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1. Introduction and statement of the main results

One of the main problems in the theory of differential equations is the study of their periodic
orbits, their existence, their number and their stability. The goal of this paper is to study the
periodic solutions of the fifth-order non-autonomous differential equation:

20— dx et (0 + 1)E - 28+ 1)E+ 9% - = eF (L, BEE), ()

where Aand eare real parameters; p is a rational number different from —1, 0, 1, eis sufficiently
small; and F is a nonlinear non-autonomous periodic function.

There are many papers studying the periodic orbits of fifth-order differential equations,
see for instance in Refs. [1-6]. But, our main tool for studying the periodic orbits of equation
(1) is completely different from the tools mentioned papers, and consequently, the results
obtained seem distinct and new. We shall use the averaging theory, more precisely Theorem
5. Many of the quoted papers dealing with the periodic orbits of fifth-order differential
equations use Schauder’s or Leray-Schauder’s fixed point theorem, the non-local reduction
method or variational methods. In Refs. [7-9], the authors studied the limit cycles of the
fourth-, sixth- and eighth-order non-autonomous differential equations.

In general, to obtain analytically periodic solutions of a differential system is a very
difficult task, usually impossible. Here, with the averaging theory, this difficult problem for
the differential equation (1) is reduced to find the zeros of a nonlinear function. We must say
that the averaging theory for finding periodic solutions in general does not provide all the
periodic solutions of the system. For more information about the averaging theory, see
Section 2 and the references quoted there.
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Our main results on the periodic solutions of the fifth-order differential equation (1) are the
following.

Theorem 1. Assume that p = m/nis a rational different from —1, 0,1, 1 0in differential
equation (1). Let

1 27n
fl(Xo,Yo,Zo,Uo) :%/ COS(t)F(t,A, B,C, D, j)dt,
0

1 2zn )
Fo(Xo, Yo, 20, Up) = —%/ sin(t)F(¢, A, B,C, D, J)dt,
0

@
2mn
Fald Yo, 20 U) = 5 [ cospP(t A B.C.D, )i
2nn 0
2mn
FolXo, Yo, 20, Up) =~ / sin(pH)F(t. A, B,C, D, J)dt,
2nn 0
where m, n are positive integers, and
A (Xo +AYy)cost + (AXy — Yo)sint . (02 + AUy)cos(pt) — (pUy — AZy)sin(pt)
PG gy
B —(4Xo — Yo)cost + (Xo +AYo)sint  (pUy — AZy)cos(pt) + (AU +pZo)sin(pt)
=D +) @ -)F+7)
o (Xo +AYy)cost + (AXy — Yo)sim‘+ —(pZy + AUy )p cos(pt) + (pUy — AZy)psin(pt)
®* -1 -1) @ —1)(Z+1)
Do (AXy — Yo)cost — (X +AYy)sint  (pUy — AZ)p* cos(pt) + (AUs + pZy ) p*sin(pt)
=D FE+1) 1) +F)
7 (Xo + AY,)cost + (AXy — Yo)sint N (02 + AUy )p* cos(pt) — (pUy — AZ)p sin(pt)
POE D) Ty ’
®)

If the function F is 2rn—periodic with respect to the variable t, then for every
(X : , Y: , Z?; U : ) solution of the system:

fk(X()v Y07207 UO) = 07 k = 17 "'747 (4)

satisfying

a(]:27-7:27-7:37]:4)
(5720 stz $0 ©

the differential equation (1) has a periodic solution x(t, €) tending to the solution x,(t) given by:
(X(’; + AY(’;) cos(t) + (AX(*) - Y(*))sin(t) (pZS + AUS) cos(pt) — (pU(’; - AZ(’;) sin(pt)
+
®* =12 +1) P = 1)(4 +1?)
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of x® = 1% + (p* + 1)k — A(p? + 1)¥ + p*x — Ap*x = 0 when & — 0. Nole that this solution is
periodic of period 2rn.

Theorem 1 is proved in Section 3. Its proof is based on the averaging theory for computing
periodic orbits, see Section 2.

An application of Theorem 1 is the following.

Corollary 2. IfF(t,x,%,%,%, %) = (1+cost)(ax? + bx)witha-b+ 0, then the differential
equation (1) with p = % A = 2 has one periodic solution x2(t, €) tending to the periodic solution
x2(t) given by:

2b .
%2(t) = —sin(t),
a
of x® —2% + 2% -3+ 1x —lx = Owhen e > 0.

Corollary 2 is proved in Section 5.

Theorem 3. Assume thatp = m/nis a rational different from -1, 0,1, A = O differential
equation (1). Let

1 2rn
F1(Xo, Y0, 2, Up) = %/ cos(t)F(t, A,B,C, D, J)dt,
0

1 2mn )
FollXo, Vo, 2o, Up) = = / sin(O)F (1, A, B,C, D, J)dt,
0

1 2mn
Falo, Yo, %, Up) = 5 / cos(pt)F(t, A, B,C, D, J)dt, ©)
0

1 27n .
Fu(Xo, Yo, 2, Uh) = —27[—74/ sin(pt)F (¢, A, B,C, D, J)dt,
0

1 2mn
F5(Xo, Yo, %, Uy) = %/ F(t, A B,C,D,J)dt,
0

and

. —(Xycost — Yysint)p? + Zy cos(pt) — Upsin(pt) + (p* — 1) V;

P -1)
B (Yo cost + Xysint)p — Uy cos(pt) — Zysin(pt)
pO* - 1) ’
Xocost — Yysint — Z cos(pt) + Uy sin(pt)
c— : , ™)
p =1
D —Yycost — Xysint + p(Uy cos(pt) + Zysin(pt))
-1 ’
7 —Xycost + Yysint + p*(Z cos(pt) — Uy sin(pt))
- ®* -1 ’

If the function F is 2mn—periodic with respect to the vaviable t, then for every
(X:)k ,Y;k Z;:U;k 7VZ< ) solution of the system:



Fk(X()y Y07207 U07 VO) = Oa k = 17 "'757 (8)

satisfying

(")(]“2,?2,?3,?4)
et <3(X0’ Yo, Zo, Us, Vo) 308,000~ 250 ) 7O )

the differential equation (1) has a periodic solution x(t, €) tending to the solution xy(t) given by:
—(Xg cost — Y: sint)pz + Z; cos(pt) — U sin(pt) + (02 — 1)V,
FE -1
of xO =A% + (P> + 1)x = AQp? + 1)i + p*x — Ap’x = 0 when € — 0. Note that this solution is
periodic of period 2.

Theorem 5 is proved in Section 4. Its proof is based on the averaging theory for computing
periodic orbits, see Section 2. An application of Theorem 3 is given in the following corollary:

Corollary 4. If F(t,x,x,%, %, %) = (22> =22+ x—2x)sint then the differential Eqn (1)
withp = %,/1 = Ohas six periodic solutions x;,(t, €) for k = 1, ..., 6 tending to the periodic solutions:

(10)

1. 1 1 1 1. 1 1 1
n(t) = —Z—Lsmt—%\/42cos<§t) 7 2(t) = —Z—Lsmt+2—8\/42cos<§t) 7
1. 1 . (1 1 1. 1 . (1 1
x3(t) 7151nt+%\/4251n<ét) 7 x4(t) *ZLSIM_%VQSIH(?) 7
1 . 1 1 . 1
J@,(t):—E 1OSmt—A—L, xG(t)_Evloslnt—Z,

of x© + 2%+ 12 = Owhen e - 0.

Corollary 4 is proved in Section 5.

2. Basic results on the averaging theory
In this section, we present the basic results from the averaging theory that we shall need for
proving the main results of this paper.

We consider the problem of the bifurcation of 7-periodic solutions from differential
systems of the form:

X:F()(t7x)+€F1(t,x)+€2F2(t7X,€), (11)

with &€ > 0 sufficiently small. Here the functions Fy,F; : RXQ—> R" and F5: RX QX
(—e0, &0) = R" are C* functions, T-periodic in the variable £, and Q is an open subset of R”. The
main assumption is that the unperturbed system:

X:Fo(tv X)7 (12)

has a submanifold of periodic solutions. A solution of this problem is given using the
averaging theory.

Let x(¢,2, €) be the solution of the system (12) such that x(0,z, ¢) = z. We write the
linearization of the unperturbed system along a periodic solution x(¢, z, 0) as:

y = DXFO(t7 X(tv z, O))y (13)
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In what follows, we denote by M,(#) a fundamental matrix of the linear differential system
(13), and by ¢&:R*x R"* > RF the projection of R” onto its first & coordinates,
Le E(X1, ey Xn) = (X1, ooy Xp)-

We assume that there exists a k-dimensional submanifold Z of Q filled with 7-periodic
solutions of (12). Then, an answer to the problem of bifurcation of 7-periodic solutions from
the periodic solutions contained in Z for system (11) is given in the following result.

Theorem 5. Let W be an open and bounded subset of R, and let  : CL(W) — R"* be a C?
Sfunction. We assume that:

1) Z={zqy=(a,p(a)), acCL(W)}CQ and that for each z,€ Z, the solution
x(t,24) of (12) is T-periodic;

(2) For each z, € Z, there is a fundamental matrix M, (t) of (13) such that the matrix
MY (0) — M, (T) has in the upper-right corner the k X (n — k) zero matrix, and in the

Zg Zg

lower-right corner a (n—k) X (n— k) matrix Ay, with det(Ag) #0.
We consider the function F : CL(W) — R*

T
Fla) = 5(% /0 M (R (. x(, za))dt) 14)

If there exists a€ W with F(a) = 0 and det((dF/da)(a))#0, then there is a T-periodic
solution ¢(t, €) of system (11) such that ¢(0,¢) - z, as e > Q.

Theorem 5 goes back to Malkin [10] and Roseau [11]; for a shorter proof, see Ref. [12].

We assume that there exists an open set V with CL(V') c Qsuch that for each z € CL(V),
x(t,z,0) is T-periodic, where x(¢,z, 0) denotes the solution of the unperturbed system (12)
with x(0, z, 0) = z. The set CL(V') isisochronous for the system (11), i.e. it is a set formed only
by periodic orbits, all of them having the same period. Then, an answer to the problem of the
bifurcation of 7-periodic solutions from the periodic solutions x(¢, z, 0) contained in CL( V) is
given in the following result.

Theorem 6. [Perturbations of an isochronous set] We assume that therve exists an
open and bounded set V with CL(V') C Q such that for each z € CL(V), the solution x(t,z) is
T-periodic, then we consider the function F : CL(V) - R"

Flz) = /0 TMj(t, 2)F\(t,x(t,z))dt. (15)

Ifthere exists a € V with det((dF /da)(a)) # O, then there exists a T-periodic solution (L, €) of
system (11) such that ¢(0,¢€) — a as e > Q.

For a shorter proof of Theorem 6, see Corollary 1 of [12]. In fact, this result goes back to
Malkin [10] and Roseau [11].

3. Proof of Theorem 1
Ify =%,z =x u=x v =%, then system (1) can be written as:

x=y,
y=z,
z=u,
u="uv,

b= A= B+ AP 1)z — (B2 D+ do+ eF (63, 5,85, F), (16)



The unperturbed system has a unique singular point, the origin. The eigenvalues of the
linearized system at this singular point are +i, +pi and A By the linear invertible
transformation:

X,Y,Z2,U,V)" =B(x,y,z,u,v)", 17)
where
0 - p 21
P - 1 0
B=| o0 —2 1 -2 1/,
—p Y/ - p 0
P 0 »P+1 0 1

we transform the system (16) such that its linear part is real Jordan normal form of the linear
part of system (16) with ¢ = 0, i.e.:

X=-Y+eGt,X,Y,Z,UV),

=
Z:_pU"‘EG(t?Xa YaZ7 U7 V)7 (18)
U=pZ,

V=aV+eGt,X Y, ZUYV),

where
G=FtABCTDJ) =GtX,Y,Z,UV),

with A, B, C, Dand 7 as in the statement of Theorem 1.

Note that the linear part of the differential system (18) at the origin is in its real
Jordan normal form, and that the change of variables (17) is defined when p is a rational
different from -1, 0,1, because the determinant of the matrix of the change
is p(p* =1)° (7 + 1) (A* + 7).

We shall apply Theorem 5 to the differential system (18). We note that system (18) can be
written as system (11) taking

X -Y G
Y X 0
x=|Z 7F0(x7t): —-pU aFl(xat): G
U y 24 0
Vv AV G

We shall study the periodic solutions of system (18) in our case, i.e. the periodic solutions of
system (18) with ¢ = 0. These periodic solutions are:

X(t) X cos(t) — Yysin(?)
Y(#) Y cos(t) + Xy sin(t)
Z(t) | = | Zcos(pt) — Upsin(pt)
U

Uy cos(pt) + Zy sin(pt)
0
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This set of periodic orbits has dimension four, all having the same period 277, where # is
defined in the statement of Theorem 1. To look for the periodic solutions of our equation (1) we
must calculate the zeros z = (Xy, Yo, Zo, Uy, Vo) of the system F(z) = 0, where F(z) is given
by (14). The fundamental matrix M (¢) of the differential system (18) with ¢ = 0, along any
periodic solution is:

cos(t) —sin(?) 0 0 0
sin(f)  cos(?) 0 0 0
M(t)=M,(t) = 0 0 cos(pt) —sin(pt) O
0 0 sin(pt) cos(pt) 0O
0 0 0 0 e
The inverse matrix of M () is:

cos(t)  sin(¢) 0 0 0

—sin(t) cos(t) 0 0 0

MI(t) = 0 0 cos(pt) sin(pt) O

0 0 —sin(pt) cos(pt) O

0 0 0 0 e

Moreover, an easy computation shows that:

0000 0
0000 0

MI(0)—MIm)=]0 0 0 0 0
0000 0
0000 1—¢2™

We obtain (1—exp(—2714)) #0, because A#0. Consequently, all the assumptions of
Theorem 5 are satisfied. Therefore, we must study the zeros in W of the system F(z) = 0of
four equations with four unknowns, where W and F are given in the statement of Theorem 5.
More precisely, we have F(z) = (Fi1(z), F2(2), F3(z), Fa(z)), such that z = (Xp, Yo,
Zy, Up), where the functions F;, Fo, F3 and Fy are the ones given in (2). The zeros
(X: , Y: 72: , U: ) of system (4) with respect to the variables Xy, Yy, Z and U, provide
periodic orbits of system (18) with €0 sufficiently small if they are simple, ie. if the
condition (5) is satisfied. Going back through the change of variables, for every simple zero
(X(;k , Y: , Z: ,U : ) eR*—{(0,0,0,0)} of system (4), we obtain a 27z periodic solution x(t)
of the differential equation (1) for € # 0 sufficiently small such that x(¢) tends to the periodic
solution, where x() is defined in the statement of Theorem 1, of x® — 1% + (p* + 1)% —

A(p% 4+ 1)i + p?x — Ap*x = 0 when & — 0. Note that this solution is periodic of period 277.
This completes the proof of Theorem 1.

4. Proof of Theorem 3
We want to study the periodic orbits of the class of fifth-order differential equation:

2O 4 (PP + 1)F +p% = eF(t,x,x,ié,ﬁé, x) (19)

This is the case of equation (1) when A = 0, and p is a rational number different from —1, 0, 1.



Ify=x2z=1x u=2Xx v= X, we write the fifth-order differential equation (19) as the
following first-order differential system:

xX=y,
y=z,
zZ=u,
u=uv,
b= b — (0 + Dt e (£,3,2,8,% %), 20)
The unperturbed system has a unique singular point, the origin. The eigenvalues of the

linearized system at this singular point are +i, +pi and 0. By the linear invertible
transformation:

(X,Y,Z,U, V)" =B(x,y,2,u,v)",

where
0 0 P 01
0 p? 0 10
B=10 0 1 0 11|,
0 p 0 p 0
P 0 pPP+1 01

we transform the system (20) such that its linear part is real Jordan normal form of the linear
part of system (20) with ¢ = 0, i.e:

X=-Y+eGt,X,Y,Z,UV),

X,
Z=-pU +eG(t,X,Y,Z,U, V), 21)
U=pZ,

V=eGtLX,Y,Z,UYV),
where
G=Ft,ABCD,J) =GtLX, Y, Z,UYV),
with A, B,C, Dand 7 as in the statement of Theorem 3.
Note that the linear part of the differential system (21) at the origin is in its real Jordan

normal form. We shall apply Theorem 6 to the differential system (21). We note that system
(21) can be written as system (11) taking

X -Y G
Y X 0
x=|Z 7F0(x7t): -pU aFl(xat): G
U y 24 0
Vv 0 G
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We shall study the periodic solutions of system (21) in our case, i.e. the periodic solutions of
system (21) with & = 0. These periodic solutions are:

X(t) Xocost — Yysint
Y Yocost + Xysint
Z(t) | = | Zcos(pt) — Upsin(pt)
U(t) Uy cos(pt) + Zy sin(pt)
V() Vo

This set of periodic orbits has dimension five, all having the same period 277, where 7 is
defined in the statement of Theorem 3. To look for the periodic solutions of our equation (19),
we must calculate the zeros z = (X, Yo, 2, U, Vo) of the system F(z) = 0, where F(z) is
given by (15). The fundamental matrix M () of the differential system (21) with ¢ = 0, along
any periodic solution is

cost —sint 0 0 0
sint  cost 0 0 0
M(t) = M,(t) = 0 0 cos(pt) —sin(pt) 0O
0 0 sin(pt) cos(pt) 0
0 0 0 0 1
The inverse matrix of M () is:
cost sint 0 0 0
—sin/ cost 0 0 0
MI(t) = 0 0 cos(pt) sin(pt) O
0 0  —sin(pt) cos(pt) O
0 0 0 0 1

Now computing the function F (z) given in (15), we got that the system F (z) = 0, can be written
as system (8) with the function Fp(Xo, Yo, %, Us, Vo) given in (6). The zeros

(X;< , Y:)k 7Z:)k, U : , V:: ) of system (8) with respect to the variables Xy, Yy, Zo, Uy, and Vj,
provide periodic orbits of system (21) with & # 0 sufficiently small if they are simple, i.e. if (9)

holds. Going back through the change of variables, for every simple zero X: , Y: Z ;k U :; , V:)k of
system (8), we obtain a 2zn periodic solution x(#) of the differential equation (1) for e #0

sufficiently small such that x(#) tends to the periodic solution (10) of x®) + (p? + 1)% +p%x =0
when & — 0. Note that this solution is periodic of period 2z#. This completes the proof of
Theorem 3.

5. Proof of Corollaries 2 and 4

Proof of Corollary 2. Consider the function
F(z‘,x,x,jc',}c', x) = (axz + bx’) (14 cost),

which corresponds to the case p :%, A =2. The functions F; = Fi(Xo, Yo, %, Us) for
i =1,...,40of Theorem 1 are:



2048, 1024 14 _, 16 2%,
1= 5601 Uy 2601 oz + 225 aXo + * 25 X°Y°+225“Y°
128 ., 4 2
togo1 %0 + 15 0% — 20V,
2 512 o 8 o 8 n 512
Fa *bX”*bYO*sz Us = 555 X0 + 5350710 — 3651 9%0
640 4
86 —alyZy — ClXoYm
2 4
.7:3 I—on—ébZO—6—CZU0XO dUQY() 6 dXQZo
17 17
Fo o= =22 vz —ibU bZ+ aUX aUY+6 aXoZ,
4 — 765 040 51 0 0A0 — 040 0440 5
System F; = Fo = F3 = F4 = 0has only real solution:
(XO, Y:,Z:, UO) - (—?? 0, 0).
Since the Jacobian
0(F1, Fo, Fs, Fy) 208b4
det( K Yo 2, Uy) )\t 20t=(3, 7, 2307) = 35 #0020

by Theorem 1 equation (1) has the periodic solution of the statement of the corollary.

Proof of Corollary 4. Consider the function:
Ptk 0%, %) = (26 = #2 4  — 2¢ )sin,

which corresponds to the case p = %, A=
i1 =1,...,50f Theorem 2 are:

4

Fi =—§X0Y0,
_ 112 9 29 10, 112
Fr =g Ui = 16Vi+ X3 - S ¥i - 9 _ oV,
4
Fs3 3U 320 + U()V() + XOU() -‘r Y()ZO
4 4
Fy 3U0 +SZO + Y()Uo + V()Zo 9 XoZ(),
4 32
Fs 3Xo SYO - 32Uy —gVOYO.

System F
given by:

O

0. The functions F; = F;(Xo, Yo, 2o, Uy, Vy) for

. . * * k % sk
= Fo=F3=7F4=F5=0 has the six solutions (XO, Yy.,Z,, Uy, V0>

Fifth-order
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(3 3\/‘0 )<16 448\/"0 ),(0,—3,0,1@,—l>

16448 16’448 16
0.-2 0 —i\/4_2 0—\/_ 0,0,0,— \/_ 0,0,0,— 1
"T16 448 6 16 0,— 16

Since the Jacobian:

det a(fhvafSyF%fS) |
a(X07 Y07Z)7 UOa VO) (Xo.¥o,20,Uo,Vo)= (XU YU 70 UO VO)

for six solutions (X, Y, ,Z,,U,,V,)is:

8 85 8 8 32 32
252" 252" 252" 252 225‘/_ 225‘/—

Respectively, we obtain using Theorem 3 the ten solutions given in statement of the
corollary. 0O
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