recall from
Ref. [8] that R is said to be S-Laskerian (respectively, S-strongly Laskerian) if for any ideal I of
R, either In S # @ or ([ :gs) is S-decomposable (respectively, S-strongly decomposable) for
some s € S (In Ref. [8], an S-strongly Laskerian ring was referred to as a strongly S-Laskerian
ring). Let : R — S 'R denote the usual homomorphism of rings given by f(7) = % For an
ideal 7 of R, £~ (S~'1) is called the saturation of I with respect to S and is denoted by Sats(l) or
by S@).

Let Pbe a property of rings. Whenever, a ring R is a subring of a ring 7, we assume that R
contains the identity element of 7. We denote the collection of all intermediate rings between
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R and T by [R, T]. We say that (R, T) is a P-pair if A satisfies P for each A € [R, T). For
example, we say that (R, T) is an accr pair (respectively, accr® pair) if A satisfies (accr)
(respectively, (accr®)) for each A € [R, T). It follows from [3, Theorem 1] that (%, 7) is an accr
pair if and only if (R, T)is an accr™ pair. Let Sbe a m.c. subset of a ring R. We say that (R, T) is
an S-accr pair (respectively, S-accr* pair) if A satisfies S-accr (respectively, S-accr®) for each
A €[R, T]. It follows from [1, Proposition 3.1] that (R, 7) is an S-accr pair if and only if (R, 7) is
an S-accr* pair. We use the abbreviation ACCRP (respectively, ACCR*P) for accr pair
(respectively, accr™* pair). We use the abbreviation S-ACCRP (respectively, S-ACCR*P) for
S-accr pair (respectively, S-accr* pair). Similarly, one can define the concept of strong accr*
pair (respectively, S-strong accr* pair). We use the abbreviation SACCR*P (respectively,
S-SACCR*P) for strong accr* pair (respectively, S-strong accr™* pair). We use the abbreviation
LP (respectively, SLP) for Laskerian pair (respectively, strongly Laskerian pair). We use the
abbreviation S-LP (respectively, S-SLP) for S-Laskerian pair (respectively, S-strongly
Laskerian pair). We use the abbreviation NP (respectively, S-NP) for Noetherian pair
(respectively, S-Noetherian pair). We know from[8, Corollary 3.9(1)] that any S-Laskerian ring
satisfies S-accr. Therefore, it follows that any S-LP is an S-ACCRP. We know from
[8, Corollary 3.9(2)] that any S-strongly Laskerian ring satisfies S-strong accr*. Hence, we
obtain that any S-SLP is an S-SACCR*P. Let R be a subring of a ring 7. In Ref. [9] (respectively
[10]), for certain pairs of rings R C T, necessary and sufficient conditions were determined in
order that (R, T) to be an LP (respectively, ACCRP). A ring R is said to satisfy ACCP if every
increasing sequence of principal ideals of R is stationary. Let Sbe a m.c. subset of an integral
domain D. We say that D safisfies S-ACCPif every increasing sequence of principal ideals of D
is S-stationary [11]. Let T be an integral domain which contains D as a subring. We say that
(D, T)isan S-ACCP pair if A satisfies S-ACCP for each A €[D, T7. In Ref.[11], for certain pairs
of domains D C T, necessary and sufficient conditions were determined in order that (D, 7) to
be an S-ACCP pair, where S is a m.c. subset of D.

Let D be an integral domain and let She a m.c. subset of D. Let K be a field which contains
D as a subring. The aim of this article is to investigate the conditions under which (D, K) is an
S-ACCRP (respectively, SSSACCR*P). In Section 2 of this article, we focus on determining
necessary and sufficient conditions in order that (D, K) to be an SSACCRP. Recall from
[7, Definition 2] that a m.c. subset S of a ring R is said to be a strongly multiplicatively closed if

for any given elements (S4),ep 0f S, ( N Rsa> N S # @ (equivalently, (ﬂRs) NS#Q).IfS
aEA SES

is a strongly m.c. subset of D such that S'D is not a field, then it is proved in Theorem 2.12
that the statements (1) (D, K) is an SSACCRP and (2) K is algebraic over D and the integral
closure of S™'D in K is a one-dimensional Priifer domain are equivalent. Let D, S, K be as in
the statement of Theorem 2.12. It is shown in Corollary 2.14 that the statements (1) (D, K) is an
S-LP and (2) K is algebraic over D and the integral closure of S~*D in K is a Laskerian Priifer
domain are equivalent. Let Sbe a m.c. subset of an integral domain D such that S™'Dis a field.
Let us denote S~'D by F. Let K be an extension field of F. If (D, K) is an S-ACCRP, then it is
verified in Lemma 2.17 that #7.deg K/F < 1, where fr.deg K/F denotes the transcendence
degree of K over F. If K is algebraic over F, then it is shown in Proposition 2.19 that (D, K) is an
S-SLP and hence, (D, K) is an S-SACCR*P. Several examples are given to illustrate the results
proved in this section (see Examples 2.15, 2.16 and 2.20).

Let S be a m.c. subset of an integral domain D. Let K be a field which contains D as a
subring. The aim of Section 3 of this article is to discuss some results regarding when (D, K) is
an S-SACCR*P. Suppose that D is not a field. Let F'denote the quotient field of D. If (D, K) is an
SACCR*P, then it is proved in Theorem 3.3 that the following statements hold: (1) K is
algebraic over D and the integral closure of D in K is a Dedekind domain and (22 The separable
degree of K over F'is finite and K has finite exponent over F. Suppose that S~ "D is not a field.



If (D, K) is an S-SACCR*P, then it is deduced in Corollary 3.4 that the following statements
hold: (1) K is algebraic over D and the integral closure of S~'D in K is a Dedekind domain and
(2) The separable degree of K over F'is finite and K has finite exponent over F. It is verified in
Example 3.5 that the field L, an infinite algebraic extension field of Q, constructed by R.
Gilmer [12, Example, p. 520] is such that (Z, L) is an ACCRP but it is not an SACCR*P. Let S
be a countable m.c. subset of an integral domain D such that S~'D s integrally closed but not
a field. Let F' be the quotient field of D with char(F) = 0 (where char(F) denotes the
characteristic of F). With the above hypotheses, it is proved in Corollary 3.6 that the following
statements (1) (D, K) is an S- SLP; (2) (D, K) is an S-SACCR*P; (3) For any T €[D, K] and any
ideal I of T, there exists s € S (depending on /) such that S(/) = (/ :7s), K is a finite algebraic
extension of F and moreover, S~'D and the integral closure of S~'D in K are Dedekind
domains; and (4) (D, K) is an S-NP are equivalent. Let D be an integrally closed domain which
isnot a field. Let F'be the quotient field of D with char(F) = 0. Let K be an extension field of F.
With the above hypotheses, it is deduced in Corollary 3.7 that the statements (1) (D, K) is an
SLP; (2) (D, K) is an SACCR*P; (3) [K : F] < 0o, and moreover D and the integral closure of D in
K are Dedekind domains; and (4) (D, K) is an NP are equivalent. An integral domain 7" is
provided in Example 3.8 such that the integral closure of T in its quotient field is a Dedekind
domain but 7" does not satisfy strong accr*. Let S be a m.c. subset of an integral domain D.
Suppose that S™'D = F'is the quotient filed of D. Let K be an extension field of F. If #. deg
K/F = 1and if (D, K) is an S-SACCR*P, then it is deduced in Corollary 3.9 that the following
statements hold. (1) For each a € K such that « is transcendental over F, the integral closure of
Ha]in K is a Dedekind domain and (2) The separable degree of K over F(a) is finite and K has
finite exponent over Fla). If F'is a perfect field and K is an extension field of F'such that #7. deg
K/F = 1, then it is shown in Corollary 3.10 that the statements (1) (¥, K) is an SLP; (2) (F, K) is
an SACCR*P; and (3) (F, K) is an NP are equivalent.

For aring R, we denote the set of all prime ideals of R by Spec(R) and we denote the set of all
maximal ideals of R by Max(R). Whenever a set A is a subset of a set Band A # B, we denote it
by A c B.For aring R, we denote the group of units of R by U(R) and we denote the set of all
zero-divisors of R by Z(R). The Krull dimension of a ring R is simply referred to as the
dimension of R and is denoted by dim R. For concepts and notations from commutative ring
theory that are not specified in this article, the reader can refer standard text-books in
commutative ring theory (for example [13, 14]).

2. When is (D, K) an S-ACCRP?

As mentioned in the introduction, the m.c. subsets considered in this article are assumed that
they do not contain 0. Let S be a m.c. subset of an integral domain D. Let K be a field which
contains D as a subring and K is not necessarily the quotient field of D. The aim of this section
is to determine necessary and sufficient conditions in order that (D, K) to be an S-ACCRP. In
Proposition 2.4, we determine a necessary condition for (D, K) to be an S-ACCRP, where D is
an integral domain such that S Dis not a field. We use Lemma 2.1 in the proof of Proposition
24. For a ring R, we denote the polynomial ring in one variable X over R by R[X].

Lemma 2.1. Let S be a m.c. subset of a ring R. Let v be a non-zero-divisor of R. Let
T =R+ (1 + »X)RX] If T satisfies S-accr, then Rr 0 S # @.

Proof. We use some arguments similar to those that were used in the proof of [10, Proposition
1.3]. Let us denote the ideal (1 + #»X)T of T by I. By hypothesis, T satisfies S-accr. Hence, the
increasing sequence of ideals of T, (I :7%) C (I :7#°) C (I :4#°) C- - - is S-stationary. Therefore,
there exist s € Sand k € N such that s(Z :7#") C (I :7#") for all n > k. In particular, s(Z ;77" C
(I :77%). Notice that (1 + 7X)X**! € T'is such that (1 + 7X)X**! € ([ :79*). Hence, s(1 + 7X)
X1 e (I:79%). This implies that s(1 + 7X)7*X**! = (1 + »X)t for some ¢ € T. Since there is no
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non-zero y € R such that y(1 + 7X) = 0, we obtain from [15, Theorem 2] that 1 + »X is a non-
zero-divisor of R{X]and hence a non-zero divisor of 7. Hence, it follows from s(1 + rX)" X!

= (1 4 7X)t, we get that s/*X**1 € T. Notice that s/* 1 X* = )71 + X7 1XF — /X From
1 + 7XY)RX] c T and s*X*1 € T we, obtain that s/*7'X* € T. This implies that
sXe Tif k= 1.If k> 2, then from s/~ Xk = s(1 + 72X 2X* ! — s/ 71X" it follows that
772X € T. Proceeding like this, we obtain that sX € 7. Hence, sX = y + (1 + 7X)AX)
for some y € R and f{X) € R[X]. It is clear that A{X) # 0. Since 7&Z(R) by hypothesis, we get
that deg((1 + 7X)f(IX)) = 1 + deg(iX)). From 1 = deg(sX) = deg(y + (1 + 7X)AX)), it follows
that AAX) € R. By comparing the coefficient of X on both sides of sX =y + (1 + »X)AX), it
follows that s = 7f(X) € Rr. This proves that s € R» n Sand so, R¥ N S # @&. (|

Corollary 2.2. Let Sbeam.c. subset of anintegral domain D such that S~ Dis not a field. Let
K be a field such that D is a subring of K. If K is not algebraic over D, then (D, K) is not an
S-ACCRP.

Proof. By hy]lz)othems S~'Disnota fleld Let d € D\{0} and s € Sbe such that ¢ teU(S™ D).
As SC US'D), it follows that dgU(S D). We are assuming that X is not algebralc over D.
Let ¢« € K be such that a is transcendental over D. Notice that 7= D + (1 + da)
Dia] € [D, K]. We claim that T does not satisfy S-accr. Suppose that 7" satisfies S-accr. Since
dis a non-zero-divisor of D, we obtain from Lemma 2.1 that Dd n S # @. Therefore, there exist
sy € Sandd; € Dsuch that s, = dd;. This implies that d € U(S~'D) and this is in contradiction
to the choice of d. This proves that 7" does not satisfy S-accr and so, (D, K) is not an
S-ACCRP. O

Lemma 2.3. Let S be a m.c. subset of a valuation domain V. If V satisfies S-accr, then dim

Sn<l

Proof If S™'Vis a field, then it is clear that dim (S~'V) = 0 < 1. Hence, we can assume that
S~Vis not a field. Hence, dim (S™'V) > 1. We are assuming that V satisfies S-accr. Suppose
that dim (S~'V) > 1. Then it follows that there exists 8 € Spec(S~ V') such that eight® > 1
in S V.1t follows from[13, Proposition 3.11(v)] that there exist non-zero prime ideals p; C Py
of Vwithp, NS = @and R = S~'p,. Let x € p,\ py. Let y € by with y # 0. Let us denote the
ideal Vy by I. Notice that for any n € N, 2 & p; and so, x"'¢ Vy. Since the set of ideals of V'is
linearly ordered by inclusion, we get that y = x"v,, for some non-unit v,, of V. As we are
assuming that V satisfies S-accr, the increasing sequence of ideals of V, (I :yx) € ([ :y4%) € (I
4°%) C-- - is S-stationary. Hence, there exist s € S and £ N such that s(Z 12" € ( :
for all # > k. In particular, s(/ : kaH) C (I :y4"). Tt is clear that for any n e N, (I ;2 = (Va'"v,,
vy = Vu,.Fromy = x"v, € p; and 2" & p;, we get thatv, € p;. Froms(/: ka“) C(I:2"), we
obtam that sVup,1 C Vop. Hence, svp 1 = vpw for some w € V. It follows from
y = 1 Vp1 = xkvk that v, = XVp1- From sv,1 = vw, we get that sv,; = xvp,1w and
this implies that s = xw e pzl This is a contradiction, since p, NS = @. Therefore, if V
satisfies S-accr, then dim (S™V) < 1. O

Proposition 2.4. Let Sbe a m.c. subset of an integral domain D such that S D is not a field.
Let K be a field such that Dis a subring of K. If (D, K) is an S-ACCRP, then K is algebraic over D
and the integral closure of S™'D in K is a one-dimensional Priifer domain.

Proof. We are assuming that (D.K) is an S-ACCRP. By hypothesis, S'D s not a field. Hence,
we obtain from Corollary 2.2 that K is algebraic over D. Let F'be the quotient field of D. Then F
is also the quotient field of S'D. Let T € [S™'D, F]with T # F. It is clear that dim 7> 1.1f
dim 7 > 1, then we obtain from [12, Corollary 19.7(1)] that there exists a valuation domain
Ve[S™'D, Flsuch that dim V>1.As S~ 'D C V, it follows that V= S~'V. By assumption, V
satisfies S-accr. Hence, we obtain from Lemma 2.3 that dim V = dim (S™'V) < 1. Thisis a



contradiction and so, dim 7" < 1. Therefore, dim 7 = 1 for each T € [S™'D, F] with T # F.
Hence, we obtain from [16, Theorem 6] that the integral closure of S™'D in F'is a one-
dimensional Priifer domain. Since the field K is an algebraic extension of the field F, using[12,
Theorem 22.3], it can be shown as in the proof of [9, Proposition 2.1] that the integral closure of
S!Din K is a one-dimensional Priifer domain. O

Proposition 2.5. Let S be am.c. subset of a ring R. Let I be an ideal of RwithIN S = @. The
Sfollowing statements are equivalent:

1) There exist s € S and an ideal | of R such that ] is S-decomposable (vespectively,
S-strongly decomposable) and sI C J C L.

Q) Theideal S~ of S™'R admits a primary (respectively, strong primary) decomposition
in SR and there exist s € S and primary (vespectively, strongly primary) ideals
Q1, ..., Qu0f Rsuchthat S(I) = (I:gs’) = (o Quwith Q; NS = @ foreachi € {1,
o, N
Proof. (1) = (2) We are assuming that there exist s € S and an ideal J of R such that Jis S-
decomposable (respectively, S-strongly decomposable) and s/ C J C I. Thus, there exist n € N
and S-primary (respectively, S-strongly primary) ideals q1, . . ., 9, of Rsuch thatJ = (., q;.
Leti e {1,..., n}. It follows from (1) = (2) of [8, Proposition 2.6] that S~'q; is a primary
(respectively, strongly primary) ideal of S'R and there exists # € S such that
S(a;) = (q,-:Rtl-P. It follows from [13, Proposition 3.11()] that S71J = (", S~'q;. This
proves that S~'/ admits a primary (respectively. strong primary) decomposition in S™'R. As
el (S71R), we obtain from s/ CJ C I'that S~'I = S~'J. Therefore, we get that the ideal S~'1
of ST'R admits a primary (respectively, strong primary) decomposition in S~'R. Let
t=TIt- Then t € S. Leti € {1, ..., n}. Notice that (q;:g#;) is a primary (respectively
Hence, we obtain from [13, Lemma 4.4 ()] that (q;:rf;) = (a;:rt). This shows that
S(a;) = (a;:rt) is a primary (respectively. strongly primary) ideal of R. From ] = (), q, it
follows that S(J) = Ny S(a;) = Ny (a::rt) = (N 4;):rt) = (J:rh)- Leti € {1, ..., n}.
As s /(q;:pt), it follows from [13, Lemma 4.4 ()] that (q;:gt) = (a;:rst). Therefore, we
obtain that S() = (J:gst). From S/ = S~ andJ C I, we get that SU) = S(J) = (J :xst) C (I :st) C
S(). Thus with s = st and Q; = (q;:rs’) for each 7 € {1, ..., n}, we obtain that s’ € S and
S(I) = (I'ps') = N, LQ;is a primary (respectively. strong primary) decomposition of S() in
Rwith Q;NS=gforeachie {1,..., n}.

(2) = (1) By assumption, there exist s’ € S and primary (respectively strongly primary)
ideals £y, ..., 90, of Rsuch that S(I) = (I:gs") = (., Qiwith Q; NS = @foreachie {1,
...,n}. Leti e {1, ... n}. Let us denote s'8Q; by q;. It is clear that q; N S = @. As Q;isa
primary ideal of R with \/5, NS = g, itfollows that (s'Q;:rs’) = L. Hence, we obtain from
(2) = (1) of [8, Proposition 2.4] that q; is an S-primary (respectively, S-strongly primary) ideal
of R. Let us denote s'({ :zs’) by /. Since £2; is a primary ideal of R and \/El NS = @, we obtain
that J =s'(Ligs’) = (g Qu) = e ' = (. 0; is S-decomposable (respectively.
S-strongly decomposable). Notice that s'I C s'(I :zs’) = JC I O

Corollary 2.6. Let S be a m.c. subset of a ving R. The following statements are equivalent:
(1) Ris S-Laskerian (respectively, S -strongly Laskerian).

@) Guwen anideall of RwithIn S = @, there exist s € S and an ideal ] of R such that ] is
S -decomposable (respectively, S-strongly decomposable) with s/ C J C L.

When is (D, K)
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() S 'Ris Laskerian (respectively. strongly Laskerian) and for any ideal 7 of R with I n
S = @, there exists s’ € S such that S() = (I :ps").

Proof. (1) & (3) This is (1) < (2) of [8, Proposition 3.2].

(2) = (3) Let A be any proper ideal of S~'R. Then it follows from [13, Proposition 3.11
(i) and (i7)] that there exists an ideal  of R such that /n S = @ and A = S~'I. By (2), there
exist s € S and an ideal J of R such that J is S-decomposable (respectively. S-strongly
decomposable) with sI C J C I. Hence, we obtain from (1) = (2) of Proposition 2.5 that
A = S admits a primary (respectively, strong primary) decomposition in S™'R and
there exists s’ € Ssuch that S(/) = (/ :zs’) admits a primary (respectively, strong primary)
decomposition in R. This proves that S'R is Laskerian (respectively, strongly
Laskerian) and given an ideal I of R with I n S = @, there exists s’ € S such that S(J)
= ([ :ps).

(3) = (2) Let Ibe an ideal of R with In S = @. It was shown in the proof of (2) = (1) of [8,
Proposition 3.2] that there exist # > 1 and primary (respectively, strongly primary) ideals
a1, - - -, a,of Rsuchthat S(I) = (Iigs’) = (g 9; withq; NS = @foreachie {1,...,n}. Let
J = s’ s"). Then it is already verified in the proof of (2) = (1) of Proposition 2.5 that J is
S-decomposable (respectively, S-strongly decomposable) and s’/ CJC I

O

Recall from Ref. [7] that a m.c. subset S of a ring R is said to be strongly multiplicatively

closedif | (Rs | NS #@.InRef.[17], strongly multiplicatively closed subsets are referred to
seS

as m.c. subsets satisfying maximal multiple condition. Let S be a strongly m.c. subset of an

integral domain D such that S™Dis not a field. In Theorem 2.12, we provide a necessary and

sufficient condition in order that (D, K) to be an S-ACCRP, where K is a field which contains D

as a subring.

Lemma 2.7. Let S be a strongly m.c. subset of a ving R. Then there exists s € S such that SI)
= (I :gs) for any ideal I of R.

Proof. By hypothesis, Sis a strongly m.c. subset of R. Hence, there exists s € Ssuch that s € Rt
for all £ € S. Let I be any ideal of R. It is clear that (/ :zs) € S(J). Let » € S([). Then there
exists ¢ € Ssuch that # € I. As s € Rt, it follows that s» € 1. This shows that S() C (/:zs) and so,
SU) = (I :ps). O
Lemma 2.8. Let Sbe am.c. subset of aring R. If SR satisfies (accr) and if for any ideal I of
R, there exists s € S (depending on I) such that SUI) = (I :gs), then R satisfies S-accr.

Proof. It can be proved using arguments similar to those that were used in the proof of
[5, Lemma 2.6] that R satisfies S-accr*. We know from [1, Proposition 3.1] that the properties
S-accr and S-accr* are equivalent. Therefore, we obtain that R satisfies S-accr. O

Lemma 2.9. Let S be a m.c. subset of a ring R. If ST'R is Laskerian (respectively, strongly
Laskerian) and if for any ideal I of R, there exists s € S (depending on I) such that SU) = (I :gs),
then R is S-Laskerian (vespectively, S-strongly Laskerian).

Proof. This follows from (3) = (1) of Corollary 2.6. O

Corollary 2.10. Let S be a strongly m.c. subset of a ring R. The following statements are
equivalent:

(1) R satisfies S-accr.
©@) SR satisfies (accr).



Proof. (1) = (2) We are assuming that R satisfies S-accr. I a ring Tsatlsfles M-accr,where M When is (D, K)

is any m.c. subset of T then we know from [1, Example 3.1(3)] that M7 satisfies (accr™).
Hence, we get that S~R satisfies (accr™). Since the properties (accr) and (acer®) are equivalent
by [3, Theorem 1], we obtain that S™'R satisfies (accr).

(2) = (1) We are assuming that SR satisfies (accr). By hypothesis, S is a strongly m.c.
subset of R. Hence, we obtain from Lemma 2.7 that there exists s € Ssuch that S(J) = (I :s) for
all ideals 7 of R. It now follows from Lemma 2.8 that R satisfies S-accr. O

Corollary 2.11. Let S be a strongly m.c. subset of a ving R. The following statements are
equivalent:

(1) Ris S-Laskerian (respectively, S-strongly Laskerian).
@) ST'Ris Laskerian (respectively, strongly Laskerian).

Proof. (1) = (2) This follows from (1) = (3) of Corollary 2.6.
(2) = (1) With the help of Lemmas 2.7 and 2.9, this can be proved as in the proof of (2) =
(1) of Corollary 2.10. O

Theorem 2.12. Let S be a strongly m.c. subset of an integral domain D such that ST D s not
a field. Let K be a field which contains D as a subring. The following statements are equivalent:

1) D, K)is an SSACCRP.

@) Kis algebraic over D and the integral closure of S™'Din K is a one-dimensional Priifer
domain.

Proof. (1) = (2) This follows from Proposition 2.4. The proof of (1) = (2) does not need the
assumption that S'is a strongly m.c. subset of D.

) = (1) Let T'€[D, K]. We claim that S~ T'satisfies (accr). This is clear if S~ T'is a field.
Hence, we can assume that S~7'is not a field. Therefore, dim (S~'7) > 1. Let D; denote the
integral closure of S™'D in K and let D, denote the integral closure of S™'7'in K. As S™'D C
St T, it is clear that D is a subring of Ds. From K is algebraic over D, we obtain that K is the
quotient field of D; for each: € {1, 2}. Thus D, is an overring of D;. By assumption, D; is a one-
dimensional Priifer domain. Hence, we obtain from [12, Theorem 26.1(1)] that D, is a Priifer
domainand dim Dy <dim D; = 1. As D, is integral over S~ 7}, we obtain from [12, 11.8] that
dim (S7) = dim D,. From dim (S 7) > 1, we get that dim D, > 1 and so, dim D, = 1.
Therefore, it follows that dim (S717) = 1. As S~!7'is a one-dimensional integral domain, we
obtain from [3, Theorem 6] that S~ 7 satisfies (accr). Since S is a strongly m.c. subset of D, it
follows that Sis a strongly m.c.subset of 7. As S~ Tsatisfies (accr), we obtain from (2) = (1)
of Corollary 2.10 that T satisfies S-accr. This proves that (D, K) is an S-ACCRP. O

Let D be an integral domain which is not a field. It is clear that S = U(D) is a strongly m.c.
subset of D. Let K be a field which contains D as a subring. Notice that S™'D = D and if
T € [D, K], then T satisfies S-accr if and only if T satisfies (accr). Hence, the following
Corollary 2.13 is an immediate consequence of Theorem 2.12.

Corollary 2.13. [10, Proposition 2.1] Let D be an integral domain which is not a field. Let K
be a field which contains D as a subving. The following statements are equivalent:

1) D, K)is an ACCRP.
@) K is algebraic over D and the integral closure of D in K is a one-dimensional Priifer
domain.

Corollary 2.14. Let Sbe a strongly m.c. subset of an integral domain D such that S D s not
a field. Let K be a field which contains D as a subving. The following statements are equivalent:

an S-accr pair?
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1) D, K)isan S-LP.

@) K is algebraic over D and the integral closure of S™'D in K is a Laskerian Priifer
domain.

Proof. 1) = (2) Let T € [D, K]. By hypothesis, T is S-Laskerian. Hence, we obtain from [8,
Corollary 3.9(1)] that 7T satisfies S-accr* and so, we obtain from [1, Proposition 3.1] that T
satisfies S-accr. This shows that (D, K) is an S-ACCRP. Therefore, it follows from (1) = (2) of
Theorem 2.12 that K is algebraic over D and the integral closure of S™'D in K is a one-
dimensional Priifer domain. Moreover, for any T €[D, K], T is S-Laskerian and so, we obtain
from (1) = (3) of Corollary 2.6 that S™'7'is Laskerian. If 4 € QS*lD, K], then A = ST for
some T € [D, K]. Hence, we get that A is Laskerian and so, (S~ "D, K) is an LP. Therefore, we
obtain that the integral closure of S™'D in K is a Laskerian Priifer domain. Notice that the
proof of (1) = (2) of this proposition does not need the assumption that the m.c. subset S is
strongly multiplicatively closed.

2 = (1) Let S-1D denote the integral closure of S™'D in K. By (2), K is algebraic over D
and S-1Dis a Laskerian Priifer domain. By hyPothesis, S~!Dis not a field. Hence, we obtain
from the if part of [9, Proposition 2.1] that (S~'D, K) is an LP. Let 7' € [D, K]. Then S~'T'is
Laskerian. As S is a strongly m.c. subset of D, we get that S is a strongly m.c. subset of 7.
Hence, we obtain from (2) = (1) of Corollary 2.11 that 7T is S-Laskerian. This proves that
(D, K)is an S-LP. O

Example 2.15. Let {p;};°, be the sequence of positive primes of Z. In [12, Example 42.6]R.

Gilmer constructed an infinite algebraic extension F of Q such that Z*, the integral closure of
Z in F, is such that 7" is an almost Dedekind domain with the property that p; belongs to
infinitely many maximal ideals of 7" Notice that dimZ™ = 1and as Z*pl admits an infinite

number of prime ideals minimal over it, we get that 7" is not Laskerian. Hence, (Z,F) is not
an LP. Since F'is algebraic over Z and the integral closure of Z in F'is a one-dimensional Priifer
domain, we obtain from (2) = (1) of Corollary 2.13 that (Z, F) is an ACCRP.

U

In Example 2.16, we provide an example of a domain 7 and a m.c. subset S of T such that

ST is a one-dimensional valuation domain but (7, L) is not an S-ACCRP (where L is the

quotient field of 7) thereby illustrating that (2) = (1) of Theorem 2.12 can fail to hold if the
hypothesis in Theorem 2.12 that S'is a strongly m.c. subset is omitted.

Example 2.16. Let K be a field and let K(X) be the field of rational functions in one variable
Xover K. Let V = K(X)[[ Y]] be the power series in one variable Y over K(X). Let m = VY. Let
D= K[X]xkixjandlet T = D + m.Let S = T\nt. Then Sisam.c. subset of 7'and (7, L) is not
an S-ACCRP, where L is the quotient field of 7.

Proof. Tt is well-known that V = K(X)[[ Y]] is a discrete valuation ring (for example, refer [18,
p. 322]). Notice that m = VY is the only non-zero prime ideal of V. It is clear that
V = K(X) + m. We know from [13, Example (2), p. 94] that D = K[X]xkx is a discrete
valuation ring. Since D is a valuation domain with quotient field K(X), it follows from [19,
Theorem 2.1(%)]that T = D + misa valuation domain and as dim D = dim V = 1, we obtain
from[19, Theorem 2.1(f)] that dim 7" = 2. Since % =~ Dasrings and D is an integral domain, we
getthatm € Spec(T).Let S = T\m.From m € Spec(T), it follows that Sis a m.c. subset of 7.
Notice that S™'T = Ty We claim that Ty, = V. It is clear that T, C V. Let v € V. As
V = K(X) + mand K(X) is the quotient field of D, it follows that v = ¢ + m for some a,b € D

with b # 0 and m € m. This implies that v = % Froma + bm € Tand b € T\ m, we get that



v€ T This proves that V C Ty, and so, V = Ty Hence, S™!T is a one-dimensional
valuation domain. We know from [13, Proposition 5.18 ()] that S~7 is integrally closed.
Thus if L is the quotient field of 7, then S~ 7'is the integral closure of S 7'in L and it is a one-
dimensional valuation domain. We claim that 7" does not satisfy S-accr. Suppose that T
satisfies S-accr. Let us denote the ideal TY by 1. As T satisfies S-accr by assumption, the
increasing sequence of ideals of 7, (:7X) C (:7X%) C (I:7X°) C- - - is S-stationary. Hence, there
exist s € Sand £ € N such that s( :7X") C (I:7X") for all n > k. Let » € N. Notice that ¥ = %Xr

and hence, it follows that (I:7.X") = (T()%)X";TX") = T Y. From s(I:7X") C ([:7X") for all

n > k, we obtain that sT;C T4 This implies that s€ (2; 7X". It is clear that
oy TX" = (2, DX”) +m. Since D is a discrete valuation ring, we get that
MNyo1 DX” = (0). Hence, we obtain that se (2, 7X” = m. This is impossible, since
S = T\m. Therefore, we obtain that 7" does not satisfy S-accr and so, (7, L) is not an
S-ACCRP. O

Let F'be a field and let K be an extension field of F. Let S be a m.c. subset of F. As each
element of S'is a unit in F, it follows that (¥, K) is an S-ACCRP (respectively, S-LP) if and
only if (F, K) is an ACCRP (respectively, LP). The reader can refer [10, p. 320] (respectively,
[9, pp. 94 and 95]) for the solution to the problem of when (F, K) is an ACCRP
(respectively, LP).

Let K be an extension field of a field . We denote the transcendence degree of K over F'by
the notation #r.deg K/F.

Let S be a m.c. subset of an integral domain D such that S™'D is a field. Then S7D is
necessarily the quotient field of D. Let K be a field which contains D as a subring. Let us
denote S~'Dby F. It is clear that K is an extension field of F. If (D, K) is an S-ACCRP, then we
verify in Lemma 2.17 that t.deg K/F < 1. If K is algebraic over F, then we verify in
Proposition 2.19 that (D, K) is an SSSACCR*P. We use Lemma 2.18 in the proof of
Proposition 2.19.

Lemma 2.17. Let S be a m.c. subset of an integral domain D such that S~ Dis a field. Let K
be an extension field of S~ D.If (D, K) is an S-ACCRP, then tr.deg K/IS™'D < 1. In particular, if
(D, K) is an S-LP, then tr.deg K/S™'D < 1.

Proof. Let us denote S™D by F. Then F is necessarily the quotient field of D. Suppose that
tr.deg K/F > 1. Then it is possible to find X, ¥ € K such that {X, Y} is algebraically
independent over F. Observe that Sis a m.c. subset of F[X]and S C U(F) = U X). As (D, K) is
an S-ACCRP by hypothesis, it follows that (F[X], F(X, Y)) is an S-ACCRP. From S € U(F[ X)),
we get that (F[.X], F(X, 1)) is an ACCRP. Since F[.X] is not a field, we obtain from (1) = (2) of
Corollary 2.13 that F(X, Y) is algebraic over F[.X]. This is a contradiction and so, we obtain that
tr.deg K/ST'D < 1.

Assume that (D, K) is an S-LP. We know from [8, Corollary 3.9(1)] and [1, Proposition 3.1]
that any S-Laskerian ring satisfies S-accr. Hence, (D, K) is an S-ACCRP and therefore, we
obtain that t7.deg K/S™'D < 1.

U

Lemma 2.18. Let Sbeam.c. subset of anintegral domain D such that S 'Dis a field. Then D
is S-strongly Laskerian and so, D satisfies S- strong accr*.

Proof. As S'Dis a field, we get that S~'D is strongly Laskerian. Let I be any ideal of D with I
NS=@.Then S'7= (0)and so, I = (0). It is clear that S() = (0) = ((0) :ps) for any s € S. Hence,
we obtain from (3) = (1) of Corollary 2.6 that D is S-strongly Laskerian. We know from [8,
Corollary 3.9(2)] that any S-strongly Laskerian ring satisfies S-strong accr*. Hence, we obtain
that D satisfies S-strong accr*. |

When is (D, K)
an S-accr pair?
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Proposition 2.19. Let S be a m.c. subset of an integral domain D such that S'D s a field.
Let K be an extension field of S~'D such that K is algebraic over D. Then (D, K) is an S-SLP and
so, (D, K) is an S-SSACCR*P.

Proof. Let T € [D, K]. Then S is a m.c. subset of 7. If T is a field, then it is clear that T is
S-strongly Laskerian. Suppose that 7"is not a field. By hypothesis, K is algebraic over D and
as S™'D s a field, it follows that K is integral over S~'D. Notice that ST € [S™'D, K]. As
ST 'is integral over S™'D, we obtain from [13, Proposition 5.7] that S~ 7"is a field. It now
follows from Lemma 2.18 that T'is S-strongly Laskerian. This proves that (D, K) is an S-SLP.
As any S-strongly Laskerian ring satisfies S-strong accr* by [8, Corollary 3.9(2)], we obtain
that (D, K) is an S-SACCR*P. O

In Example 2.20, we provide an example of a domain 7 and a m.c. subset S of 7 such that
(T, L) is an S-SACCR*P but (7, L) is not an ACCRP, where L is the quotient field of 7.

Example 2.20. Let V,7,m be as in the statement of Example 2.16. Let
S ={Y"| ne NuU{0}}. Then Sis a m.c. subset of T, (7, L) is an S-SACCR*P but (7, L) is
not an ACCRP, where L is the quotient field of 7.

Proof- In the notation of Example 2.16, mt = VY and ntis the only non-zero prime ideal of V.
The integral domain 7= D + m is such that m is an ideal of both 7" and V. Now,
S ={Y" neNu{0}}is a m.c. subset of T. Notice that S'T" = SV = L, where L is the
quotient field of 7" It now follows from Proposition 2.19 that (7', L) is an S-SLP and so, (7, L) is
an S-SACCR*P. It is clear that if a ring satisfies S-strong accr®, then it satisfies S-accr*. We
know from [1, Proposition 3.1] that the properties S-accr and S-accr* are equivalent.
Therefore, we obtain that (7', L) is an S-ACCRP. As T'is a two-dimensional valuation domain,
it follows from Lemma 2.3 that 7 does not satisfy (accr). Indeed, it is already observed in the
proof of Example 2.16 that 7" does not satisfy Sj-accr, where S; = T\mn. Thus (7, L) is an
S-SACCR*P but (7, L) is not an ACCRP. O

Proposition 2.21. Let Sbe a strongly m.c. subset of an integral domain D such that S*Dis a
field. Let us denote S~*D by F. Let K be an extension field of F such that tr.deg K/F = 1. Then
the following statements are equivalent:

1) D, K)is an S-ACCRP.

(2) Foreach o € K such that ais transcendental over F, the integral closure of Flalin K is a
one-dimensional Priifer domain.

Proof. (1) = (2) We are assuming that (D.K) is an S-ACCRP. Let a € K be such that
a is transcendental over F. Notice that Fla] is not a field. Now, (Fa], K) is an S-ACCRP. As
S € Ul a)), it follows that (F{a], K) is indeed an ACCRP. Therefore, we obtain from (1) = (2)
of Corollary 2.13 that the integral closure of Fla]in K is a one-dimensional Priifer domain. It is
clear that (1) = (2) of this proposition does not need the assumption that the m.c. subset Sof D
is a strongly m.c. subset of D.

(2 = (1) Let T € [D, K]. Let L denote the quotient field of 7. By hypothesis,
tr.deg K/F = 1. Hence, either L is algebraic over F or t».deg L/F = 1.1f L is algebraic over
F, then it follows from Proposition 2.19 that (D, L) is an S-SLP and as T €[D, L], we get that
T satisfies S-strong accr* and so, T satisfies S-accr. Suppose that #7.deg L/F=1.Lette T
be such that ¢ is transcendental over F. Notice that 7" € [D[f], K]. It is clear that S is
a strongly m.c. subset of D[] and S~} (D[f]) = F[#] is not a field. From t.deg K/F = 1, it
follows that K is algebraic over D[f]. By assumption, the integral closure of S~ (D[] in K is
a one-dimensional Priifer domain. Hence, we obtain from (2) = (1) of Theorem 2.12 that
(D[t], K) is an S-ACCRP. Since T € [D[{], K], we get that T satisfies S-accr. This proves that
(D.K) is an S-ACCRP. O



Proceeding as in the proof of Proposition 2.21, the following Proposition 2.22 can be
proved with the help of Corollary 2.14 and Proposmon 2.19.

Proposition 2.22. Let Sbe a strongly m.c. subset of an integral domain D such that S 'Dis a
field. Let us denote the field S*D by F. Let K be an extension field of F such that tr. deg K/F = 1.
The following statements are equivalent:

(1) ,K)isan S-LP.

(2) Foreach a € K such that ais transcendental over F, the integral closure of Flalin K is a
Laskerian Priifer domain.

3. When is (D, K) an S-SACCR*P?
Let S be a m.c. subset of an integral domain D such that S™'D is not a field. Let X be a field
which contains D as a subring. The aim of this section is to determine when (D, K) is an
S-SACCR*P. Let S be a m.c. subset of a ring R such that R satisfies S-strong accr®*. Then it is
clear that R satisfies S-accr* and hence, it follows from [1, Proposition 3.1] that R satisfies
S-accr. Thus if (D, K) is an S-SACCR*P, then (D, K) is an S-ACCRP. In Corollary 3.4, we
determine some necessary conditions for (D, K) to be an S-SACCR*P. First, we state and prove
some preliminary results that are useful for solving some of the problems considered in this
section.

Let R be aring. It is well-known that the set of all nilpotent elements of R forms an ideal of
R and is called the nilradical of R [13, Proposition 1.7]. We denote the nilradical of R by #il(R).
Recall from [20, p. 466] that a sequence < x,, > of elements of R is said to be T-nilpotent if there

exists € N such that [T%_, x; = 0.

Lemma 3.1. Let Sbeam.c. subset of aving R.If R satisfies S-strong accr’, then for any ideal I
of R and for any sequence < x,, > of elements of /1, there exist s € Sand k € N (depending on I
and the sequence < x,, >) such that s H]”:1 v el foralln>k

Proof. Let I'be any ideal of R and let < x,, > be any sequence of elements of v/7. We consider
the following cases.

Case(1):InS#@.
LetseInS. Thens[[, x€lforalln>1.
Case(2):InS=@.

AsIn S = @, we obtain from [13, Proposition 3.11 (i7)] that S~'7 # S™'R. As R satisfies S-
strong accr* by hypothesis, it follows from [5, Lemma 2.4] that S~ 'R satisfies strong accr*.

That is, S'R satisfies (C) in the notation of [21]. From S™'R satisfies (C), it follows that ‘Z%I;
satisfies (C). Hence, we obtain from [21, Lemma 1.2] that 7/ ( = 1) is T-nilpotent. Notice that

il ( T [> S S1 We know from[13, Proposition 3.11 (v)] that S~'v/T = v/S-11.1tis clear that
for each ne N, % 4 S~ 1] enil < ) From il ( T 1) is T-nilpotent, we get that there exists
ke N such that [T}, (ﬁ + S‘II) = 0+ S7'I. This implies that [T}, % € S~'1. Hence, there

exists s € Ssuch that s H x4 €l Letn >k Then it is clear that s[[/_, x; €. O
Let She a m.c. subset of aring R such that R is S-Laskerian. In Lemma 3.2, we determine
necessary and sufficient conditions in order that R to satisfy S-strong accr*.

When is (D, K)
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Lemma 3.2. Let S be a m.c. subset of a ving R such that R is S-Laskerian. The following
statements are equivalent:

(1) R satisfies S-strong accr*.

) Foranyideal I of R and for any sequence < x,, > of elements of \/1, there exists € Sand
ke N such that s [[/_, x; €I for alln > k.

Q) Forany primaryideal g of R and for any sequence < x, > of elements of \/q, there exist
se Sand ke N such thats]_[;’zlxjeqforalln >k

Proof. (1) = (2) This follows from Lemma 3.1.

(2) = (3) This is clear.

(3) = (1) Let I be any ideal of R and < 7,, > be any sequence of elements of R. We verify
that the increasing sequence of ideals of R, (I :gry) C (I :g1172) C ([ :g717273) C- - - is S-stationary.
First, we verify the above assertion in the case [ = ¢ is a primary ideal of R. Let q be
p-primary. Observe that p = /q. We consider the following cases:

Case(i): There exists k£ € N such that 7; & p for each i € N with ¢ > .

Insucha case, for any n € Nwithn > k, [, 7; & b. Hence, we obtain from[13, Lemma 4.4
@r)] that (q:g []7, 7:) = q for all n > k. Therefore, for all n > &, (q:x []7-; 7:) = q in the case
k=1.Tk>2 thenforalln >k, (q:r [Ty 7i) = (q:r [T 7).

Case(ii): There exist positive integers k; < ky < kg < - - - such that 7, €EP for eachj > 1.

By (3), there exist s € S and jo € N such that s Hézl r, € q for all j > jo. Hence, for all
K

n2 ki s(a:r [Ty 7:) SRs C (a:r [T2 7).

This shows that for any primary ideal q of R and for any sequence < 7, > of elements of R,
the increasing sequence of ideals of R, (q:p71) C (q:p7172) C (q:p717273) C - - - is S-stationary.

Let Ibe any ideal of R and let < 7,, > be any sequence of elements of R. Suppose that /n S #
@.LetselInS. Thenforalln >1,s(I:g [, 7)) CRs CI C (I:gr). Suppose that I n S = @.
Since R is S-Laskerian by hypothesis, we obtain from the proof of (2) = (3) of Corollary 2.6
that there exists s’ € Ssuch that (/ :zs’) admits a primary decomposition in K. Hence, there exist
t € Nand primary ideals qy, . . ., q; of R such that (/:zs’) = ﬂf-:l a;.-Letie {1,...,}.Since q;
is a primary ideal of R, it follows as shown above that there exist s; € Sand k; € N such that
si(a;r ]’7:1 7;) € (iR H]]?’Zl 7;) for all n > k. Let s = Hf:] s; and let £ = max(ky, ..., k).
Now,s € Sandforalln>k,s((I:rs'):r [T~y 7;) = SNy 90):% [L177) C Ny si(air (L177)
c ﬂle(qi:R le 7j) = ((ﬂf:1 a;):R ]1-11 7)) = ((I:rs)r ]}-3:1 7;). This implies that for all
ks (I 1Ty 7) € (e Ty 72)

This shows that for any ideal I of R and for any sequence < #, > of elements of R, the
increasing sequence of ideals of R, (I :gr1) C ([ :pr172) C (L :pri7ers) C- - - is S-stationary.

Therefore, we obtain that R satisfies S-strong accr*. O

Theorem 3.3. Let D be an integral domain whichis not a field. Let F be the quotient field of D.
Let K be an extension field of F. If (D, K) is an SACCR*P, then the following hold:

(1) K is algebraic over F and the integral closure of D in K is a Dedekind domain.
(2) The separable degree of K over F is fimite and K has finite exponent over F.

Proof. (1) If aring T satisfies strong accr*, then 7 satisfies (accr®) and hence by [3, Theorem 1],
we get that T satisfies (accr). We are assuming that (D, K) is an SACCR*P. Therefore, (D, K) is



an ACCRP. Hence, we obtain from (1) = (2) of Corollary 2.13 that K is an algebraic extension When is D, K)
of Fand the integral closure of D in K is a one-dimensional Priifer domain. Let D denote the an S-acer pair?

integral closure of D in K. Notice that D is a Priifer domain, dimD = 1, and it satisfies strong
accr*. That is, the Priifer domain D satisfies (C) in the notation of [21]. Hence, we obtain from
[21, Proposition 2.3] that D is Noetherian. Therefore, each non-zero fractional ideal of D s f.g.
and as Dbeing a Priifer domain, it follows that each non-zero fractional ideal of D is invertible.
Hence, we obtain from [13, Theorem 9.8] that D is a Dedekind domain. Let S = {1}. It follows
from (2) = (1) of Corollary 2.14 that (D, K) is an S-LP. As S = {1}, we get that (D, K) is an LP.

(2) Let L be the maximal separable subfield of K over F. We claim that [L: F] < co. Suppose
that[L: F]is not finite. Let a; € L\F. Let [F{a1): F] = n7. Then n; > 1. Notice that L is an infinite
algebraic and separable extension of F{a;). Hence, we obtain from [22, Lemma 1, p. 194] that
there exists a, € L such that [Flay, ag): Flay)] = no > n;. Since the separable algebraic
extension L over F'is assumed to be an infinite extension, by repeated use of [22, Lemma 1,
p. 194], it is possible to find positive integers 1 < 77 < 715 < 113 < - - - and an infinite sequence
< ay, > of elements from L such that [F(@;): F] = n; and for each % > 2, [Flay, a, . . ., &)
Hay, ..., qp1)] = np.

The remaining part of the proof is suggested by the proof of [23, Lemma 3] and the proof of
[9, Proposition 2.12]. Notice that as F'is the quotient field of D, there exists y; € D\{0} such that
the irreducible polynomial of y,a; over F'has coefficients in Dand its degree is ;. It is clear that
y1a1 € Flay) is integral over D. Set z; = y1a1. It is clear that Dfz;]is a free D-module with basis
{1,z1,...,2} -1 }. By hypothesis, Dis not a field. Hence, it is possible to find a non-zero element
d e Dsuchthatd & U(D). Let us denote the ring D[dz;] by D;. It is clear that Fla;) is the quotient
field of Dy, Dy is a free D-module with basis {1,dz1, ..., (dz1)" '}, and Dy is an integral
extension of D. Observe that the irreducible polynomial of as over Fla;) is of degree 7, and it is
possible to find ¥, € D;\{0} such that the irreducible polynomial of ysas over Fla;) has
coefficients in Dy. Set zo = yoato. It is clear that z, is integral over Dy and Di[z-] is a free D;-
module with basis {1, 2, ... 727212—1 }. Let us denote Dy[dzs] by Ds. Notice that Flay, @) is the

quotient field of Dy, Ds is a free Di-module with basis {1, dzy, . . ., (dzz)’”_1 },and Ds is integral
over D;. Proceeding like this, we obtain a strictly increasing sequence of subrings of L, D; C Do
C D5 C -+ - such that for each &£ > 1, D, = D;,_1[dz] (with Dy = D) is a free D,,_1- module with
basis {1,dz, .. ., (dzk)""_1 },and D, is integral over Dj,_1. Also, Flay, . . ., az) is the the quotient
field of Dy, for each £ € N and by the choice of z;, it is clear that z;, is integral over D,,_; for each
k>1.Letusdenote thering | J; ; D), by T Since D is integral over D and D, is integral over Dy,
it follows from [13, Corollary 5.4] that D, is integral over D. Let k > 2. Assume it is verified that
Dy isintegral over D. As D, 1 is integral over Dy, we obtain from [13, Corollary 5.4]that Dy, 1 is
integral over D. This proves that 7" = |J;; Dy is integral over D. Also, observe that z is
integral over D for each % > 1. Notice that | J;2; F(a, .. ., a) is the quotient field of 7. Now,
T e[D,L]and as Lis a subfield of K and (D, K) is an SACCR*P by hypothesis, it follows that T
satisfies strong accr*. Let [ = Td + .5, Tdz,. We assert that VI = v/Td. As Td C I, it is

clear that v/7d C V1. Let p € Spec(T) be such that d € p. Let us denote the ring | J; ; D[z] by
T1. Notice that T'is a subring of 7. From z,,is integral over D for each 2 > 1, it follows that 77 is
integral over 7. Now, it follows from [13, Theorem 5.10] that there exists q € Spec(71) such
that g N T = p. Notice that d € q and as z, € 77 for each k& > 1, it follows that IT} = Tid.
Therefore, IT1 Cq. Hence, ICITiNTCqanNT =p. Let V(Td) = {p € Spec(T)| p271d}.
We know from [13, Proposition 1.14] that v/7d = (Mvev(ra)P and so, we get that  C VTd. 1t

follows from [13, Exercise 1.13 (%), page 9] that /v Td = v/ Td. Hence, we obtain that
VI CV/VTd = V/Td. Therefore, /T = v/Td. Now, T satisfies strong accr* and < dz, >isa
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sequence of elements of 7" such that dz, € I = v/Td for each n e N. Hence, by applying
Lemma 3.1 with S = {1}, we obtain that there exists £ € N such that [], dz; € Td for each
n > k Thus [[L,dz € TdND; Observe that D; is a free D;_-module with basis
{1,dz,...,(dz)" '} for each j > 1 (where, Dy = D) and from d € D, it follows that
DjdnD;_, = D;_dfor eachj > 1. Hence, we obtain from [[-_, dz; € Td N Dy, that [[*_, dz; € Dyd.
If k = 1, then we get that dz; € Dyd. Observe that Did = Dd + Dd(dz1) + - - - + Dd(dzy)" .
Therefore, dzy € Dd + Dd(dzy) + - - - + Dd(dz )”1_1 —— (1). Hence, by comparing the coefficient
of dz; on both sides of (1), it follows that 1 € Dd. This is impossible, since d is not a unit of D. Suppose
that k > 2. Notice that [['=} dz; € Dp_y. It is clear that ([]*5 dz))dzy €Dyd = Dyrd+
Dy1d(dz,) + -+ + Dprd (dzk)”’f_l— (2). Hence, by comparing the coefficient of dz, on both
sides of (2), it follows that Hf;ll dz; € Dy,_1d. Proceeding like this, we get that dz; € Dyd and this is
already verified to be impossible. Therefore, 7" does not satisfy strong accr®. This is in contradiction
to the assumption that (D, K) is an SACCR*P. Therefore, the separable degree of K over F' must be
finite.

If char(F) = 0, then K is separable over F and so, L = K, where L is the maximal
separable subfield of K over F. Suppose that char(F) = p > 0. We claim that K" CL
for some 7 > 1. Suppose that K?" & L for each z > 1. Then it is possible to find a sequence
< p), > of elements of K and positive integers 1 < n; < 75 < n3 < --- such that #; is
least with the property that ﬂ‘l’"] €L and for each k > 2, n;, is least with the property
that #* € L(y, .. ., By_1). Notice that [L(B;) : L] = p" and for each k > 2, [L(By, ..., ;) :
L(By, - - -, Pr1)] = p™. Since Dis the integral closure of D in K, it follows that D N Lis the
integral closure of D in L. It is convenient to denote D N Lby E. As L is algebraic over F, it
follows that L is the quotient field of E. Observe that the irreducible polynomial of $; over L
is XP" — ", Since L is the quotient field of E, there exists v; € E\{0} such that the
irreducible polynomial of v1; has coefficients in E. Set w1 = v14;. It is clear that w, is
integral over E and E[w,] is a free E-module with basis {1,w1,... 7w‘i’ﬂl_l}. Since E is
integral over D and D is not a field, we obtain from [13, Proposition 5.7] that £ 'is not a field.
Let a € E\{0} be such that ag U(E). Let us denote the ring E]aw-] by A;. Notice that A; is a
free E-module with basis {1, aw, . . ., (aur )p -l }.Since L(f) is the quotient field of A4, it is
possible to find v, € A;\{0} such that the irreducible polynomial of vof> has coefficients in
A1. Set ws = v5f35. It is clear that w, is integral over A; and A1[w-] is a free A;-module with
basis {1, w2, . . ., wglz_l }. Let us denote the ring A;[aw,] by A,. Observe that A, is a free A;-
module with basis {1,aws, ..., (awz)[’ ’12_1}, A, is integral over A; and L(B, fBo) is the
quotient field of A,. Proceeding like this, it is possible to find a strictly increasing sequence
of subrings A; c A, c A3 C - --of Ksuch thatforeach2>1, A, = A,_i[aw;]is afree A;_;-
module with basis {1, awy, ..., (awk)p 'l’“_l} (where we set Ay = E). Let us denote the ring
Ui A by A. It is clear that A € [E, K] and it can be shown as in the previous paragraph
that A does not satisfy strong accr*. This is in contradiction to the assumption that (D, K) is
an SACCR*P. Therefore, there exists # > 1 such that K?" C L.

Thus if (D, K) is an SACCR*P, then K is algebraic over D, the integral closure of Din K is a
Dedekind domain, the separable degree of K over F'is finite and K has finite exponent over F,
where F'is the quotient field of D. O

Corollary 3.4. Let Sbeam.c. subset of anintegral domain D such that S~ Dis not a field. Let
F be the quotient field of D. Let K be an extension field of F. If (D, K) is an S-SACCR*P, then the
Sfollowing hold:



(1) K is algebraic over F and the integral closure of S™'D in K is a Dedekind domain.
@) The separable degree of K over F is finite and K has finite exponent over F.

Proof- Let A €[S™'D, K]. Notice that A = S~ T'for some T € [D, K]. By hypothesis, T satisfies
S-strong accr*. Hence, we obtain from [5, Lemma 2.4] that S~ 17 satisfies strong accr*. This
shows that (S~1D, K) is an SACCR*P. By hypothesis, S~'Dis not a field and it is clear that F'is
the quotient field of S~'D. Hence, (1) and (2) of this corollary follow from (1) and (2) of Theorem
33. O

In Example 3.5, we provide an infinite algebraic extension field L of @ such that (Z, L) is
an ACCRP but (Z, L) is not an SACCR*P.

Example 3.5. In [12, Example, p. 520], R. Gilmer showed that it is possible to find a
sequence {7}, of algebraic integers such that the integral closure of Zin L = Q({t;};°,)isa
Dedekind domain. Since any Dedekind domain is a one-dimensional Priifer domain, we obtain
from (2) = (1) of Corollary 2.13 that (Z, L) is an ACCRP. Since Q is the quotient field of Z and
Lisan infinite separable extension field of @, we obtain from Theorem 3.3(2) that (Z, L) is not
an SACCR*P.

Let S be a countable m.c. subset of an integral domain D such that S~1D is integrally closed
but it is not a field. Let F'be the quotient field of D. Let char(F) = 0. Let K be an extension field
of F. We verify in Corollary 3.6 that (D, K) is an S-SACCR*P if and only if (D, K) is an S- NP.

Corollary 3.6. Let S be a countable m.c. subset of an integral domain D such that S~'Dis not
a field and S™*Dis integrally closed. Let F be the quotient field of D and let char(F) = 0. Let K be
an extension field of F. The following statements are equivalent:

1) D, K)isan S-SLP.
@ D, K)is an SSACCR*P.

) Forany T €[D,K]and any ideal I of T, there exists s € S (depending on I) such that S(I)
= (I :78) and K is a finite algebraic extension of F. Moreover, S™"D and the integral
closure of STD in K are Dedekind domains.

@ (D, K)isan S-NP.

Proof. (1) = (2) Let T € [D, K]. Then by assumption, T is S-strongly Laskerian. Hence, we
obtain from [8, Corollary 3.9(2)] that T satisfies S-strong accr*. This shows that (D, K) is an S-
SACCR*P.

(2) = (3) We are assuming that (D, K) is an S-SACCR*P. Let T €[D, K]. As Sis a countable
m.c. subset of 7" and T satisfies S-strong accr*, we obtain from () = (i) of [5, Theorem 2.7]
that for any ideal / of T, there exists s € S (depending on /) such that S() = (/:7s). As (D, K) is
an SSSACCR*P, we obtain from Corollary 3.4(1) that K is algebraic over F'and the integral
closure of S™'D in K is a Dedekind domain. Notice that (D, F) is an S-SACCR*P. By
hypothesis, S'D is integrally closed. Hence, S~'D is the integral closure of S™'D in F.
Therefore, we obtain from Corollary 3.4(1) that S~D is a Dedekind domain. By hypothesis,
char(F) = 0. Hence, K is a separable extension of . Therefore, we obtain from Corollary 3.4(2)
that [K : F] < co.

(3) = (4) Now, as S™'D is a Dedekind domain, S™'D is Noetherian and dim S™'D = 1.
Since [K : F] < o0, it follows from Krull-Akizuki Theorem [24, Theorem 11.7] that (S~'D, K) is
anNP.Let T €[D, K]. Then S~ € [S™'D, K]and so, S~ Tis Noetherian. By (3), for any ideal
I of T, there exists s € S (depending on /) such that S(/) = ([ :7s). Hence, we obtain from [2,
Proposition 2.2(f)] that T is S-Noetherian. This proves that (D, K) is an S-NP.

4) = (1) We are assuming that (D, K) isan S-NP. Let T € [D, K]. As T'is S-Noetherian, we
obtain from [8, Corollary 3.3] that T'is S-strongly Laskerian. Therefore, (D, K) is an S-SLP. [J

When is (D, K)
an S-accr pair?
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Applying Corollary 3.6 with S = {1}, we obtain the following corollary.

Corollary 3.7. Let D be an integrally closed domain which is not a field. Let F be the quotient
field of D with char(F) = 0. Let K be an extension field of F. The following statements are
equivalent:

1) D, K)isan SLP.
@ (D, K)is an SACCR*P.

(3) Kis afinite algebraic extension of F. Moreover, D and the integral closure of D in K are
Dedekind domains.

4) (D, K)isan NP.

Example 3.8 mentioned below provides an integral domain 7 such that the integral closure of
T in its quotient field is a Dedekind domain but 7" does not satisfy strong accr*.

Example 3.8. Let L = Q({#};2,) be as mentioned in Example 35. The field L was
constructed by R. Gilmer (see [12, Example, p. 520]. Notice that L is an infinite algebraic
extension of Q. It was already verified in [12, Example, p. 520] that any integrally closed domain
between Z and L is either a field or a Dedekind domain. Since L is an infinite separable extension
of Q, proceeding as in the proof of Theorem 3.3(2), it is possible to find a subring 7 of L such that
T does not satisfy strong accr®. It follows from [8, Corollary 3.9(2)] that 7 is not strongly
Laskerian. Observe that the integral closure of 7" in its quotient field is a Dedekind domain.

As the integral closure of Z in L is a Dedekind domain (and hence, a one-dimensional Priifer
domain), it follows from (2) = (1) of Corollary 2.13 that (Z, L) is an ACCRP (indeed, it follows
from [9, Proposition 2.1] that (Z,L) is an LP). It is noted in the previous paragraph that
T €[Z,L)is such that T does not satisfy strong accr* and hence, (Z, L) is not an SACCR*P.
Thus the ring T is Laskerian and it does not satisfy strong accr*. As T is not strongly
Laskerian, we get that (Z, L) is not an SLP. [J

Corollary 3.9. Let Sbe am.c. subset of anintegral domain D such that S~ Dis a field. Let us
denote ST'D by F. Let K be an extension field of F such that tr.deg K/IF = 1. Let a € K be
transcendental over F. If (D, K) is an S-SACCR*P, then the following hold.

(1)  The integral closure of Fla] in K is a Dedekind domain.
(2) The separable degree of K over F(a) is finite and K has finite exponent over F(a).

Proof. We are assuming that (D, K) is an S-SACCR*P. Let a € K be such that a is transcendental
over F. As S C U(F) = UFa)), it follows that S~*(F[a]) = Fla] is not a field. By hypothesis,
tr.deg K/F = 1 and so, K is algebraic over Fla). As (F]a], K) is an SACCR*P, we obtain from
Theorem 3.3(1) that the integral closure of Fla] in K is a Dedekind domain. This proves (1).

From Theorem 3.3(2), we get that the separable degree of K over Fla) is finite and K has
finite exponent over F{a). This proves (2). O

Recall from [22, p. 190] that a field F is said to be perfect if either char(F) = 0 or if
char(F) = p > 0,then ¥ = F.

Corollary 3.10. Let K be an extension field of a perfect field F such that tr.deg K/F = 1.
Then the following statements are equivalent:

1) (F K)isan SLP.
@) (F, K)is an SACCR*P.
3) (F, K)isan NP.



Proof. (1) = (2) This is clear, since we know from [8, Corollary 3.9(2)] that any strongly
Laskerian ring satisfies strong accr®.

(2) = () Let T e [F, K]. If T is algebraic over F, then it follows from [13, Proposition 5.7]
that 7T is a field. Suppose that T is not algebraic over F. Let ¢t € T be such that ¢ is
transcendental over F. Since (F[f], K) is an SACCR*P, it follows from Theorem 3.3(2) that the
separable degree of K over F{(t) is finite and K has finite exponent over F{f). By hypothesis, F'is
a perfect field. Hence, it can be shown as in the proof of [9, Corollary 2.16] that [K : F{()] < co.
Now, A = F[t]is a Noetherian domain and dim A = 1 (indeed, A is a principal ideal domain).
Notice that K is a finite algebraic extension of the quotient field of A and hence, we obtain
from Krull-Akizuki Theorem [24, Theorem 11.7] that (F¢], K) is an NP. As T e [F[{], K], we get
that T is Noetherian. This shows that (%, K) is an NP.

(3) = (1) This is clear, since any Noetherian ring is strongly Laskerian. O
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