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Abstract

Purpose – This study aims to provide sufficient conditions for the existence of periodic solutions of the fifth-
order differential equation.
Design/methodology/approach –The authors shall use the averaging theory, more precisely Theorem $6$.
Findings – The main results on the periodic solutions of the fifth-order differential equation (equation (1)) are
given in the statement of Theorem 1 and 2.
Originality/value – In this article, the authors provide sufficient conditions for the existence of periodic
solutions of the fifth-order differential equation.
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1. Introduction and statement of the main results
One of the main problems in the theory of differential equations is the study of their periodic
orbits, their existence, their number and their stability. The goal of this paper is to study the
periodic solutions of the fifth-order non-autonomous differential equation:

xð5Þ � λx
⃜ þ �

p2 þ 1
�
x
... � λ

�
p2 þ 1

�
€xþ p2x$ � λp2x ¼ εF

�
t; x; x$; €x; x

...
; x
:...
�
; (1)

where λand εare real parameters; p is a rational number different from−1, 0, 1, ε is sufficiently
small; and F is a nonlinear non-autonomous periodic function.

There are many papers studying the periodic orbits of fifth-order differential equations,
see for instance in Refs. [1–6]. But, our main tool for studying the periodic orbits of equation
(1) is completely different from the tools mentioned papers, and consequently, the results
obtained seem distinct and new. We shall use the averaging theory, more precisely Theorem
5. Many of the quoted papers dealing with the periodic orbits of fifth-order differential
equations use Schauder’s or Leray-Schauder’s fixed point theorem, the non-local reduction
method or variational methods. In Refs. [7–9], the authors studied the limit cycles of the
fourth-, sixth- and eighth-order non-autonomous differential equations.

In general, to obtain analytically periodic solutions of a differential system is a very
difficult task, usually impossible. Here, with the averaging theory, this difficult problem for
the differential equation (1) is reduced to find the zeros of a nonlinear function. We must say
that the averaging theory for finding periodic solutions in general does not provide all the
periodic solutions of the system. For more information about the averaging theory, see
Section 2 and the references quoted there.
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Ourmain results on the periodic solutions of the fifth-order differential equation ð1Þare the
following.

Theorem 1. Assume that p ¼ m=n is a rational different from −1, 0; 1, λ≠ 0 in differential
equation ð1Þ. Let

F 1ðX0;Y0; Z0;U0Þ ¼ 1

2πn

Z 2πn

0

cosðtÞFðt;A;B; C;D;J Þdt;

F 2ðX0;Y0; Z0;U0Þ ¼ −
1

2πn

Z 2πn

0

sinðtÞFðt;A;B; C;D;J Þdt;

F 3ðX0;Y0; Z0;U0Þ ¼ 1

2πn

Z 2πn

0

cosðptÞFðt;A;B; C;D;J Þdt;

F 4ðX0;Y0; Z0;U0Þ ¼ −
1

2πn

Z 2πn

0

sinðptÞFðt;A;B; C;D;J Þdt;

(2)

where m; n are positive integers, and

A¼−
ðX0 þ λY0Þcos tþðλX0 �Y0Þsin t

ðp2 � 1Þ�λ2 þ 1
� þðpZ0 þ λU0ÞcosðptÞ� ðpU0� λZ0ÞsinðptÞ

pðp2 � 1Þ�λ2þ p2
�

B¼�ðλX0�Y0Þcos tþðX0þ λY0Þsin t
ðp2 � 1Þ�λ2 þ 1

� �ðpU0 � λZ0ÞcosðptÞþ ðλU0 þ pZ0ÞsinðptÞ
ðp2 � 1Þ�λ2 þ p2

�

C ¼ ðX0þ λY0Þcos tþðλX0 �Y0Þsin t
ðp2 � 1Þ�λ2 � 1

� þ�ðpZ0 þ λU0ÞpcosðptÞþ ðpU0 � λZ0ÞpsinðptÞ
ðp2� 1Þ�λ2þ p2

�

D¼ ðλX0�Y0Þcos t�ðX0þ λY0Þsin t
ðp2� 1Þ�λ2þ 1

� þðpU0 � λZ0Þp2 cosðptÞþ ðλU0 þ pZ0Þp2 sinðptÞ
ðp2 � 1Þ�λ2 þ p2

�

J ¼−
ðX0þ λY0Þcos tþðλX0 �Y0Þsin t

ðp2 � 1Þ�λ2� 1
� þðpZ0þ λU0Þp3 cosðptÞ� ðpU0� λZ0Þp3 sinðptÞ

ðp2 � 1Þ�λ2 þ p2
� ;

(3)

If the function F is 2πn−periodic with respect to the variable t, then for every

X*0 ;Y
*
0 ; Z

*
0 ;U

*
0

� �
solution of the system:

F kðX0;Y0; Z0;U0Þ ¼ 0; k ¼ 1; :::; 4; (4)

satisfying

det
vðF 2;F 2;F 3;F 4Þ
vðX0;Y0; Z0;U0Þ

� �
jðX0 ;Y0 ;Z0;U0Þ¼ðX*

0
;Y *

0
;Z*

0
;U*

0Þ≠ 0; (5)

the differential equation ð1Þhas a periodic solution xðt; εÞ tending to the solution x0ðtÞ given by:

−

�
X *

0 þ λY *
0

�
cosðtÞ þ

�
λX *

0 � Y *
0

�
sinðtÞ

ðp2 � 1Þ�λ2 þ 1
� þ

�
pZ *

0 þ λU *
0

�
cosðptÞ �

�
pU *

0 � λZ *
0

�
sinðptÞ

pðp2 � 1Þ�λ2 þ p2
�
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of xð5Þ − λx
...: þ ðp2 þ 1Þx...− λðp2 þ 1Þ€xþ p2x$ − λp2x ¼ 0 when ε→ 0. Note that this solution is

periodic of period 2πn.
Theorem 1 is proved in Section 3. Its proof is based on the averaging theory for computing

periodic orbits, see Section 2.
An application of Theorem 1 is the following.

Corollary 2. If Fðt; x; x: ; x::; x:::; x::::Þ ¼ ð1þ cos tÞðax2 þ bx$Þwith a$b≠ 0, then the differential
equation (1) with p ¼ 1

2, λ ¼ 2 has one periodic solution x2ðt; εÞ tending to the periodic solution
x2ðtÞ given by:

x2ðtÞ ¼ −
2b

a
sinðtÞ;

of xð5Þ − 2x
...: þ 5

4
x
...
− 5

2
€xþ 1

4
x$ − 1

2
x ¼ 0 when ε→ 0.

Corollary 2 is proved in Section 5.

Theorem 3. Assume that p ¼ m=n is a rational different from −1, 0; 1, λ ¼ 0 in differential
equation (1). Let

F 1ðX0;Y0; Z0;U0Þ ¼ 1

2πn

Z 2πn

0

cosðtÞFðt;A;B; C;D;J Þdt;

F 2ðX0;Y0; Z0;U0Þ ¼ −
1

2πn

Z 2πn

0

sinðtÞFðt;A;B; C;D;J Þdt;

F 3ðX0;Y0; Z0;U0Þ ¼ 1

2πn

Z 2πn

0

cosðptÞFðt;A;B; C;D;J Þdt;

F 4ðX0;Y0; Z0;U0Þ ¼ −
1

2πn

Z 2πn

0

sinðptÞFðt;A;B; C;D;J Þdt;

F 5ðX0;Y0; Z0;U0Þ ¼ 1

2πn

Z 2πn

0

Fðt;A;B; C;D;J Þdt;

(6)

and

A ¼ �ðX0 cos t � Y0 sin tÞp2 þ Z0 cosðptÞ � U0 sinðptÞ þ
�
p2 � 1

�
V0

p2
�
p2 � 1

� ;

B ¼ ðY0 cos t þ X0 sin tÞp� U0 cosðptÞ � Z0 sinðptÞ
pðp2 � 1Þ ;

C ¼ X0 cos t � Y0 sin t � Z0 cosðptÞ þ U0 sinðptÞ
p2 � 1

;

D ¼ �Y0 cos t � X0 sin t þ pðU0 cosðptÞ þ Z0 sinðptÞÞ
p2 � 1

;

J ¼ �X0 cos t þ Y0 sin t þ p2ðZ0 cosðptÞ � U0 sinðptÞÞ
ðp2 � 1Þ ;

(7)

If the function F is 2πn−periodic with respect to the variable t, then for every

X*0 ;Y
*
0 ; Z

*
0 ;U

*
0 ;V

*
0

� �
solution of the system:
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F kðX0;Y0; Z0;U0;V0Þ ¼ 0; k ¼ 1; :::; 5; (8)

satisfying

det
vðF 2;F 2;F 3;F 4Þ
vðX0;Y0; Z0;U0;V0Þ

� �
jðX0 ;Y0 ;Z0 ;U0 ;V0Þ¼ðX*

0
;Y *

0
;Z *

0
;U*

0
;V *

0Þ≠ 0; (9)

the differential equation ð1Þ has a periodic solution xðt; εÞ tending to the solution x0ðtÞ given by:

−

�
X *

0 cos t � Y *
0 sin t

�
p2 þ Z *

0 cosðptÞ � U *
0 sinðptÞ þ ðp2 � 1ÞV *

0

p2ðp2 � 1Þ (10)

of xð5Þ − λx
...: þ ðp2 þ 1Þx...− λðp2 þ 1Þ€xþ p2x$ − λp2x ¼ 0 when ε→ 0. Note that this solution is

periodic of period 2πn.
Theorem 5 is proved in Section 4. Its proof is based on the averaging theory for computing

periodic orbits, see Section 2. An application of Theorem 3 is given in the following corollary:

Corollary 4. If Fðt; x; x: ; x::; x:::; x::::Þ ¼ ð2x2 − x$2þ x− 2x$Þsin t then the differential Eqn (1)

with p ¼ 1
2, λ ¼ 0has six periodic solutions xkðt; εÞ for k ¼ 1; :::; 6 tending to the periodic solutions:

x1ðtÞ ¼ −
1

4
sin t � 1

28

ffiffiffiffiffi
42

p
cos

�
1

2
t

�
� 1

4
; x2ðtÞ ¼ −

1

4
sin t þ 1

28

ffiffiffiffiffi
42

p
cos

�
1

2
t

�
� 1

4
;

x3ðtÞ ¼ 1

4
sin t þ 1

28

ffiffiffiffiffi
42

p
sin

�
1

2
t

�
� 1

4
; x4ðtÞ ¼ 1

4
sin t � 1

28

ffiffiffiffiffi
42

p
sin

�
1

2
t

�
� 1

4
;

x5ðtÞ ¼ −
1

10

ffiffiffiffiffi
10

p
sin t � 1

4
; x6ðtÞ ¼ 1

10

ffiffiffiffiffi
10

p
sin t � 1

4
;

of xð5Þ þ 5
4
x
... þ 1

4
x$ ¼ 0 when ε→ 0.

Corollary 4 is proved in Section 5.

2. Basic results on the averaging theory
In this section, we present the basic results from the averaging theory that we shall need for
proving the main results of this paper.

We consider the problem of the bifurcation of T-periodic solutions from differential
systems of the form:

x$ ¼ F0ðt;xÞ þ εF1ðt;xÞ þ ε2F2ðt;x; εÞ; (11)

with ε > 0 sufficiently small. Here the functions F0;F1 : R3Ω→Rn and F2 : R3Ω3
ð−ε0; ε0Þ→Rn are C2 functions,T-periodic in the variable t, andΩ is an open subset ofRn. The
main assumption is that the unperturbed system:

x$ ¼ F0ðt;xÞ; (12)

has a submanifold of periodic solutions. A solution of this problem is given using the
averaging theory.

Let xðt; z; εÞ be the solution of the system ð12Þ such that xð0; z; εÞ ¼ z. We write the
linearization of the unperturbed system along a periodic solution xðt; z; 0Þ as:

y$ ¼ DxF0ðt;xðt; z; 0ÞÞy: (13)

Fifth-order
differential
equations

5



In what follows, we denote by MzðtÞ a fundamental matrix of the linear differential system

(13), and by ξ : Rk 3Rn−k
→Rk the projection of Rn onto its first k coordinates,

i.e. ξðx1; :::; xnÞ ¼ ðx1; :::; xkÞ.
We assume that there exists a k-dimensional submanifold Z of Ω filled with T-periodic

solutions of (12). Then, an answer to the problem of bifurcation of T-periodic solutions from
the periodic solutions contained in Z for system (11) is given in the following result.

Theorem 5. Let W be an open and bounded subset of Rk, and let β : CLðW Þ→Rn−k be a C2
function. We assume that:

(1) Z ¼ zα ¼ α; βðαÞð Þ; α∈CLðW Þf g⊂Ω, and that for each zα ∈Z, the solution
xðt; zαÞ of (12) is T-periodic;

(2) For each zα ∈Z, there is a fundamental matrix MzαðtÞ of (13) such that the matrix

M−1
zα
ð0Þ−M−1

zα
ðTÞhas in the upper-right corner the k3 ðn− kÞ zero matrix, and in the

lower-right corner a ðn− kÞ3 ðn− kÞmatrix Δα with detðΔαÞ≠ 0.

We consider the function F : CLðW Þ→Rk

FðαÞ ¼ ξ
1

T

Z T

0

M−1
zα
ðtÞF1ðt;xðt; zαÞÞdt

� �
: (14)

If there exists a∈W with FðaÞ ¼ 0 and det dF=ð dαð ÞðaÞÞ≠ 0, then there is a T-periodic
solution wðt; εÞ of system (11) such that wð0; εÞ→ za as ε→ 0.

Theorem 5 goes back to Malkin [10] and Roseau [11]; for a shorter proof, see Ref. [12].
We assume that there exists an open setV with CLðV Þ⊂Ω such that for each z∈CLðV Þ,

xðt; z; 0Þ is T-periodic, where xðt; z; 0Þ denotes the solution of the unperturbed system (12)
withxð0; z; 0Þ ¼ z. The setCLðV Þ is isochronous for the system (11), i.e. it is a set formed only
by periodic orbits, all of them having the same period. Then, an answer to the problem of the
bifurcation ofT-periodic solutions from the periodic solutionsxðt; z; 0Þcontained inCLðVÞ is
given in the following result.

Theorem 6. [Perturbations of an isochronous set] We assume that there exists an
open and bounded set V with CLðV Þ⊂Ω such that for each z∈CLðVÞ, the solution xðt; zÞ is
T-periodic, then we consider the function F : CLðVÞ→Rn

FðzÞ ¼
Z T

0

M−1
z ðt; zÞF1ðt;xðt; zÞÞdt: (15)

If there exists a∈V with det dF=ð dαð ÞðaÞÞ≠ 0, then there exists a T-periodic solution wðt; εÞof
system (11) such that wð0; εÞ→ a as ε→ 0.

For a shorter proof of Theorem 6, see Corollary 1 of [12]. In fact, this result goes back to
Malkin [10] and Roseau [11].

3. Proof of Theorem 1
If y ¼ x

:
, z ¼ x

::
, u ¼ x

:::
, v ¼ x

::::
, then system (1) can be written as:

x
: ¼ y;

y
: ¼ z;

z
: ¼ u;

u
: ¼ v;

v
: ¼ λp2x� p2yþ λ

�
p2 þ 1

�
z� �

p2 þ 1
�
uþ λvþ εF

�
t; x; x$; €x; x

...
; x
...:
�
; (16)
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The unperturbed system has a unique singular point, the origin. The eigenvalues of the
linearized system at this singular point are ±i, ±pi and λ. By the linear invertible
transformation:

ðX ;Y ; Z ;U ;V ÞT ¼ Bðx; y; z; u; vÞT ; (17)

where

B ¼

0 �λp2 p2 �λ 1
�λp2 p2 �λ 1 0
0 �λ 1 �λ 1

�λp p �λp p 0
p2 0 p2 þ 1 0 1

0
BBBB@

1
CCCCA;

we transform the system (16) such that its linear part is real Jordan normal form of the linear
part of system (16) with ε ¼ 0, i.e.:

8>>>>>><
>>>>>>:

_X ¼ −Y þ εGðt;X ;Y ; Z ;U ;V Þ;
_Y ¼ X ;
_Z ¼ −pU þ εG t;X ;Y ; Z ;U ;Vð Þ;
_U ¼ pZ ;
_V ¼ λV þ εG t;X ;Y ; Z ;U ;Vð Þ;

(18)

where

G ¼ Fðt;A;B; C;D;J Þ ¼ G t;X ;Y ; Z ;U ;Vð Þ;
with A;B; C;D,and J as in the statement of Theorem 1.

Note that the linear part of the differential system (18) at the origin is in its real
Jordan normal form, and that the change of variables (17) is defined when p is a rational
different from −1, 0; 1, because the determinant of the matrix of the change

is pðp2 − 1Þ2ðλ2 þ 1Þðλ2 þ p2Þ.
We shall apply Theorem 5 to the differential system (18). We note that system (18) can be

written as system 11ð Þ taking

x ¼

X

Y

Z

U

V

0
BBBB@

1
CCCCA; F0 x; tð Þ ¼

�Y

X

�pU

pZ

λV

0
BBBB@

1
CCCCA; F1 x; tð Þ ¼

G

0
G

0
G

0
BBBB@

1
CCCCA:

We shall study the periodic solutions of system (18) in our case, i.e. the periodic solutions of
system (18) with ε ¼ 0. These periodic solutions are:

X tð Þ
Y tð Þ
Z tð Þ
U tð Þ
VðtÞ

0
BBBB@

1
CCCCA ¼

X0 cosðtÞ � Y0 sinðtÞ
Y0 cosðtÞ þ X0 sinðtÞ
Z0 cosðptÞ � U0 sinðptÞ
U0 cosðptÞ þ Z0 sinðptÞ

0

0
BBBB@

1
CCCCA:

Fifth-order
differential
equations
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This set of periodic orbits has dimension four, all having the same period 2πn, where n is
defined in the statement of Theorem 1. To look for the periodic solutions of our equation (1) we
must calculate the zeros z ¼ ðX0;Y0; Z0;U0;V0Þ of the systemFðzÞ ¼ 0, whereFðzÞ is given
by (14). The fundamental matrix MðtÞ of the differential system (18) with ε ¼ 0, along any
periodic solution is:

MðtÞ ¼ MzðtÞ ¼

cosðtÞ �sinðtÞ 0 0 0
sinðtÞ cosðtÞ 0 0 0
0 0 cosðptÞ �sinðptÞ 0
0 0 sinðptÞ cosðptÞ 0
0 0 0 0 eλt

0
BBBB@

1
CCCCA:

The inverse matrix of M tð Þ is:

MI tð Þ ¼

cosðtÞ sinðtÞ 0 0 0
�sinðtÞ cosðtÞ 0 0 0

0 0 cosðptÞ sinðptÞ 0
0 0 �sinðptÞ cosðptÞ 0
0 0 0 0 e−λt

0
BBBB@

1
CCCCA:

Moreover, an easy computation shows that:

MIð0Þ �MIð2πnÞ ¼

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1� e−2πnλ

0
BBBB@

1
CCCCA:

We obtain ð1− expð−2πnλÞÞ≠ 0, because λ≠ 0. Consequently, all the assumptions of
Theorem 5 are satisfied. Therefore, we must study the zeros inW of the system FðzÞ ¼ 0 of
four equations with four unknowns, whereW andF are given in the statement of Theorem 5.
More precisely, we have FðzÞ ¼ ðF 1ðzÞ;F 2ðzÞ;F 3ðzÞ;F 4ðzÞÞ, such that z ¼ ðX0;Y0;
Z0;U0Þ, where the functions F 1, F 2;F 3 and F 4 are the ones given in (2). The zeros

X*0 ;Y
*
0 ; Z

*
0 ;U

*
0

� �
of system 4ð Þ with respect to the variables X0, Y0, Z0 and U0 provide

periodic orbits of system 18ð Þ with ε≠ 0 sufficiently small if they are simple, i.e. if the
condition 5ð Þ is satisfied. Going back through the change of variables, for every simple zero

X*0 ;Y
*
0 ; Z

*
0 ;U

*
0

� �
∈R4 − fð0; 0; 0; 0Þg of system 4ð Þ, we obtain a 2πn periodic solution xðtÞ

of the differential equation 1ð Þ for ε≠ 0 sufficiently small such that xðtÞ tends to the periodic
solution, where xðtÞ is defined in the statement of Theorem 1, of xð5Þ − λ x

...: þ ðp2 þ 1Þx...−
λðp2 þ 1Þ€xþ p2x$ − λp2x ¼ 0 when ε→ 0. Note that this solution is periodic of period 2πn.
This completes the proof of Theorem 1.

4. Proof of Theorem 3
We want to study the periodic orbits of the class of fifth-order differential equation:

xð5Þ þ �
p2 þ 1

�
x
... þ p2x$ ¼ εF

�
t; x; x$; €x; x

...
; x
...:
�
: (19)

This is the case of equation (1) when λ ¼ 0, and p is a rational number different from −1, 0; 1.
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If y ¼ x
:
, z ¼ x

::
, u ¼ x

:::
, v ¼ x

::::
, we write the fifth-order differential equation (19) as the

following first-order differential system:

x
: ¼ y;

y
: ¼ z;

z
: ¼ u;

u
: ¼ v;

v
: ¼ −p2y� �

p2 þ 1
�
uþ εF

�
t; x; x$; €x; x

...
; x
...:
�
; (20)

The unperturbed system has a unique singular point, the origin. The eigenvalues of the
linearized system at this singular point are ±i, ±pi and 0. By the linear invertible
transformation:

ðX ;Y ; Z ;U ;V ÞT ¼ Bðx; y; z; u; vÞT ;
where

B ¼

0 0 p2 0 1
0 p2 0 1 0
0 0 1 0 1
0 p 0 p 0
p2 0 p2 þ 1 0 1

0
BBBB@

1
CCCCA;

we transform the system 20ð Þ such that its linear part is real Jordan normal form of the linear
part of system 20ð Þwith ε ¼ 0, i.e.:

8>>>>>><
>>>>>>:

_X ¼ −Y þ εG t;X ;Y ; Z ;U ;Vð Þ;
_Y ¼ X ;
_Z ¼ −pU þ εG t;X ;Y ; Z ;U ;Vð Þ;
_U ¼ pZ ;
_V ¼ εG t;X ;Y ; Z ;U ;Vð Þ;

(21)

where

G ¼ Fðt;A;B; C;D;J Þ ¼ G t;X ;Y ; Z ;U ;Vð Þ;

with A;B; C;D,and J as in the statement of Theorem 3.
Note that the linear part of the differential system (21) at the origin is in its real Jordan

normal form. We shall apply Theorem 6 to the differential system (21). We note that system
(21) can be written as system 11ð Þ taking

x ¼

X

Y

Z

U

V

0
BBBB@

1
CCCCA; F0 x; tð Þ ¼

�Y

X

�pU

pZ

0

0
BBBB@

1
CCCCA; F1 x; tð Þ ¼

G

0
G

0
G

0
BBBB@

1
CCCCA:

Fifth-order
differential
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We shall study the periodic solutions of system 21ð Þ in our case, i.e. the periodic solutions of
system (21) with ε ¼ 0. These periodic solutions are:

X tð Þ
Y tð Þ
Z tð Þ
U tð Þ
VðtÞ

0
BBBB@

1
CCCCA ¼

X0 cos t � Y0 sin t
Y0 cos t þ X0 sin t

Z0 cosðptÞ � U0 sinðptÞ
U0 cosðptÞ þ Z0 sinðptÞ

V0

0
BBBB@

1
CCCCA:

This set of periodic orbits has dimension five, all having the same period 2πn, where n is
defined in the statement of Theorem 3. To look for the periodic solutions of our equation (19),
we must calculate the zeros z ¼ ðX0;Y0; Z0;U0;V0Þ of the system FðzÞ ¼ 0, where FðzÞ is
given by 15ð Þ. The fundamental matrixMðtÞ of the differential system (21) with ε ¼ 0, along
any periodic solution is

MðtÞ ¼ MzðtÞ ¼

cos t �sin t 0 0 0
sin t cos t 0 0 0
0 0 cosðptÞ �sinðptÞ 0
0 0 sinðptÞ cosðptÞ 0
0 0 0 0 1

0
BBBB@

1
CCCCA:

The inverse matrix of M tð Þ is:

MI tð Þ ¼

cos t sin t 0 0 0
�sin t cos t 0 0 0
0 0 cosðptÞ sinðptÞ 0
0 0 �sinðptÞ cosðptÞ 0
0 0 0 0 1

0
BBBB@

1
CCCCA:

Nowcomputing the functionFðzÞgiven in 15ð Þ, wegot that the systemFðzÞ ¼ 0, can bewritten
as system 8ð Þ with the function F kðX0;Y0; Z0;U0;V0Þ given in 6ð Þ. The zeros

X*0 ;Y
*
0 ; Z

*
0 ;U

*
0 ;V

*
0

� �
of system 8ð Þ with respect to the variables X0, Y0, Z0, U0, and V0,

provide periodic orbits of system 21ð Þwith ε≠ 0 sufficiently small if they are simple, i.e. if 9ð Þ
holds.Going back through the changeof variables, for every simple zeroX*0 ;Y

*
0 ; Z

*
0 ;U

*
0 ;V

*
0 of

system 8ð Þ, we obtain a 2πn periodic solution xðtÞ of the differential equation (1) for ε≠ 0

sufficiently small such that xðtÞ tends to the periodic solution 10ð Þof xð5Þ þ ðp2 þ 1Þx...þp2x$ ¼ 0
when ε→ 0. Note that this solution is periodic of period 2πn. This completes the proof of
Theorem 3.

5. Proof of Corollaries 2 and 4

Proof of Corollary 2. Consider the function

F
�
t; x; x$; €x; x

...
; x
...:
�
¼

�
ax2 þ bx$

�
ð1þ cos tÞ;

which corresponds to the case p ¼ 1
2
, λ ¼ 2. The functions F i 5 F iðX0;Y0; Z0;U0Þ for

i ¼ 1; :::; 4 of Theorem 1 are:
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F 1 ¼ 2048

2601
aU 2

0 �
1024

2601
aU0Z0 þ 14

225
aX 2

0 þ
16

225
aX0Y0 þ 26

225
aY 2

0

þ 128

2601
aZ 2

0 þ
4

15
bX0 � 2

15
bY0;

F 2 ¼ 2

15
bX0 þ 4

15
bY0 þ 512

2601
aU 2

0 �
8

225
aX 2

0 þ
8

225
aY 2

0 �
512

2601
aZ 2

0

�640

867
aU0Z0 � 4

75
aX0Y0;

F 3 ¼ 2

17
bU0 � 8

17
bZ0 � 64

255
aU0X0 � 32

45
aU0Y0 � 64

153
aX0Z0;

F 4 ¼ −
32

765
aY0Z0 � 8

51
bU0 � 2

51
bZ0 þ 256

765
aU0X0 � 128

765
aU0Y0 þ 64

765
aX0Z0;

System F 1 ¼ F 2 ¼ F 3 ¼ F 4 ¼ 0 has only real solution:�
X *

0;Y
*
0; Z

*
0;U

*
0

�
¼ −

6b

a
;
3b

a
; 0; 0

� �
:

Since the Jacobian

det
vðF 1;F 2;F 3;F 4Þ
vðX0;Y0; Z0;U0Þ

� �
jðX0 ;Y0 ;Z0 ;U0Þ¼ðX*

0
;Y *

0
;Z *

0
;U*

0Þ ¼
208b4

135
≠ 0; b≠ 0

by Theorem 1 equation 1ð Þ has the periodic solution of the statement of the corollary. ,

Proof of Corollary 4. Consider the function:

F
�
t; x; x

:
; x
::
; x
:::
; x
::::� ¼ �

2x2 � x$2þ x� 2x$
�
sin t;

which corresponds to the case p ¼ 1
2
, λ ¼ 0. The functions F i 5 F iðX0;Y0; Z0;U0;V0Þ for

i ¼ 1; :::; 5 of Theorem 2 are:

F 1 ¼ −
4

3
X0Y0;

F 2 ¼ −
112

9
U 2

0 � 16V 2
0 þ

2

9
X 2

0 �
10

9
Y 2

0 �
112

9
Z 2
0 � 2V0;

F 3 ¼ 4

3
U0 � 4

3
Z0 þ 64

3
U0V0 þ 16

9
X0U0 þ 64

9
Y0Z0;

F 4 ¼ 4

3
U0 þ 4

3
Z0 þ 64

9
Y0U0 þ 64

3
V0Z0 � 16

9
X0Z0;

F 5 ¼ 4

3
X0 � 2

3
Y0 � 32U0Z0 � 32

3
V0Y0:

System F 1 ¼ F 2 ¼ F 3 ¼ F 4 ¼ F 5 ¼ 0 has the six solutions X*0 ;Y
*
0 ; Z

*
0 ;U

*
0 ;V

*
0

� �
given by:
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0;
3

16
;
3

448

ffiffiffiffiffi
42

p
; 0;� 1

16

� �
; 0;

3

16
;� 3

448

ffiffiffiffiffi
42

p
; 0;� 1

16

� �
; 0;� 3

16
; 0;

3

448

ffiffiffiffiffi
42

p
;� 1

16

� �

0;� 3

16
; 0;� 3

448

ffiffiffiffiffi
42

p
;� 1

16

� �
; 0;

3

40

ffiffiffiffiffi
10

p
; 0; 0;� 1

16

� �
; 0;� 3

40

ffiffiffiffiffi
10

p
; 0; 0;� 1

16

� �
:

Since the Jacobian:

det
vðF 1;F 2;F 3;F 4;F 5Þ
vðX0;Y0; Z0;U0;V0Þ

� �
jðX0 ;Y0 ;Z0 ;U0 ;V0Þ¼ðX*

0
;Y *

0
;Z*

0
;U*

0
;V *

0Þ;

for six solutions ðX*0 ;Y*
0 ; Z

*
0 ;U

*
0 ;V

*
0 Þ is:

85

252
;

85

252
; � 85

252
;� 85

252
;� 32

225

ffiffiffiffiffi
10

p
;� 32

225

ffiffiffiffiffi
10

p
;

Respectively, we obtain using Theorem 3 the ten solutions given in statement of the
corollary. ,
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