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Abstract

Purpose – This paper aims to study qualitative properties and approximate solutions of a thermostat
dynamics systemwith three-point boundary value conditions involving a nonsingular kernel operator which is
called Atangana-Baleanu-Caputo (ABC) derivative for the first time. The results of the existence and
uniqueness of the solution for such a system are investigated withminimumhypotheses by employing Banach
and Schauder’s fixed point theorems. Furthermore, Ulam-Hyers ðUHÞ stability, Ulam-Hyers-Rassias UHR
stability and their generalizations are discussed by using some topics concerning the nonlinear functional
analysis. An efficiency of Adomian decomposition method (ADM) is established in order to estimate
approximate solutions of our problem and convergence theorem is proved. Finally, four examples are exhibited
to illustrate the validity of the theoretical and numerical results.
Design/methodology/approach – This paper considered theoretical and numerical methodologies.
Findings – This paper contains the following findings: (1) Thermostat fractional dynamics system is studied
under ABC operator. (2) Qualitative properties such as existence, uniqueness and Ulam–Hyers–Rassias
stability are established by fixed point theorems and nonlinear analysis topics. (3) Approximate solution of the
problem is investigated by Adomain decomposition method. (4) Convergence analysis of ADM is proved. (5)
Examples are provided to illustrate theoretical and numerical results. (6) Numerical results are compared with
exact solution in tables and figures.
Originality/value –The novelty and contributions of this paper is to use a nonsingular kernel operator for the
first time in order to study the qualitative properties and approximate solution of a thermostat dynamics
system.
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1. Introduction
Fractional differential equations have been lately used as advantageous tools to learn about the
modeling of many real phenomena. Comparing with integer derivatives, the most essential
benefit of fractional derivatives is that it describes the quality of a heredity and memory of
diverse materials and processes. For more important points about fractional calculus and its
applications, we refer to these works [1–10, 49, 50], and the references given therein. Probably,
sometimes the nonlocal fractional operators via a singular kernel cannot describe the
complicated dynamics systems. Thus, the researchers used a new approach and another tool to
provide different options for improving the description of real models of phenomena. For this
regarding, there appeared new fractional operators with a nonsingular kernel [11–14]. Indeed,
themost optimal emulative operator among a nonsingular kernel operator is thatwhich depends
on Mittag–Leffler function, which is called Atangana–Baleanu–Caputo (ABC) operator [12].
In viewof this,manyauthors employedABCderivative to study fractional differential equations
and modeling of the infectious diseases, we refer to these works [15–20]. Particularly, Alnahdi
et al. [21], studied the existence, uniqueness and continuous dependence of solutions of the
nonlinear implicit fractional differential equation with nonlocal conditions involving the ABC
fractional derivative. Furthermore, a lot of excellent materials on the mathematical models with
different derivative operators applied to model real-life phenomena such as [22–28].

Adomian [29, 30], used ADM for estimating approximate solutions of integral equations,
integro-differential equations, ordinary and partial differential equations, etc. Recently, the
ADM algorithm received attention of researchers in fractional differential equations field; for
more information see refs. [31–35] and the references therein.

On the other hand, the thermostat control is considered as the best physio-electrical type.
A thermostat is a gauge device that regulates and measures the temperature of a particular
physical model and takes a procedure related to its temperature, which is closed to a fit and
preferred degree. This instrument is utilized in any controlling units and industrial systems,
which includes building central heating, medical incubators, water heaters, refrigerators
ovens, air conditioners and even vehicle engines, which increase orminimize the temperature.

In 2006, Infante and Webb [36], studied the following mathematical system for
thermostat model:

u
00 ðsÞ þ h s; uðsÞð Þ ¼ 0; s∈ I ¼ ½0; 1�;

u0ð0Þ ¼ 0; η u0ð1Þ þ uðζÞ ¼ 0;

�
(1.1)

where ζ ∈ I and η> 0. Furthermore, recently some authors extended equation (1.1) to fractional
derivative of singular kernel such as Nieto and Pimentel [37], transferred the problem (1.1) to a
Caputo fractional version. Baleanu et al. [38], formulated a hybrid fractional equation and
inclusion forms for a thermostat dynamics system of fractional-order. Very recently, Etemad
et al. [39], studied the qualitative properties of the solution for a new composition of the
generalized thermostat dynamics model with multi-point by means of μ � w-contraction. For
more research papers related to thermostat dynamics model, see these works [14, 40].

Motivated by the above ideas, the target of this paper is to investigate the existence,
uniqueness, stability and approximate solutions of the following thermostat fractional
differential equation involving ABC derivative:

ABC
DσuðsÞ þ h s; uðsÞð Þ ¼ 0; s∈ I ¼ ½0; 1�; (1.2)

with three-point boundary value conditions

u0ð0Þ ¼ g1; η u0ð1Þ þ uðζÞ ¼ g2; (1.3)
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where
ABC

Dσ denotes the σth ABC fractional derivative such that σ ∈ (1, 2]. The constants
g1; g2 ∈R; h : J 3R→R be continuous, ζ ∈ I and the parameter η > 0. The novelty and
contributions of this paper is to use a nonsingular kernel operator for the first time in order to
study the qualitative properties and approximate solution of a thermostat dynamics system.
Since singular kernel sometimes creates difficulty during numerical analysis. This is because
of its local singular kernel. So, in order to overcome this difficulty, we use ABC operator of
nonlocal nonsingular kernel type derivative.

Our manuscript is structured as follows: Several needful preliminaries are provided in
Sec.2. The existence and uniqueness results are given in Sec.3. The UH stability and UHR
stability results are investigated in Sec.4. An approximate solution and its convergence for
our problem are established byADM in Sec.5. Finally, four examples represent the validity of
the main findings which are provided in Sec.6.

2. Preliminaries
Here, we will introduce several needful preliminaries for nonlinear analysis and fractional
calculus [11, 12, 41–43]. In addition, we conclude an equivalent fractional integral equation
corresponding to the thermostat fractional dynamics system (1.2)–(1.3).

We denote by CðI ;RÞ the Banach space of all continuous functions equipped with usual
norm kuk ¼ supfjuðsÞj : s∈ Ig.
Definition 2.1 Consider σ ∈ (0, 1] and h∈H1ð0;TÞ. The σth left-sided ABC fractional
derivative with the lower limit zero for a function h is given by

ABC
Dσh

� �
ðsÞ ¼ fðσÞ

1� σ

Z s

0

Eσ −σ
ðs� tÞσ
1� σ

� �
h0ðtÞdt; s > 0; (2.1)

and the associated σth left-sided AB fractional integral is given by

AB
Iσh

� �
ðsÞ ¼ 1� σ

fðσÞ hðsÞ þ
σ

fðσÞ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1hðtÞdt; s > 0; (2.2)

where f(σ) is the normalization function with f(0) 5 f(1) 5 1, and Eσ is called the Mittag–
Leffler function defined by

Eσ rð Þ ¼
X∞
k¼0

rk

Γ σkþ 1ð Þ; (2.3)

here Re σð Þ > 0; r∈C and Γ :ð Þ is a well-known Gamma function.

Definition 2.2. Consider hðnÞ ∈H1ð0;TÞ and σ ∈ (n, n þ 1], n 5 0, 1, 2, . . .. Then, ABC
fractional derivative satisfies

ABC
Dσh

� �
ðsÞ ¼ ABC

DσhðnÞ
� �

ðsÞ;

and the associated fractional integral

AB
Iσh

� �
ðsÞ ¼ I n ABIϑh

� �
ðsÞ;

where ϑ 5 σ � n and I n is an usual nth integral.
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Lemma 2.1. For σ ∈ (n, n þ 1], n 5 0, 1, 2, . . ., the following relation holds:

AB
Iσ ABC

Dσh
� �

ðsÞ ¼ hðsÞ þ c0 þ c1sþ c2s
2 þ � � � þ cns

n;

for an arbitrary constant cj with j 5 0, 1, 2, . . ., n.

In the subsequent lemma, we derive an equivalent fractional integral equation corresponding
to the system (1.2)–(1.3).

Lemma 2.2. Let σ ∈ (1, 2] and h∈ CðI ;RÞ with hð0Þ ¼ hð1Þ ¼ 0. Then, the system:

ABC
DσuðsÞ þ hðsÞ ¼ 0; s∈ I ¼ ½0; 1�; (2.4)

u0ð0Þ ¼ g1; η u0ð1Þ þ uðζÞ ¼ g2; (2.5)

has a solution given by:

uðsÞ ¼ g2 þ ðs� η� ζÞg1 þ
σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2hðtÞdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

hðtÞdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1hðtÞdt

� 2� σ
fðσ � 1Þ

Z s

0

hðtÞdt � σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1hðtÞdt:

(2.6)

Proof. Consider h satisfying the system (2.4)–(2.5). Then by applying σth AB fractional
integral operator on both sides of (2.4) and using Lemma 2.1, we have

uðsÞ ¼ c1 þ c2s� 2� σ
fðσ � 1Þ

Z s

0

hðtÞdt � σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1hðtÞdt; (2.7)

where c1; c2 ∈R. It follows that

u0ðsÞ ¼ c2 � 2� σ
fðσ � 1Þ hðsÞ �

σ � 1

fðσ � 1Þ
1

Γðσ � 1Þ
Z s

0

ðs� tÞσ−2hðtÞdt: (2.8)

Now, by using the first nonlocal boundary value condition u0ð0Þ ¼ g1, and the fact hð0Þ ¼ 0,
we get

c2 ¼ g1: (2.9)

Next, by applying the second nonlocal boundary value condition η u0ð1Þ þ uðζÞ ¼ g2, and by
using hð1Þ ¼ 0; c2 ¼ g1, we obtain the following.

ηg1 �
σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2hðtÞdt

þc1 þ ζg1 �
2� σ

fðσ � 1Þ
Z ζ

0

hðtÞdt � σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1hðtÞdt ¼ g2;

which yields:
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c1 ¼ g2 � ðηþ ζÞg1 þ
σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2hðtÞdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

hðtÞdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1hðtÞdt:

Substituting the values of c1 and c2 in (2.7), we have:

uðsÞ ¼ g2 þ ðs� η� ζÞg1 þ
σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2hðtÞdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

hðtÞdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1hðtÞdt

� 2� σ
fðσ � 1Þ

Z s

0

hðtÞdt � σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1hðtÞdt:

As an outcome of Lemma 2.2, we have the next lemma:

Lemma 2.3. Consider σ ∈ (1, 2] and h∈ CðI 3R;RÞ with hð0; uð0ÞÞ ¼ hð1; uð1ÞÞ ¼ 0.
Then, the solution of the system (1.2)–(1.3) is given by

uðsÞ ¼ g2 þ ðs� η� ζÞg1 þ
σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2hðt; uðtÞÞdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

hðt; uðtÞÞdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1hðt; uðtÞÞdt

� 2� σ
fðσ � 1Þ

Z s

0

hðt; uðtÞÞdt � σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1hðt; uðtÞÞdt:

(2.10)

Now, we will state the Banach and Schauder’s fixed point theorems, respectively.

Theorem 2.1. [43] Consider Π : Y→Y as a contraction operator such that Y is a Banach
space. Then, there is only one fixed point for Π in Y.
Theorem 2.2. [43] ConsiderD as a closed, bounded and convex subset of a Banach space Y.
If Π : D→D is a continuous mapping such that ΠD is relatively compact and ΠD⊂Y, then
there is at least one fixed point for Π in D.

3. Existence and uniqueness of solution
Firstly, we will discuss the existence and uniqueness of the solution for the system (1.2)–(1.3)
by using Banach’s fixed point theorem. In view of this, we are in need of the next hypothesis:

H1. ½ðH1Þ� Let h : ½0; 1�3R→R be a continuous function with hð0; uð0ÞÞ ¼ hð1; uð1ÞÞ ¼ 0,
and there is a constant ‘1 > 0 such that

hðs; u1Þ � hðs; u2Þj j≤ ‘1 u1 � u2k k;

for all s ∈ I 5 [0, 1] and uj ∈R ðj ¼ 1; 2Þ.
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Theorem 3.1. Let ðH1Þ be fulfilled. If

Yd
‘1

fðσ � 1Þ
η

Γðσ � 1Þ þ
‘1ðζ þ 1Þð2� σÞ

fðσ � 1Þ þ σ � 1

fðσ � 1Þ
‘1ðζσ þ 1Þ
Γðσ þ 1Þ < 1; (3.1)

then, the system (1.2)–(1.3) has only one solution.

Proof. Define a mapping Ω : CðI ;RÞ→ CðI ;RÞ as follows:

ðΩuÞðsÞ ¼ g2 þ ðs� η� ζÞg1 þ
σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2hðt; uðtÞÞdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

hðt; uðtÞÞdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1hðt; uðtÞÞdt

� 2� σ
fðσ � 1Þ

Z s

0

hðt; uðtÞÞdt � σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1hðt; uðtÞÞdt:

(3.2)

In order to show the system (1.2)–(1.3) has a unique solution, we will verify that a mappingΩ
has a unique fixed point. Indeed, by utilizing ðH1Þ, then for u; v∈ CðI ;RÞ and s ∈ I, we have

ðΩuÞðsÞ � ðΩvÞðsÞj j

≤
σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2 hðt; uðtÞÞ � hðt; vðtÞÞj jdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

hðt; uðtÞÞ � hðt; vðtÞÞj jdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1 hðt; uðtÞÞ � hðt; vðtÞÞj jdt

þ 2� σ
fðσ � 1Þ

Z s

0

hðt; uðtÞÞ � hðt; vðtÞÞj jdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1 hðt; uðtÞÞ � hðt; vðtÞÞj jdt

≤
σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2‘1 uðtÞ � vðtÞj jdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

‘1 uðtÞ � vðtÞj jdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1‘1 uðtÞ � vðtÞj jdt

þ 2� σ
fðσ � 1Þ

Z s

0

‘1 uðtÞ � vðtÞj jdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1‘1 uðtÞ � vðtÞj jdt

≤
‘1

fðσ � 1Þ
η

Γðσ � 1Þ u� vk k

þ‘1ζð2� σÞ
fðσ � 1Þ u� vk k þ σ � 1

fðσ � 1Þ
‘1ζ

σ

Γðσ þ 1Þ u� vk k

þ‘1ð2� σÞ
fðσ � 1Þ u� vk k þ σ � 1

fðσ � 1Þ
‘1

Γðσ þ 1Þ u� vk k

≤
‘1

fðσ � 1Þ
η

Γðσ � 1Þ þ
‘1ðζ þ 1Þð2� σÞ

fðσ � 1Þ þ σ � 1

fðσ � 1Þ
‘1ðζσ þ 1Þ
Γðσ þ 1Þ

� �
u� vk k:

Hence,

Ωu�Ωvk k≤Y u� vk k:
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Then, in view of the condition (3.1), the mapping Ω is contraction. Therefore, according to
Theorem 2.1, there exists one fixed point for a mapping Ω, which represent a solution of the
system (1.2)–(1.3).

Secondly, before stating and proving the second existence result by utilizing Schauder’s
fixed point theorem, we list the next hypothesis as follows.

H2. ½ðH2Þ�Let h : ½0; 1�3R→R be a continuous function with hð0; uð0ÞÞ ¼ hð1; uð1ÞÞ ¼ 0,
and there is a real number ‘2> 0 such that hðs; uÞj j≤ ‘2ð1þ kukÞ; for all s∈ I5 [0, 1] andu∈R.

Theorem3.2. Suppose that the hypothesis ðH2Þholds. Then there will be at least one solution
found for the system (1.2)–(1.3), provided that:

Ψ ¼ ‘2
fðσ � 1Þ

η
Γðσ � 1Þ þ

‘2ðζ þ 1Þð2� σÞ
fðσ � 1Þ þ σ � 1

fðσ � 1Þ
‘2ðζσ þ 1Þ
Γðσ þ 1Þ < 1: (3.3)

Proof. Consider an operator Ω : CðI ;RÞ→ CðI ;RÞ as defined in (3.2). Let the ball

Bϱ ¼ fu∈ CðI ;RÞ : uk k≤ ϱgwith ϱ≥
g2j jþ ðs− η− ζÞj j g1j jþΨ

1−Ψ and Ψ < 1.

Now, we prove that ðΩBϱÞ ⊂Bϱ. By using the hypothesis ðH2Þ, we get
ðΩuÞðsÞj j
≤ g2j j þ ðs� η� ζÞj j g1j j

þ σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2 hðt; uðtÞÞj jdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

hðt; uðtÞÞj jdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1 hðt; uðtÞÞj jdt

þ 2� σ
fðσ � 1Þ

Z s

0

hðt; uðtÞÞj jdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1 hðt; uðtÞÞj jdt

≤ g2j j þ ðs� η� ζÞj j g1j j

þ σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2‘2ð1þ juðtÞjÞdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

‘2ð1þ juðtÞjÞdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1‘2ð1þ juðtÞjÞdt

þ 2� σ
fðσ � 1Þ

Z s

0

‘2ð1þ juðtÞjÞdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1‘2ð1þ juðtÞjÞdt

≤ g2j j þ ðs� η� ζÞj j g1j j

þ 1

fðσ � 1Þ
η

Γðσ � 1Þ‘2ð1þ kukÞ

þζð2� σÞ
fðσ � 1Þ‘2ð1þ kukÞ þ σ � 1

fðσ � 1Þ
ζσ

Γðσ þ 1Þ‘2ð1þ kukÞ

þ ð2� σÞ
fðσ � 1Þ‘2ð1þ kukÞ þ σ � 1

fðσ � 1Þ
1

Γðσ þ 1Þ‘2ð1þ kukÞ

≤ g2j j þ ðs� η� ζÞj j g1j j

þ ‘2
fðσ � 1Þ

η
Γðσ � 1Þ þ

‘2ðζ þ 1Þð2� σÞ
fðσ � 1Þ þ σ � 1

fðσ � 1Þ
‘2ðζσ þ 1Þ
Γðσ þ 1Þ

� �
ð1þ kukÞ:
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For u∈Bϱ, we have

Ωuj j≤ g2j j þ ðs� η� ζÞj j g1j j þΨð1þ ϱÞ≤ ϱ:

Hence, ðΩBϱÞ⊂Bϱ.
Next, we show that amappingΩ be continuous. Let fung is a sequence convergence to u in

Bϱ as n → ∞. Then for all s ∈ I, we obtain

ðΩunÞðsÞ � ðΩuÞðsÞj j

≤
σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2 hðt; unðtÞÞ � hðt; uðtÞÞj jdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

hðt; unðtÞÞ � hðt; uðtÞÞj jdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1 hðt; unðtÞÞ � hðt; uðtÞÞj jdt

þ 2� σ
fðσ � 1Þ

Z s

0

hðt; unðtÞÞ � hðt; uðtÞÞj jdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1 hðt; unðtÞÞ � hðt; uðtÞÞj jdt

≤
hð:; unð:ÞÞ � hð:; uð:ÞÞk k

fðσ � 1Þ
η

Γðσ � 1Þ þ
ðζ þ 1Þð2� σÞ

fðσ � 1Þ hð:; unð:ÞÞ � hð:; uð:ÞÞk k

þðζσ þ 1Þðσ � 1Þ
fðσ � 1Þ

hð:; unð:ÞÞ � hð:; uð:ÞÞk k
Γðσ þ 1Þ :

According to the continuity of the function h, we find:

Ωun �Ωuk k→ 0 as n→∞:

So, Ω is continuous on Bϱ.
Subsequently, we show that ΩðBϱÞ is relatively compact. Since we have ðΩBϱÞ⊂Bϱ,

hence ðΩBϱÞ is an uniformly bounded.
To establish that a mappingΩ be equicontinuous operator inBϱ, let u∈Bϱ and s1, s2 ∈ I

with s1 < s2. Then, by using ðH2Þ, we have

ðΩuÞðs1Þ � ðΩuÞðs2Þj j

≤ jðs1 � s2Þj jg1j þ
ð2� σÞ
fðσ � 1Þ

Z s1

0

hðt; uðtÞÞdt �
Z s2

0

hðt; uðtÞÞdt
				 				

þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s1

0

ðs1 � tÞσ−1hðt; uðtÞÞdt �
Z s2

0

ðs2 � tÞσ−1hðt; uðtÞÞdt
				 				

≤ jðs1 � s2Þj jg1j þ
ð2� σÞ
fðσ � 1Þ‘2ð1þ kukÞ ðs1 � s2Þj j

þ σ � 1

fðσ � 1Þ
1

Γðσ þ 1Þ‘2ð1þ kukÞ ðsσ1 � sσ2Þ
		 		:

Clearly, as s2→ s1, then ðΩuÞðs1Þ− ðΩuÞðs2Þj j→ 0. Since u is an arbitrary inBϱ, therefore
Ω be an equicontinuous mapping. In view of well-known Arzela–Ascoli Theorem, it follows
that ðΩBϱÞ be relatively compact, and consequently Ω is completely continuous. As an
outcome of Theorem 2.2, we deduce that the system (1.2)–(1.3) admits at least one solution.
The proof is finished.
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4. Stability of solution
The UH stability concept is initiated by the authors Ulam and Hyers [44, 45], and it has a
significant effect in the fractional differential equations field [17, 46, 47]. Throughout this
section, we will discussUH stability,UHR stability and their generalizations for the solution
of the system (1.2)–(1.3).

Let ρ > 0 and β; u∈ CðI ;RÞ: Then, the following identities hold:

ABC
DσeuðsÞ þ h s;euðsÞð Þ

			 			≤ ρ; s∈ I ; (4.1)

ABC
Dσ~uðsÞ þ h s; ~uðsÞð Þ

			 			≤ ρβðsÞ; s∈ I ; (4.2)

ABC
Dσ~uðsÞ þ h s; ~uðsÞð Þ

			 			≤ βðsÞ; s∈ I : (4.3)

Definition 4.1. The system (1.2)–(1.3) is UH stable, if Ξh > 0 be a real number such that for
every eu∈ CðI ;RÞ verify the identity (4.1), ∀ρ > 0, there is only one solution u∈ CðI ;RÞ of the
system (1.2)–(1.3) such that euðsÞ � uðsÞj j≤Ξhρ; s∈ I :

Definition 4.2. The system (1.2)–(1.3) is generalized UH is stable, if Bh ∈ CðRþ;RþÞ be a
function with Bhð0Þ ¼ 0 such that for every ~u∈ CðI ;RÞ verify the identity (4.1), ∀ ρ> 0, there is
only one solution u∈ CðI ;RÞ of the system (1.2)–(1.3) such that

~uðsÞ � uðsÞj j≤BhðρÞ; s∈ I :

Definition 4.3. The system (1.2)–(1.3) is UHR stable with respect to β∈ CðI ;RÞ, if Ξh;β > 0
be a real number such that for all ~u∈ CðI ;RÞ satisfy the identity (4.2), ∀ ρ > 0, there is only one
solution u∈ CðI ;RÞ of the system (1.2)–(1.3), such that

~uðsÞ � uðsÞj j≤Ξh;βρβðsÞ; s∈ I :

Definition 4.4. The system (1.2)–(1.3) is generalized UHR is stable with respect to
β∈ CðI ;RÞ, ifΞh;β > 0be a real number such that for every ~u∈ CðI ;RÞ satisfy the identity (4.3),
and there is only one solution u∈ CðI ;RÞ of the system (1.2)–(1.3), such that

~uðsÞ � uðsÞj j≤Ξh;ββðsÞ; s∈ I :

Remark 4.1. Let ~u∈ CðI ;RÞ be a function verifying the identity (4.1), if and only if there
exists a function α1 ∈ CðI ;RÞ such that

(1) α1ðsÞj j≤ ρ; ∀s∈ I;

(2) −
ABC

Dσ~uðsÞ ¼ h s; ~uðsÞð Þ þ α1ðsÞ; s∈ I.

Remark 4.2. Let ~u∈ CðI ;RÞ be a function satisfying the identity (4.2), if and only if there
exists a function α2 ∈ CðI ;RÞ such that

(1) α2ðsÞj j≤ ρβðsÞ; ∀s∈ I;

(2) −
ABC

Dσ~uðsÞ ¼ h s; ~uðsÞð Þ þ α2ðsÞ, s ∈ I.
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Remark 4.3. There exists a real number ξβ > 0 and nondecreasing function βðsÞ∈ CðI ;RÞ
such that

AB
Iσ jβðsÞj≤ ξββðsÞ; ∀s∈ I.

Now, we introduce the main results related to the UH and UHR stable of the solution for the
system (1.2)–(1.3).

Theorem 4.1. If the hypothesis ðH1Þ holds with hð1; uð1ÞÞ ¼ 0, subject to

K ¼ ζð2� σÞ
fðσ � 1Þ‘1 þ

σ � 1

fðσ � 1Þ
ζσ

Γðσ þ 1Þ‘1 < 1:

Then, the unique solution of the system (1.2)–(1.3) is UH stable and consequently generalized
UH stable.

Proof. Consider ρ > 0 and let ~u∈ CðI ;RÞ verifies the identity (4.1). Then, by remark 4.1,
we have:

−
ABCDσeuðsÞ ¼ h s;euðsÞð Þ þ α1ðsÞ; s∈ I ;eu0ð0Þ ¼ g1; η eu0ð1Þ þ euðζÞ ¼ g2:

�
(4.4)

According to Lemma 2.3, we get

~uðsÞ ¼ Σ
~u
þ σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2α1ðtÞdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

α1ðtÞdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1α1ðtÞdt

� 2� σ
fðσ � 1Þ

Z s

0

�
hðt; ~uðtÞÞ þ α1ðtÞ

�
dt � σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1
�
hðt; ~uðtÞÞ þ α1ðtÞ

�
dt;

where

Σ
~u

¼ g2 þ ðs� η� ζÞg1 þ
σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2hðt; ~uðtÞÞdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

hðt; ~uðtÞÞdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1hðt; ~uðtÞÞdt;

which it follows that,

~uðsÞ � Σ
~u
þ 2� σ
fðσ � 1Þ

Z s

0

hðt; ~uðtÞÞdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1hðt; ~uðtÞÞdt
				 				
≤

σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2jα1ðtÞjdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

jα1ðtÞjdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1jα1ðtÞjdt

þ 2� σ
fðσ � 1Þ

Z s

0

jα1ðtÞjdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1jα1ðtÞjdt

≤ρ
1

fðσ � 1Þ
η

Γðσ � 1Þ þ
ðζ þ 1Þð2� σÞ

fðσ � 1Þ þ σ � 1

fðσ � 1Þ
ðζσ þ 1Þ
Γðσ þ 1Þ

� �
:

(4.5)
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Now, let u∈ CðI ;RÞ be a solution of the following problem:

−
ABCDσuðsÞ ¼ h s; uðsÞð Þ þ α1ðsÞ; s∈ I ;

u0ð0Þ ¼ ~u0ð0Þ; uðζÞ ¼ ~uðζÞ:
�

(4.6)

Since uðζÞ ¼ ~uðζÞ; ∀ζ∈ I, it follows that uð1Þ ¼ ~uð1Þ:
Next, in view of Lemma 2.3 the equivalent fractional integral equation of (4.6) is given by

uðsÞ ¼ Σu � 2� σ
fðσ � 1Þ

Z s

0

hðt; uðtÞÞdt � σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1hðt; uðtÞÞdt: (4.7)

Obviously, Σu ¼ Σ
~u
, as follows:

jΣu � Σ
~u
j

≤
σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2 hðt; uðtÞÞ � hðt; ~uðtÞÞj jdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

hðt; uðtÞÞ � hðt; ~uðtÞÞj jdt

þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1 hðt; uðtÞÞ � hðt; ~uðtÞÞj jdt

≤
ηð2� σÞ
fðσ � 1Þ hð1; uð1ÞÞ þ

σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2 uðtÞ � ~uðtÞj jdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

uðtÞ � ~uðtÞj jdt

þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1 uðtÞ � ~uðtÞj jdt

≤η ABIσ−1 uð1Þ � ~uð1Þj jþ ABIσ uðζÞ � ~uðζÞj j ¼ 0:

Now, by using the hypothesis ðH1Þ and (4.5), we have

~uðsÞ � uðsÞj j

≤ ~uðsÞ � Σ
~u
þ 2� σ
fðσ � 1Þ

Z s

0

hðt; ~uðtÞÞdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1hðt; ~uðtÞÞdt
				 				
þ 2� σ
fðσ � 1Þ

Z ζ

0

hðt; uðtÞÞ � hðt; ~uðtÞÞj jdt

þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1 hðt; uðtÞÞ � hðt; ~uðtÞÞj jdt

≤ρ
1

fðσ � 1Þ
η

Γðσ � 1Þ þ
ðζ þ 1Þð2� σÞ

fðσ � 1Þ þ σ � 1

fðσ � 1Þ
ðζσ þ 1Þ
Γðσ þ 1Þ

� �
þζð2� σÞ
fðσ � 1Þ‘1 u� ~uk k þ σ � 1

fðσ � 1Þ
ζσ

Γðσ þ 1Þ‘1 u� ~uk k:
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Therefore,

u� ~uk k≤ ρH
1�K ¼ Ξhρ;

such that

H ¼ 1

fðσ � 1Þ
η

Γðσ � 1Þ þ
ðζ þ 1Þð2� σÞ

fðσ � 1Þ þ σ � 1

fðσ � 1Þ
ðζσ þ 1Þ
Γðσ þ 1Þ

� �
;

K ¼ ζð2� σÞ
fðσ � 1Þ‘1 þ

σ � 1

fðσ � 1Þ
ζσ

Γðσ þ 1Þ‘1;

and Ξhd H
1−K. This satisfies that the system (1.2)–(1.3) is UH stable. Furthermore, if

u− ~uk k≤BhðρÞ so that Bhð0Þ ¼ 0; hence, the solution for the system (1.2)–(1.3) is generalized
and UH stable.

Theorem 4.2. If the hypothesis ðH1Þ holds with hð1; uð1ÞÞ ¼ 0 subject to

K ¼ ζð2� σÞ
fðσ � 1Þ‘1 þ

σ � 1

fðσ � 1Þ
ζσ

Γðσ þ 1Þ‘1 < 1:

Then, the unique solution of the system (1.2)–(1.3) is UHR stable and consequently
generalized UHR.

Proof. Let ρ > 0 and assume that ~u∈ CðI ;RÞverifies the identity (4.2). By remark 4.2,
we have:

−
ABCDσeuðsÞ ¼ h s;euðsÞð Þ þ α2ðsÞ; s∈ I ;eu0ð0Þ ¼ g1; η eu0ð1Þ þ euðζÞ ¼ g2:

�
(4.8)

As an outcome of Lemma 2.3, we find that

~uðsÞ ¼ Σ
~u
þ σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2α2ðtÞdt

þ 2� σ
fðσ � 1Þ

Z ζ

0

α2ðtÞdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1α2ðtÞdt

� 2� σ
fðσ � 1Þ

Z s

0

�
hðt; ~uðtÞÞ þ α2ðtÞ

�
dt � σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1
�
hðt; ~uðtÞÞ þ α2ðtÞ

�
dt:

Hence, due to Remark 4.3, we obtain

~uðsÞ � Σ
~u
þ 2� σ
fðσ � 1Þ

Z s

0

hðt; ~uðtÞÞdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1hðt; ~uðtÞÞdt
				 				
≤η ABIσ−1jα2ð1ÞjþABIσjα2ðζÞjþABIσjα2ðsÞj
≤ ηþ 2ð Þρ ξββðsÞ:

(4.9)
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Now, let u∈ CðI ;RÞbe a solution of (4.6). Therefore, by the hypotheses ðH1Þand (4.9), for any
s ∈ I, we have:

~uðsÞ � uðsÞj j

≤ ~uðsÞ � Σ
~u
þ 2� σ
fðσ � 1Þ

Z s

0

hðt; ~uðtÞÞdt þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1hðt; ~uðtÞÞdt
				 				
þ 2� σ
fðσ � 1Þ

Z ζ

0

hðt; uðtÞÞ � hðt; ~uðtÞÞj jdt

þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1 hðt; uðtÞÞ � hðt; ~uðtÞÞj jdt

≤ ηþ 2ð Þρ ξββðsÞ þ K u� ~uk k:

Thus,

u� ~uk k≤ ηþ 2ð Þρ ξββðsÞ
1�K ¼ Ξh;βρβðsÞ;

such thatΞh;βd
ηþ2ð Þξβ
1−K . This establish that the system (1.2)–(1.3) isUHRstable. In addition, if

ρ 5 1, then the solution of the system (1.2)–(1.3) is the generalized UHR stable.

5. Approximate solutions
In this section, we will introduce approximate solutions of the system (1.2)–(1.3) by using
ADM. In the light of Lemma 2.3, we have proved that the solutions of system (1.2)–(1.3) and
Eq. (2.10) are equivalent. Therefore, we can express decomposition of the solution of Eq. (3.2)
as follows.

ðΩuÞðsÞ ¼ GðsÞ þN hð ðs; uðsÞÞ; (5.1)

whereG is a known function andN is the nonlinear terms. Thus, we formulate Eq. (2.10) in the
following decomposed format:

uðsÞ ¼ GðsÞ þN hð ðs; uðsÞÞ: (5.2)

Suppose that the solution of (5.2) is given in a series version as next:

uðuÞ ¼
X∞
n¼0

unðsÞ: (5.3)

So, yields that X∞
n¼0

unðsÞ ¼ GðsÞ þN hð ðs; uðsÞÞ: (5.4)

Now, we can be decompose the nonlinear term N hð ðs; uðsÞÞ by Adomian polynomials as
follows:

hðs; uðsÞÞ ¼
X∞
n¼0

AnðsÞ; (5.5)

where AnðsÞ is obtained by
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AnðsÞ ¼ 1

n!

vn

vsn
N

X∞
k¼0

uks
k

 !" #
u¼0

; n ¼ 0; 1; . . . :

Therefore, we rewrite Eq. (5.4) as following format.X∞
n¼0

unðsÞ ¼ GðsÞ þN
X∞
n¼0

AnðsÞ
 !

;

which admits the iterative technique as next:

u0ðsÞ ¼ GðsÞ;
u1ðsÞ ¼ N A0ðsÞð Þ;
u2ðsÞ ¼ N A1ðsÞð Þ;
u3ðsÞ ¼ N A2ðsÞð Þ;
..
.

unðsÞ ¼ N An−1ðsÞð Þ; n≥ 1;

..

.
:

8>>>>>>>>>><>>>>>>>>>>:
(5.6)

For numerical targets, the n-terms approximation solution of Eq. (2.10) is represented by:

YnðuÞ ¼
Xn
i¼0

uiðsÞ: (5.7)

Now, we will prove the convergence theorem of ADM algorithm for the system (1.2)–(1.3).

Theorem 5.1. Let ðH1Þ and condition (3.1) hold. Assume that uðsÞ ¼P∞

i¼0uiðsÞ be a series
solution of Eq. (2.10) which obtained by ADM is convergent, then it converges to the exact
solution of Eq. (2.10), whenever ku1k < ∞.

Proof. For n ≥ m, consider Yn;Ym be an arbitrary partial sums, then we have

jYnðsÞ�YmðuÞj ¼
Xn
i¼0

uiðsÞ�
Xm
i¼0

uiðsÞ
					

					¼ Xn
i¼mþ1

uiðsÞ
					

					
≤
Xn
i¼mþ1

N Ai−1ðsÞð Þj j

≤
Xn
i¼mþ1

σ�1

fðσ�1Þ
η

Γðσ�1Þ
Z 1

0

ð1� tÞσ−2Ai−1ðtÞdt
				

þ 2�σ
fðσ�1Þ

Z ζ

0

Ai−1ðtÞdtþ σ�1

fðσ�1Þ
1

ΓðσÞ
Z ζ

0

ðζ� tÞσ−1Ai−1ðtÞdt

� 2�σ
fðσ�1Þ

Z s

0

Ai−1ðtÞdt� σ�1

fðσ�1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1Ai−1ðtÞdt
				

≤
σ�1

fðσ�1Þ
η

Γðσ�1Þ
Z 1

0

ð1� tÞσ−2
Xn−1
i¼m

AiðtÞdt
					
þ 2�σ
fðσ�1Þ

Z ζ

0

Xn−1
i¼m

AiðtÞdtþ σ�1

fðσ�1Þ
1

ΓðσÞ
Z ζ

0

ðζ� tÞσ−1
Xn−1
i¼m

AiðtÞdt

� 2�σ
fðσ�1Þ

Z s

0

Xn−1
i¼m

AiðtÞdt� σ�1

fðσ�1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1
Xn−1
i¼m

AiðtÞdt
					:
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From (5.3), we get

hðs;Yn−1Þ � hðs;Ym−1Þ ¼
Xn−1
i¼m

An: (5.8)

Thus, by using ðH1Þ and taking supremum, we find:

kYn �Ymk ≤sup
t∈I

σ � 1

fðσ � 1Þ
η

Γðσ � 1Þ
Z 1

0

ð1� tÞσ−2 hðt;Yn−1Þ � hðt;Ym−1Þð Þdt
				

þ 2� σ
fðσ � 1Þ

Z ζ

0

hðt;Yn−1Þ � hðt;Ym−1Þð Þdt

þ σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z ζ

0

ðζ � tÞσ−1 hðt;Yn−1Þ � hðt;Ym−1Þð Þdt

� 2� σ
fðσ � 1Þ

Z s

0

hðt;Yn−1Þ � hðt;Ym−1Þð Þdt

� σ � 1

fðσ � 1Þ
1

ΓðσÞ
Z s

0

ðs� tÞσ−1 hðt;Yn−1Þ � hðt;Ym−1Þð Þdt
				

≤Y Yn−1 �Ym−1k k
≤Y2 Yn−2 �Ym−2k k≤ � � � ≤Ym Y1 �Y0k k≤Ym u1k k:

Since 0 < Y < 1 and u1k k < ∞, then the right-side of above inequality tends to be zero
wheneverm→∞. Therefore, kYn −Ymk→ 0. So, we deduce thatYn is a Cauchy sequence in
the Banach space CðI ;RÞ, hence the series convergence and the proof is finished.

6. Examples
Herein, we examine the validity of the main results by illustrating the following examples:

Example 6.1. Consider the following system:

ABCD
3
2uðsÞ þ h s; uðsÞð Þ ¼ 0; s∈ ½0; 1�; 1 < σ ≤ 2;

u0ð0Þ ¼ 0;
3

4
u0ð1Þ þ uð2

3
Þ ¼ 1

4
;

8><>: (6.1)

where σ ¼ 3
2, η ¼ 3

4, ζ ¼ 2
3, g1 ¼ 0, g2 ¼ 1

4 and I 5 [0, 1]. Define the function h : I 3R→R by

h s; uðsÞð Þ ¼ sinðπsÞ sþ 1

9ð1þ uðsÞÞ
� �

:

Clearly, h 0; uð0Þð Þ ¼ h 1; uð1Þð Þ ¼ 0. Now, we are going to check that the hypothesis ðH1Þ
holds. For any u; v∈ CðI ;RÞ, we have

h s; uðsÞð Þ � h s; vðsÞð Þj j≤ 2

9
u� vj j;

thus, ‘1 ¼ 2
9. Therefore, by applying the condition (3.1), and choosing f(σ � 1) 5 1, we get
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Yd0:408298 < 1: (6.2)

Hence, all hypotheses of Theorem 3.1 are fulfilled. So, the system (6.1) has only one solution.
On the other hand, since K ¼ 0:119571 < 1, with Ξhd H

1−K ¼ 2:0869 > 0. Thus, in view of
Theorem 4.1, we conclude that the system (6.1) is UH and generalized UH stable. Similarly, the
conditions of theUHRand the generalizedUHR stability can be smoothly establish by choosing
an increasing function β(s) 5 s.

Example 6.2. Consider the following system:

ABCD
5
4uðsÞ þ h s; uðsÞð Þ ¼ 0; s∈ ½0; 1�; 1 < σ ≤ 2;

u0ð0Þ ¼ 1;
1

2
u0ð1Þ þ uð1

3
Þ ¼ 1

2
;

8><>: (6.3)

where σ ¼ 5
4, η ¼ 1

2, ζ ¼ 1
3, g1 ¼ 1, g2 ¼ 1

2 and I5 [0, 1]. Define the function h : I 3R→R as

h s; uðsÞð Þ ¼ ðs2 � sÞ 1þ sin−1
		uðsÞ		

5þ s

" #
:

Obviously, h 0; uð0Þð Þ ¼ h 1; uð1Þð Þ ¼ 0. Now, we will check the hypothesis ðH2Þ, for any
u; v∈ CðI ;RÞ, we have

h s; uðsÞð Þj j≤ 1

5
1þ juðsÞjð Þ;

so, ‘2 ¼ 1
5. Moreover, set f(σ � 1) 5 1, then the condition (3.3) holds, i.e.

Ψd0:282889 < 1: (6.4)

Therefore, all hypotheses of Theorem 3.2 are fulfilled. Thus, the system (6.3) has at least one
solution.

Example 6.3. Consider the following system:

ABCD1:9uðsÞ þ s2 � s

 �

s2 � u2ðsÞ
 � ¼ 0; s∈ ½0; 1�; 1 < σ ≤ 2;

u0ð0Þ ¼ 1;
1

2
u0ð1Þ þ uð1

2
Þ ¼ 1;

8><>: (6.5)

where σ 5 1.9, η ¼ 1
2, ζ ¼ 1

2, g1 ¼ 1, g2 ¼ 1 and it has the exact solution uðsÞ ¼ s. Table 1 and
Figure 1, show an efficiency ofADMalgorithmwhich estimates rapid convergence approximate
solution with the exact solution of problem (6.5).

Example 6.4. Consider the following system:

ABCD1:8uðsÞ þ ðs� ffiffi
s

p Þ ð1þ sÞ2 � u2ðsÞ
� �

¼ 0; s∈ ½0; 1�; 1 < σ ≤ 2;

u0ð0Þ ¼ 1;
3

4
u0ð1Þ þ uð1

4
Þ ¼ 2;

8><>: (6.6)

where σ 5 1.8, η ¼ 3
4, ζ ¼ 1

4, g1 ¼ 1, g2 ¼ 2 and it has exact solution uðsÞ ¼ 1þ s. Table 2 and
Figure 2, show a good agreement of approximate solution obtained by ADM with the exact
solution of problem (6.6).
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s
Exact sol

ADM-solution
Absolute error

uðsÞ ¼ s -ADM

0 0 �0.000159 0.000159
0.1 0.1 0.099841 0.000159
0.2 0.2 0.199844 0.000156
0.3 0.3 0.299850 0.000150
0.4 0.4 0.399861 0.000139
0.5 0.5 0.499878 0.000122
0.6 0.6 0.599899 0.000101
0.7 0.7 0.699924 0.000076
0.8 0.8 0.799951 0.000049
0.9 0.9 0.899977 0.000023
1 1 1 1.725 3 10�6

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exact solution
ADM − solution

s
Exact sol

ADM-solution
Absolute error

uðsÞ ¼ 1þ s -ADM

0 1 0.989180 0.010820
0.1 1.1 1.090730 0.009268
0.2 1.2 1.193520 0.006484
0.3 1.3 1.296940 0.003065
0.4 1.4 1.400580 0.000584
0.5 1.5 1.504100 0.004104
0.6 1.6 1.607210 0.007213
0.7 1.7 1.709750 0.009746
0.8 1.8 1.811680 0.011679
0.9 1.9 1.913130 0.013129
1 2 2.014320 0.014316

Table 1.
Numerical results of
exact solution and
ADM-solution at

σ 5 1.9 of Example 6.3

Figure 1.
Exact solution

compared with ADM-
solution at σ 5 1.9 of

Example 6.3

Table 2.
Numerical results of
exact solution and
ADM-solution at

σ 5 1.8 of Example 6.4
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7. Conclusion
In the fractional calculus field, there appeared many derivative and integral definitions
involving an arbitrary order. It is important to focus our attention to study the real
phenomena by utilizing those definitions. In particular, a thermostat dynamics system is one
of the beneficial topics in life. In this paper, we introduced the system (1.2)–(1.3) in framework
of a nonsingular kernel operator (ABC) for the first time. Moreover, Schauder and Banach
fixed point theorems were applied for discussion the existence and uniqueness of solution of
the system (1.2)–(1.3) with minimum hypotheses. In addition, the UH and UHR stability of
the solution for the system (1.2)–(1.3) were proved. Approximate solutions of problem (1.2)–
(1.3) were established by ADM algorithm and convergence theorem of series solution was
investigated. In addition, the efficiency of ADM algorithm which estimates that rapid
convergence approximate solution was proved by compared ADM solution with exact
solution. Finally, the validity of the main outcomes was described by four examples.

As a future direction, the studied problem would be interesting if it was studied under
nonlocal boundary conditions via generalized ABC fractional operators, which is introduced
by Fernandez and Baleanu [48].
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