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Abstract

Purpose – In this article, the authors discuss the existence and multiplicity of solutions for an anisotropic
discrete boundary value problem in T-dimensional Hilbert space. The approach is based on variational
methods especially on the three critical points theorem established by B. Ricceri.
Design/methodology/approach – The approach is based on variational methods especially on the three
critical points theorem established by B. Ricceri.
Findings – The authors study the existence of results for a discrete problem, with two boundary conditions
type. Accurately, the authors have proved the existence of at least three solutions.
Originality/value –An other feature is that problem is with non-local term, which makes some difficulties in
the proof of our results.
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1. Introduction
The non-linear difference equations have been of great interest because of their important
applications appearing in various fields of research, such as numerical analysis, non-linear
differential equations, computer science, mechanical engineering, control systems, artificial
or biological neural networks and social sciences, such as economics. To deal with these kind
of problems, a various methods such as fixed points theorems, lower and upper solutions,
Browder degree, variational approach and critical point theory have been applied by many
different authors. For the recent progress in discrete problems, we refer the readers to
valuable monograph by Agarwal [1] and the papers [2,3]. Let T ≥ 2 be a positive integer,
½a; b� be the discrete interval fa; aþ 1; . . . ; bgwith a and b are integers such that a < b.

In the present paper, we deal with the existence of solutions for the Neumann problem

�KðIðuÞÞðΔðwpðk−1ÞðΔuðk� 1ÞÞÞ þ wpðkÞðuðkÞÞÞ ¼ λf ðk; uðkÞÞ þ μgðk; uðkÞÞ; k∈ ½1;T�;
Δuð0Þ ¼ ΔuðTÞ ¼ 0;

(
(1)

as well as for the Dirichlet problem,
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�K

 XTþ1

k¼1

�
1

pðk� 1ÞjΔuðk� 1Þjpðk−1Þ
�!

ðΔðwpðk−1ÞðΔuðk� 1ÞÞÞÞ ¼ λf ðk; uðkÞÞ þ μgðk; uðkÞÞ;

k∈ ½1; T�;

uð0Þ ¼ uðTÞ ¼ 0;

8>>>>>><>>>>>>:
(2)

where

IðuÞ ¼
XTþ1

k¼1

�
1

pðk� 1ÞjΔuðk� 1Þjpðk−1Þ
�
þ
XT
k¼1

�
1

pðkÞjuðkÞj
pðkÞ
�
;

ΔuðkÞ ¼ uðkþ 1Þ− uðkÞ is the forward difference operator, w will stand for the
homeomorphism defined by wsðxÞ ¼ jxjs−2x, K : ð0; ∞Þ→ ð0; ∞Þ be a non-decreasing
continuous function, p : ½0; T�→ ½2; ∞Þ is a bounded function while λ; μ are positive real
numbers and f ; g belong to ℭwhich is the class of all continuous functions h which satisfy

jhðk; tÞj≤ C1

�
1þ jtjrðkÞ−1�; for allðk; tÞ∈ ½1; T�3ℝ

with r : ½1; T�→ ½2; ∞Þ being a bounded function.
Equations of this type were suggested by Kirchhoff in 1883. More precisely the following

model, which is called Kirchhoff equation, was introduced (see [4])

ρ
v2u

vt2
�
�
P0

h
þ E

2L

Z L

0

����vuvx
����2dx� v2u

vx2
¼ 0;

where ρ0; ρ; L and h are constants associated to the effects of the changes in the length of
strings during the vibrations. It is an extension of the classical D’Alembert’s wave equation.
A distinguish feature of the above equation is that it contains a non-local coefficient

P0

h
þ E

2L

Z L

0

����vuvx
����2dx

which depends on the average

E

2L

Z L

0

����vuvx
����2dx

of the kinetic energy 1
2
jvu
vx
j2 on [0, L], and hence the equation is no longer a pointwise identity.

The study of these problems has received more attention. In [2,5–15], a variety of different
methods were applied to obtain the existence results to the discrete boundary value problem
of the following type

�ðΔðwpðΔuðk� 1ÞÞÞÞ ¼ λf ðk; uðkÞÞ; k∈ ½1; T�;
uð0Þ ¼ uðTÞ ¼ 0;

(
(3)

where wpðxÞ ¼ jxjp−2.
For example, Jiang and Zhou in [16] employing a three critical point theorem, due to

Ricceri, established the existence of at least three solutions for perturbed non-linear difference
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equations with discrete boundary conditions. Bonanno and Candito [11], employing critical
point theorems in the setting of finite dimensional Banach spaces, investigated the
multiplicity of solutions for non-linear difference equations involving the p-Laplacian.
Cabada et al. in [2], based on three critical points theorems, investigated different sets of
assumptions which guarantee the existence and multiplicity of solutions for difference
equations involving the discrete p-Laplacian operator. Candito and Giovannelli [12], using
variational methods, established the existence of at least three solutions for the problem
above. Far from being exhaustive, further details can be found in [13,17–24].

By taking into account the previous papers and inspired by [25], we study problems (1)
and (2) and obtain the existence of three weak solutions by employing a kind of Ricceri’s
theorem [26]. As for the author’s best knowledge, the present papers results are not covered in
the related literature, and hence, it is original in its own right.

The structure of this paper is outlined as follows. In Section 2, some preliminary results
and statement of main results are presented. In Section 3, the proof of the main results
is given.

2. Preliminaries
Firstly, we recall some basic properties which will be used in the proof of the precise result.

Through the sequel, we say that the functional L∈WW if L : W →ℝ possesses the
following property: ðunÞ is a sequence in W converging weakly to u∈W and
lim inf LðunÞ≤LðuÞ; then un has a subsequence converging strongly to u. When W is
finite dimensional, the weak convergence coincides with the strong one.

In order to prove our main results, we will use the following Ricceri’s theorem.

Theorem 2.1. [26] Let W be a finite dimensional real Banach space, f∈C1ðW ; ℝÞ is
coercive and belongs to WW : The derivative of f admits a continuous inverse on W *;
J : W →ℝ a C1 functional. Assume that f has a strict local minimum u0 with fðu0Þ ¼
Jðu0Þ ¼ 0:

Finally, setting assume that

α ¼ maxf0; limsup
kuk→∞

JðuÞ
fðuÞ; limsup

kuk→u0

JðuÞ
fðuÞ

�
;

β ¼ sup
u∈f−1ð0;∞Þ

JðuÞ
fðuÞ ;

assume that α < β:
Then, for each compact interval ½a; b�⊂ ð1β; 1

αÞ (with the conventions 1
0 ¼ ∞; 1

∞
¼ 0), there

exists R > 0 with the following property: for every λ∈ ½a; b� and every C1 functional
ψ : W →ℝwith compact derivative, there exists δ > 0 such that, for each μ∈ ½0; δ�;

f0ðuÞ ¼ λJ 0ðuÞ þ μψ 0ðuÞ
has at least three solutions in W whose norms are less than R:

Denoting by F; G : ½1; T�→ℝ the primitives of f and g; i.e.,

Fðk; TÞ ¼
Z T

0

f ðk; sÞds;
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Gðk; TÞ ¼
Z T

0

gðk; sÞds; k∈ ½0; T�; t ∈ℝ

and

pþdmax
k∈½0;T�

pðkÞ;

p−d min
k∈½0;T�

pðkÞ:

Solutions to (1) will be investigated in a space

W ¼ fu : ½0; T þ 1�→ℝ : Δuð0Þ ¼ ΔuðTÞ ¼ 0g;
which is a T-dimensional Hilbert space, see [5], associated with the norm

kuk ¼
 XTþ1

k¼1

jΔuðk� 1Þj2 þ
XT
k¼1

juðkÞj2
!1

2

:

It can be verified that for all u∈W ; one has

kuk≥ 10
1

pþ
kukp− ≤ IðuÞ≤ 1

p−
kukpþ ; (4)

and

kuk≤ 10
1

pþ
kukpþ ≤ IðuÞ≤ 1

p−
kukp− : (5)

We list also some inequalities that will be are used later.

Lemma 2.2. ([8]) For every u∈W , we have

1:
XT
k¼1

juðkÞjm ≤ TðT þ 1Þm−1
XTþ1

k¼1

jΔuðk� 1Þjm; ∀m≥ 2:

2:
XTþ1

k¼1

jΔuðk� 1Þjpðk−1Þ ≥T
2−p−

2 kukp− � ðT þ 1Þ; with kuk > 1:

3:
XTþ1

k¼1

jΔuðk� 1Þjpðk−1Þ ≥T
pþ−2

2 kukpþ ; with kuk < 1:

4:
XTþ1

k¼1

jΔuðk� 1Þjpðk−1Þ ≤ 2m
XT
k¼1

juðkÞjm; ∀m≥ 2:

We say that u∈W is a weak solution of problem (1) if

KðI ðuÞÞ3
 XTþ1

k¼1

�
jΔuðk� 1Þjpðk−1Þ−2Δuðk� 1ÞΔvðk� 1Þ

	
þ
XT
k¼1

�
1

pðkÞjuðkÞj
pðkÞ−2

uðkÞvðkÞ
�!

¼ λ
XT
k¼1

f ðk; uðkÞÞvðkÞ þ μ
XT
k¼1

gðk; uðkÞÞvðkÞ;

for any v∈W .
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Define the functionals

wðuÞ ¼ bK XTþ1

k¼1

�
1

pðk� 1ÞjΔuðk� 1Þjpðk−1Þ
�
þ
XT
k¼1

�
1

pðkÞjuðkÞj
pðkÞ
�!

and

JðuÞ ¼
Xt

k¼1

Fðk; uðkÞÞ; ψðuÞ ¼
XT
k¼1

Gðk; uðkÞÞ

where

bKðtÞ ¼
Z t

0

KðsÞds:

Let C1 and C2 be positive constants such thatXT
k¼1

juðkÞjpþ ≤ C2kukp
þ
and

XT
k¼1

juðkÞjp− ≤ C1kukp
−

; ∀u∈W :

We make the following assumptions.

K0dinf
t≥0

KðtÞ > 0:

Put

Admax



0; limsup

η→0

sup
k∈½1;T�

Fðx; ηÞ

jηjpþ
�

and

Bdmax



0; limsup

η→∞

sup
k∈½1;T�

Fðk; ηÞ

jηjp−
�
:

ðF1Þ The following inequality holds

C0K0p
þmaxf0; A; Bg < p−sup

η≠0

PT

k¼1Fðk; ηÞPTþ1
k¼1 jηjpðk−1Þ

;

with C0 ¼ C1 þ C2:
Now, we provide an example of non-linear term which satisfies ðF1Þ:
Example:
Set f ðk; uÞ ¼ jujαðkÞ−1 − jujβðkÞ−2 for all ðk; uÞ∈ ½1; T�3ℝ where α and β are bounded

functions such that 1≤ αðkÞ < βðkÞ; k∈ ½1; T�: Hence,

Fðk; uÞ ¼
�jujαðkÞ
αðkÞ � jujβðkÞ

βðkÞ
�
:
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There exists ξu ∈ ½1; T�which depends on u such that

sup
k∈½1;T�

Fðk; uÞ

jujp− ¼
�jujαðξuÞ−p−

αðξuÞ
� jujβðξuÞ−p−

βðξuÞ
�

≤

�jujαðξuÞ−p−
α−

� jujβðξuÞ−p−
βþ

�
¼ jujαðξuÞ−p−

�
1

α−
� 1

βþ
jujβðξuÞ−αðξuÞ

�
:

For juj large enough, we have,

jujαðξuÞ−p−
�

1

α−
� 1

βþ
jujβðξuÞ−αðξuÞ

�
≤ 0

Similarly,

sup
k∈½1;T�

Fðk; uÞ

jujpþ ¼
�jujαðξuÞ−pþ

αðξuÞ
� jujβðξuÞ−pþ

βðξuÞ
�
:

Since αðkÞ < βðkÞ and pþ < α− then

lim sup
u→0

sup
k∈½1;T�

Fðk; uÞ

jujp− ¼ 0:

Therefore,

max



0; lim sup

juj→0

sup
k∈½1;T�

Fðk; uÞ

jujpþ
; lim sup

juj→∞

sup
k∈½1;T�

Fðk; uÞ

jujp−
�

¼ 0:

Besides, for u small enough we haveXT
k¼1

jujðα−kÞ
αðkÞ � jujβðkÞ

βðkÞ > 0:

which means that ðF1Þ is verified.
Now, we can state the first main result of this article.

Theorem 2.3. Let f ; g ∈ℭ : Under the hypotheses ðK1Þ and ðF1Þ; if we put

α* ¼ 1

p−
inf

(PTþ1
k¼1 juðk� 1Þjpðk−1ÞPT

1 Fðk; uðkÞÞ
;
XTþ1

1

Fðk; uðkÞÞ > 0

)
;

β* ¼ 1

K0pþC0 maxfA; Bg :

then for each compact interval ½a; b�⊂ ðα*; β*Þ there exists a number δ > 0with the following
property: for every λ∈ ½a; b� and every g ∈ℭ there exists μ* > 0 such that, for each
μ∈ ½0; μ*� ; problem (1) has at least three weak solutions whose norms are less than δ:
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Now, suppose that we have: �
F 0
1

�
sup
u∈W

XT
k¼1

Fðk; uðkÞÞ > 0 :

�
F 0
2

�
lim sup

jξj→0

sup
k∈½1;T�

Fðk; ξÞ

jξjpþ
≤ 0 :

�
F 0
3

�
lim sup
jξj→∞

sup
k∈½1;T�

Fðk; ξÞ

jξjp− ≤ 0 :

Solutions to (2) will be investigated in a space

W ¼ fu : ½0; T þ 1�→ℝ s:t uð0Þ ¼ uðT þ 1Þ ¼ 0g;
which is a T-dimensional Hilbert space, see [1], with the inner product

ðu; vÞ ¼
XTþ1

k¼1

Δuðk� 1ÞΔvðk� 1Þ; for all u; v ∈W :

Therefore, the associated norm is defined by

kuk ¼
 XTþ1

k¼1

jΔuðk� 1Þj2
!1

2

:

Also, it is useful to introduce other norms on W , namely

jujm ¼
 XT

k¼1

juðkÞjm
! 1

m

; ∀u ∈ W and m≥ 2 :

It can be verified (see [15]) that

T
2−m
2m juj2 ≤ jujm ≤ T

1
mjuj2; ∀u ∈ W and m≥ 2 : (6)

We report our second main result.

Theorem 2.4. Let f ; g ∈ℭ and ðK1Þ holds. Under the hypotheses ðF 0
1Þ− ðF 0

3Þ ; if we put

θ* ¼ inf

8>><>>:
PTþ1

k¼1
1

pðk�1ÞjΔuðk� 1Þjpðk−1ÞPTþ1
1 Fðk; uðkÞÞ ;

XTþ1

1

Fðk; uðkÞÞ > 0

9>>=>>;;

then for each compact interval Λ⊂ ðθ*; ∞Þ there exists a number δ > 0 with the following
property: for every λ∈Λ and every g ∈ℭ there exists μ* > 0 such that, for each μ∈ ½0; μ*� ;
problem (2) has at least three weak solutions whose norms are less than δ:
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Example:
Let consider the above example chosen for the function f ; then we have

lim sup
juj→∞

sup
k∈½1;T�

Fðk; uÞ

jtjp− ≤ 0 ;

and

lim sup
juj→0

sup
k∈½1;T�

Fðk; uÞ

jtjpþ
¼ 0 :

In addition, for u small enough we have

XT
k¼1

�jujðα−kÞ
αðkÞ � jujβðkÞ

βðkÞ
�

> 0 ;

which means that ðF 0
1Þ is satisfied.

For function g such that gðk; uÞ ¼ jujγðkÞu if juj≤ 1 and gðk; uÞ ¼ jujδðkÞ if juj≥ 1 where
pþ < γðkÞ < δðkÞ for all k∈ ½1; T�; and then f and g verify the hypothesis in Theorem 2.4.

3. Proof
Proof of Theorem 2.3. It is clear that since the functional w is continuously differentiable on a
finite dimensional space its Gâteaux derivative is compact with

f0ðuÞ ¼ KðIðuÞÞ
 XTþ1

k¼1

jΔuðk� 1Þjðk−1Þ−2Δuðk� 1ÞΔvðk� 1Þ þ
XT
k¼1

�
juðkÞjpðkÞ−2uðkÞvðkÞ

!

for all u; v∈W : Since W is a Hilbert space and K is continuous and strictly increasing, it
follows that f belongs to the class WW :

Let kuk > 1; we have wðuÞ ¼ K
∧
ðIðuÞÞ≥K0

kukp−
pþ

; (7)

which means that f is coercive. It is evident that u0 ¼ 0 is the only global minimum of w and
that wðu0Þ ¼ Jðu0Þ ¼ 0:

In view of ðF1Þ; there exist 0 < ρ < 1 and R > 1 such that

Fðx; ξÞ≤ ðAþ εÞjξjpþ

for all k∈ ½1; T� and jξj≤ ρ ;

Fðk; ξÞ≤ ðBþ εÞjξjp− (8)

for all k∈ ½1; T� and jξj≥R :
From the fact that F is bounded on each subset of ½1; T�3ℝ; wemay choose r− > pþ and

a suitable constant c1 > 0 such that

Fðx; ξÞ≤ ðAþ εÞjξjpþ þ c1jξjr
−

for all ðx; ξÞ∈ ½1; T�3ℝ:
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Consequently, for kuk < 1 with r− > pþ;

JðuÞ≤ ðAþ εÞ
XT
k¼1

juðkÞjpþ þ c1
XTþ1

k¼1

juðkÞjr−

≤C2ðAþ εÞkukpþ þ C3kukr
−

;

then, using the inequality (5) and the above estimation, we can write

lim sup
kuk→0

JðuÞ
wðuÞ≤ C2

ðAþ εÞ
K0

pþ:

On the other hand, for each kuk > 1; from (8) it yields

JðuÞ
wðuÞ≤

C1ðBþ εÞ
wðuÞ kukp− : (9)

Thus we have

lim sup
kuk→∞

JðuÞ
wðuÞ≤ pþ

C1

K0

ðBþ εÞ:

Since ε is arbitrary, so we obtain

max



lim sup
kuk→∞

JðuÞ
wðuÞ ; lim sup

kuk→0

JðuÞ
wðuÞ

�
≤ pþ

C0

K0

maxfA; Bg: (10)

In addition, it is well known that

p− sup
η∈ℝ=f0g

PT

k¼1Fðk; ηÞPTþ1
k¼1 jηjpðk−1Þ

≤ sup
u∈W=f0g

JðuÞ
wðuÞ : (11)

From ðF1Þ and the above inequalities (3.4), (3.4) we infer that

lim sup
kuk→∞

JðuÞ
wðuÞ ; lim sup

kuk→u0

JðuÞ
wðuÞ

�
< sup

u∈w−1ð0;∞Þ

JðuÞ
wðuÞ :

Then the assumptions of Theorem 2.3 are satisfied with u0 ¼ 0 and the conclusion is
valid for all g∈ℭ and each interval include in ðα*; β*Þ

Example
Taking KðtÞ ¼ aþ bt for all t > 0; with a; b > 0 and set

f ðk; uÞ ¼ hðkÞ�jujr1ðkÞ−2u� jujr2ðkÞ−2u�
for all ðk; uÞ∈ ½1; T�3ℝ; where h : ½1; T�→ ð0; ∞Þ is an arbitrary function, pþ < r1ðkÞ <
r2ðkÞ; k∈ ½1; T�where r1; r2 : ½1; T�→ ½2; ∞Þ are bounded functions. It is clear that f ∈ℭ:
Easily we can prove that

lim
t→∞

Fðk; uÞ
jujp− ≤ 0; lim

t→0

Fðk; uÞ
jujpþ ¼ 0
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So f satisfies the assumptions of Theorem 2.3 with

α* ¼ 1

p−

(PTþ1
k¼1 juðk� 1Þjpðk−1ÞPT

1 Fðk; uðkÞÞ
;
XTþ1

1

hðkÞ
�jujr1ðkÞ
r1ðkÞ � jujr2ðkÞ

r2ðkÞ
�

> 0

)

and

β* ¼ ∞:

Proof of Theorem 2.4. Let start by defining f as follows:

wðuÞ ¼ K
∧
 XTþ1

k¼1

�
1

pðk� 1ÞjΔuðk� 1Þjpðk−1Þ
�!

Let kuk > 1; we have

wðuÞ≥K0

kukp−
pþ

; (12)

which means that f is coercive. It is evident that u0 ¼ 0 is the only global minimum of f and
that fðu0Þ ¼ Jðu0Þ ¼ 0 In view of ðF 0

2Þ; for ε > 0 there exist 0 < ρ < 1 such that

Fðx; ξÞ≤ εjξjpþ

for all x∈ ½1; T� and jξj≤ ρ : From ðF 0
3Þ there exists R > 1 such that

Fðx; ξÞ≤ εjξjp−

for all x∈ ½1; T� and jξj≥R : In view of the fact that F is bounded on each subset of
½1; T�3ℝ; so we may choose that r− > pþ and for a suitable constant c1 > 0 such that

Fðx; ξÞ≤ εjξjpþ þ c1jξjr
−

for all ðx; ξÞ∈ ½1; T�3ℝ:
Consequently, for kuk < 1 with r− > pþ;

JðuÞ≤ ε
XT
k¼1

juðkÞjpþ þ c1
XTþ1

k¼1

juðkÞjr−

≤C2εkukp
þ þ C3kukr

−

;

then, using the inequality (c) in Lemma 2.2 and the above estimation, we can write

lim sup
kuk→0

JðuÞ
wðuÞ≤ C2εpþ:

On the other hand, for each k u k> 1; it is well known that there exists h∈ l1ð½1; T�Þ such
that

Fðx; tÞ≤ εjtjp− þ hðxÞ;
for all ðx; tÞ∈ ½1; T�3ℝ: It yields there is C1 > 0 such that
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JðuÞ≤ C1ðε k ukp− þ 1Þ: (13)

Thus, combining (12) and (13), we get

lim sup
kuk→∞

JðuÞ
wðuÞ≤ pþC2ε:

Since ε is arbitrary and β > 0; α ¼ 0; hence, all the assumptions of Theorem 2.3 are

satisfied with θ* ¼ 1
β and the proof is complete.

The following corollary is a direct application of Theorem 2.4.

Corollary 3.1. let f : ℝ→ℝ be a continuous function such that

sup
t

FðtÞ > 0;

where FðtÞ ¼ R t

0
f ðsÞds;

lim sup
jtj→∞

f ðtÞ
jtjr1ðkÞ

< ∞; r−1 > pþ;

lim sup
jtj→0

FðtÞ
jtjp− ≤ 0

Set

η ¼ 1

p−
inf

(PT

k¼1jΔujpðkÞPTþ1
k¼1 FðuðkÞÞ

; u∈W ;
XTþ1

k¼1

FðuðkÞÞ > 0

)
:

Then for each compact interval ½c; d�⊂ ½η; ∞Þ there exists a number ρ > 0with the following
property: for every λ∈ ½c; d� and g in ℭ there exists σ > 0 such that for μ∈ ½0; σ� the problem

�Δ
�jΔuðk� 1Þjpðk−1Þ−2Δuðk� 1Þ� ¼ λf ðuðkÞÞ þ μgðk; uðkÞÞ; k∈ ½1; T�:

uð0Þ ¼ uðT þ 1Þ ¼ 0;

has at least three weak solutions whose norms are less than ρ
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