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Abstract

Purpose – This study describes the applicability of the a priori estimate method on a nonlocal nonlinear
fractional differential equation forwhich theweak solution’s existence and uniqueness are proved. The authors
divide the proof into two sections for the linear associated problem; the authors derive the a priori bound and
demonstrate the operator range density that is generated. The authors solve the nonlinear problem by
introducing an iterative process depending on the preceding results.
Design/methodology/approach –The functional analysis method is the a priori estimate method or energy
inequality method.
Findings – The results show the efficiency of a priori estimate method in the case of time-fractional order
differential equations with nonlocal conditions. Our results also illustrate the existence and uniqueness of the
continuous dependence of solutions on fractional order differential equations with nonlocal conditions.
Research limitations/implications – The authors’ work can be considered a contribution to the
development of the functional analysis method that is used to prove well-positioned problems with
fractional order.
Originality/value –The authors confirm that this work is original and has not been published elsewhere, nor
is it currently under consideration for publication elsewhere.

Keywords Existence and uniqueness, A priori estimate, Fractional derivatives and integrals, Integral

condition

Paper type Research paper

1. Introduction
Fractional order partial differential equations have become one of the most popular areas of
research in mathematical analysis. Their application has been utilized in various scientific
fields, such as optimal control theory, chemistry, physics, mathematics, biology, finance and
engineering [1–5].

Integro-differential equations are a combination of derivatives and integrals which are
appealing to both researchers and scientists for their applications in many areas [6–9].
Numerous mathematical formulations of physical phenomena include integro-differential
equations, which may arise in modelling biological fluid dynamics [10–15].

It is important to establish effective methods to solve fractional differential equations
(FDEs). Recently, a great deal of attention was dedicated to FDE solutions utilizing different
methods, including the Adomian decomposition method [16,17], the Laplace transform
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method [18], exponential differential operators [19], the F-expansion method [20], non-Nehari
manifold method [21] and the reproducing kernel spacemethod [22,23], in the search for exact
or analytical solutions. The applicability of most techniques becomes difficult with the
presence of the integral condition. The energy inequality method is a useful tool for studying
nonlocal fractional and classical problems. Compared with other techniques, it has an
essential role in establishing the solution’s existence and uniqueness proof and depends on
density arguments and certain a priori bounds.

There have been few articles related to nonlinear fractional partial equations that
employ the energy inequality method [24]. Furthermore, for partial differential equations
with classical order, many results have utilized this method [25–28]. Motivated by the
previous results, the authors studied a nonlocal nonlinear time-fractional order problem.
Moreover, we demonstrate the solution’s uniqueness, existence and dependence on the
given data.

This article is outlined in the following way: in Section 2, we present the main problem.
The next section is focused on posing the associated linear problem and introducing some
required preliminaries and functional spaces. Then, in Section 4, we develop the energy
inequality method to demonstrate the linear problem’s strong solution’s uniqueness. In
addition, we prove the strong solution’s existence in Section 5. Moreover, we derive a priori
bound and demonstrate the generated operator range density in a Hilbert space.We solve the
nonlinear problem in Section 6 by utilizing the results achieved in Sections 4 and 5, and an
iteration process.

2. Statement of problem
In the region D ¼ Ω3 0;T½ �, Ω ¼ 0; 1ð Þ, T < ∞, we pose the nonlinear fractional equation

Lv ¼ Cv
βþ1
t v� v

vx
γ x; tð Þ vv

vx

� �
� v2

vxvt
η x; tð Þ vv

vx

� �
�
Z t

0

ξ t � zð Þv x; zð Þdz

¼ f x; t; v;
vv

vx

� �
(1)

with 0 < β < 1.
Associated with initial condition

‘1v ¼ v x; 0ð Þ ¼ w xð Þ; ‘2v ¼ vv x; 0ð Þ
vt

¼ ψ xð Þ; x∈Ω; (2)

and the boundary conditionZ 1

0

v x; tð Þdx ¼ 0; vx 1; tð Þ ¼ 0; t ∈ 0;Tð Þ; (3)

Such that the known functions γ, η and ξ verify Assumption 1, and data functions f, w and ψ
belong to suitable function spaces as mentioned in Section 3.

In the Caputo definition for a function v, the fractional derivatives of order β þ 1 with
0 < β < 1 is defined as

Cv
βþ1
t vðx; tÞ ¼ 1

Γ 1� βð Þ
Z 1

0

vττ x; τð Þ
t � βð Þβ dτ; (4)

where Γ :ð Þ is the gamma function
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and the Riemann-Liouville integral of order 0 < β < 1, which is given by

D−β
t vðx; tÞ ¼ 1

Γ βð Þ
Z 1

0

v x; τð Þ
t � βð Þ1−β dτ: (5)

3. Technical tools and associated linear problem
Wedefine some function spaces and tools required to investigate the following linear problem
associated with problems (1)–(3).

Lv ¼ Cv
βþ1
t v� v

vx
γ x; tð Þ vv

vx

� �
� v2

vxvt
η x; tð Þ vv

vx

� �
�
Z t

0

ξ t � zð Þv x; zð Þdz ¼ f x; tð Þ (6)

‘1v ¼ v x; 0ð Þ ¼ w xð Þ; ‘2v ¼ vv x; 0ð Þ
vt

¼ ψ xð Þ; x∈Ω; (7)

Z 1

0

v x; tð Þdx ¼ 0; vx 1; tð Þ ¼ 0; t ∈ 0;Tð Þ; (8)

First, we convert problems (1)–(3) into an equivalent operator form

Lv ¼ F ¼ f ;w;ψð Þ (9)

where the unbounded operator L ¼ L; ‘1; ‘2ð Þwith L: E → F is defined in D Lð Þ such that

D Lð Þ ¼
v∈L2 Dð Þ; cvβþ1

t v; vv
�
vt; vv

�
vx; v2v

�
vx2; v3v

�
vx2vt ∈L2 Dð ÞZ 1

0

v x; tð Þdx ¼ 0; vx 1; tð Þ ¼ 0; t ∈ 0;Tð Þ;

8<
: (10)

and v also verify the initial condition. Here E is Banach space containing elements having the
finite norm

k vk2E ¼ Dβ−1
t kIx

vv

vt
k2L2ðΩÞþ k vv

vt
k2L2 Dð Þþ k vk2

C 0;Tð Þ;L2 Ωð Þð Þ; (11)

and F is Hilbert space composed of functions normed with

kFk2F ¼ kIxfk2L2 Dð Þ þ kwk2L2 Ωð Þ þ kIxψk2L2 Ωð Þ: (12)

Lemma 1. [29] Let S(t) a nonnegative absolute continuous function verifying the inequality
Cvαt SðtÞ≤ c1SðtÞ þ c2ðtÞ; 0 < α < 1; (13)

for almost all t ∈ [0, T], where c1 is a positive constant and c2(t) is an integrable nonnegative
function on [0, T]. Then,

SðtÞ≤ Sð0ÞEαðc1tαÞ þ ΓðαÞEα;αðc1tαÞD−α
t c2ðtÞ; (14)

where

EαðxÞ ¼
X∞
n¼0

xn

Γ αnþ 1ð Þ and Eα;νðxÞ ¼
X∞
n¼0

xn

Γ αnþ νð Þ;
are Mittag-Leffler functions.
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Lemma 2. [29] On the interval [0, T], any absolute continuous function y(t) verifies the
following estimate:

S tð ÞCvβt SðtÞ≥
1

2
cv

β
t S

2 tð Þ; 0 < β < 1; (15)

Lemma 3. [30] For any n∈N, we have

k I2n
x vk2L2 0;lð Þ ≤

l

2

� �2n

k vk2L2 0;lð Þ; (16)

where

I2n
x v ¼

Z x

0

Z ξ1

0

. . .

Z ξ2n�1

0

v η; tð Þdηdξ2n−1 . . . dξ1 ¼
Z x

0

x� ξð Þ2n−1
2n� 1ð Þ! v ξ; tð Þdξ:

Cauchy «-inequality [31]

j ab j :≤ ε
2
a2 þ 1

2ε
b2; (17)

which holds for arbitrary a and b, and all « > 0.

4. A priori estimate and consequences

Assumption 1. For any x; tð Þ∈D, we suppose that

c0 ≤ γðx; tÞ≤ c1;
vγðx; tÞ

vt
≤ c2;

vγðx; tÞ
vx

≤ c3

c4 ≤ ηðx; tÞ; c5 ≤ vηðx; tÞ
vt

≤ c6;
vηðx; tÞ

vx
≤ c7

v2ηðx; tÞ
vt2

≤ c8;
v2ηðx; tÞ
vtvx

≤ c9; ξðx; tÞ≤ c10

(18)

such that ci(i 5 0, . . ., 10) are positive constants.

Theorem 4. Let Assumption 1 be fulfilled. Then, any function v ∈ D(L) verify the following
estimate

k vkE ≤C k LvkF : (19)

where C > 0 constant independent of v.

Proof. We take the scalar product L2 Dτð Þ of equality (6) and the integro-differential

operator Mv ¼ −2I2
x
vv
vt
, such that τ ∈ [0, T], we have
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2 Cv
βþ1
t v;�I2

x

vv

vt

� �
L2 Dτð Þ

�2
v

vx
γ x;tð Þvv

vx

� �
;�I2

x

vv

vt

� �
L2 Dτð Þ

�2
v2

vxvt
η x;tð Þvv

vx

� �
;�I2

x

vv

vt

� �
L2 Dτð Þ

�2

Z t

0

ξ t�zð Þv x;zð Þdz;�I2
x

vv

vt

� �
L2 Dτð Þ

¼2 f x;tð Þ;�I2
x

vv

vt

� �
L2 Dτð Þ

: (20)

The integration of the first three terms on the left-hand side (LHS) of Equation (20), taking into
consideration initial and boundary conditions (2)�(3), gives

−
Cv

βþ1
t v;�I2

x

vv

vt

� �
L2 Dτð Þ

¼ Cv
β
t

vv

vt
;I2

x

vv

vt

� �
L2 Dτð Þ

¼ 2 Cv
β
t Ix

vv

vt

� �
;Ix

vv

vt

� �
L2 Dτð Þ

(21)

�2
v

vx
γ x; tð Þ vv

vx

� �
;�I2

xvt

� �
L2 Dτð Þ

¼ −

Z
Dτ

vγ

vt
v2dxdt þ 2

Z
Dτ

vγ

vx
vIx

vv

vt
dxdt

þ
Z 1

0

γ x; τð Þv2 x; τð Þdx�
Z 1

0

γ x; 0ð Þw2 xð Þdx
(22)

�2
v2

vxvt
η x; tð Þ vv

vx

� �
;�I2

x

vv

vt

� �
L2 Dτð Þ

¼ 2

Z
Dτ
η

vv

vt

� �2

dxdt þ
Z 1

0

vη x; τð Þ
vt

v2 x; τð Þdx

�
Z
Dτ

v2η

vt2
v2dxdt þ 2

Z
Dτ

vη
vx

vv

vt
Ix

vv

vt
dxdt þ 2

Z
Dτ

v2η
vxvt

vIx

vv

vt
dxdt �

Z 1

0

vη x; 0ð Þ
vt

w2 xð Þdx
(23)

Substituting (21)�(23) into (20) yields

2 Cv
β
t Ix

vv

vt

� �
;Ix

vv

vt

� �
L2 Dτð Þ

þ2

Z
Dτ
η

vv

vt

� �2

dxdtþ
Z 1

0

γ x;τð Þþvη x;τð Þ
vt

� �
v2 x;τð Þdx¼

2 f x;tð Þ;�I2
x

vv

vt

� �
L2 Dτð Þ

þ2

Z t

0

ξ t�zð Þv x;zð Þdz;�I2
x

vv

vt

� �
L2 Dτð Þ

þ
Z
Dτ

vγ

vt
þv2η

vt2

� �
v2dxdt

þ
Z 1

0

γ x;0ð Þþvη x;0ð Þ
vt

� �
w2 xð Þdx�2

Z
Dτ

vη
vx

vv

vt
Ix

vv

vt
dxdt�2

Z
Dτ

vγ

vx
þ v2η
vxvt

� �
vIx

vv

vt
dxdt

(24)

By applying inequality (16), we estimate the first and the last two terms on the right-hand side
(RHS) of (24); as such it follows that

−2

Z
Dτ
fI2

x

vv

vt
dxdt ≤

Z
Dτ

Ixfð Þ2dxdt þ
Z
Dτ

Ix

vv

vt

� �2

dxdt; (25)
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2

Z
Dτ

Z t

0

ξ t � zð Þv x; zð Þdz
� �

I2
x

vv

vt
dxdt ≤ c10T

2 k vk2L Dτð Þ þ
1

2

Z
Dτ

Ix

vv

vt

� �2

dxdt (26)

−2

Z
Dτ

vγ

vx
þ v2η
vxvt

� �
vIx

vv

vt
dxdt ≤ 2

Z
Dτ

vγ

vx

� �2

þ v2η
vxvt

� �2
( )

v2dxdtþ
Z
Dτ

Ix

vv

vt

� �2

dxdt;

(27)

−2

Z
Dτ

vη
vx

vv

vt
Ix

vv

vt
dxdt ≤ c4

Z
Dτ

vv

vt

� �2

dxdtþ 1

c4

Z
Dτ

vη
vx

� �2

Ix

vv

vt

� �2

dxdt: (28)

By Lemma 2, the first term on the LHS of (20) becomes

2 Cv
β
t Ix

vv

vt

� �
;Ix

vv

vt

� �
L2 Dτð Þ

≥

Z
Dτ

Cv
β
t Ix

vv

vt

� �2

dxdt; (29)

Hence, by Formulas (25)–(29) and Assumption (1), we obtain

Z
Dτ

Cv
β
t Ix

vv

vt

� �2
 !

dxdt þ
Z τ

0

kvv
vt

:; tð Þk2L2 Ωð Þdt þ kv :; τð Þk2L2 Ωð Þ

≤ δ1

Z τ

0

kIxf :; tð Þk2L Ωð Þdt þ kwk2L2 Ωð Þ þ
Z τ

0

kIx

vv

vt
:; tð Þk2L Ωð Þdt

� �

þδ2

Z τ

0

kv :; tð Þk2L2 Ωð Þdt

� �
;

where

δ1 ¼
max 1; c1 þ c6;

5
2
þ c2

7

c4

� �
min c4; c0 þ c5; 1ð Þ ;

δ2 ¼ c2 þ c8 þ c23 þ c29 þ c10T
2

min c4; c6 þ c5; 1ð Þ :

Now, sinceZ τ

0

Cv
β
t k Ix

vv

vt

2

kL2 Ωð Þdt ¼ Dβ−1
τ kIx

vv

vt
k2L2ðΩÞ �

τ1−β

ð1� βÞΓð1� βÞkIxψk2L2ðΩÞ; (30)

then

Dβ−1
τ k Ix

vv

vt
k2L2Ω þ

Z τ

0

k vv

vt
:; tð Þk2L2 Ωð Þdtþ k v :; τð Þk2L2 Ωð Þ

≤ δ3

Z τ

0

k Ixf :; tð Þk2L Ωð Þdtþ k wk2L2 Ωð Þ þ kIxψk2L2ðΩÞ þ
Z τ

0

k Ix

vv

vt
:; tð Þk2L Ωð Þdt

� �

þδ2

Z τ

0

k v :; tð Þk2L2 Ωð Þdt;

� �
(31)
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where

δ3 ¼ max δ1;
T1−β

1� βð ÞΓ 1� βð Þ
� �

;

We need to drop the last term on the RHS of (31). Therefore, we use Gronwall’s lemma, which
yields

Dβ−1
τ kIx

vv

vt
k2L2ðΩÞ þ

Z τ

0

k vv
vt

:; tð Þk2L2 Ωð Þdtþk v :;τð Þk2L2 Ωð Þ

≤ δ4

Z τ

0

kIxf :; tð Þk2L Ωð Þdþkwk2L2 Ωð ÞtþkIxψk2L2ðΩÞ þ
Z τ

0

kIx

vv

vt
:; tð Þk2L Ωð Þdt

� �
;

(32)

where

δ4 ¼ exp δ2Tð Þδ3;
Now, by discarding the last two terms on the LHS of (32) then posing S τð Þ ¼R τ

0 kIx
vv
vt

:; tð Þk2L2ðΩÞdt,
Cv

βþ1
t S τð Þ ¼ Dβ−1

τ kIx
vv
vt
k2L2ðΩÞ,with S 0ð Þ ¼ 0, in Lemma (1), we obtain

Z τ

0

kIx

vv

vt
:; tð Þk2L2ðΩÞdt ≤ δ5 D−1−β

τ k Ixfk2L Ωð Þþ k wk2L2 Ωð Þþ k Ixψk2L2ðΩÞ
n o

; (33)

where

δ5 ¼ ΓðβÞEβ;β

	
c17T

β


max 1;

T βþ1ð Þ

1þ βð ÞΓð1þ βÞ
� �

Combining (32)�(33) yields

Dβ−1
τ kIx

vv

vt
k2L2ðΩÞ þ

Z τ

0

kvv
vt

:; tð Þk2L2 Ωð Þdt þ kv :; τð Þk2L2 Ωð Þ

≤ δ6 D−β−1
τ kIxfk2L2ðΩÞ þ

Z τ

0

kIxf :; tð Þk2L Ωð Þdt þ kwk2L2 Ωð Þ þ kIxψk2L2ðΩÞ
� �

;

(34)

where

δ6 ¼ max δ4δ5; δ5ð Þ;
From given inequality

D−1−β
τ kIxfk2L Ωð Þ ≤

Tβ

Γð1þ βÞ
Z τ

0

k Ixf k2L Ωð Þdt; (35)

we reduce inequality (34) as follows

Dβ−1
τ kIx

vv

vt
k2L2ðΩÞ þ

Z τ

0

k vv

vt
:; tð Þk2L2 Ωð Þdtþ k v :; τð Þk2L2 Ωð Þ

≤ δ7

Z T

0

k Ixf :; tð Þk2L Ωð Þdtþ k wk2L2 Ωð Þ þ kIxψk2L2ðΩÞ
� �

:

(36)
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δ7 ¼ δ6 1þ Tβ

Γð1þ βÞ
� �

Since the RHS of estimate (36) is independent of τ, we can take the supremum on the LHSwith
respect to τ over [0, T]. Thus, we get the desired inequality (19). Theorem (4) proof is
complete. -

5. Existence of the linear problem solution
The current section’s aim is to prove the existence of the strong solution of problems (6)–(8).
It remains to demonstrate the density of the range R(L).

Proposition 5. [32] The operator L engendered by problems (1)–(3) has a closure.

Defining the operator equation solution

Lv ¼ F ¼ f ;w;ψð Þ;
as a strong solution of problems (6)–(8). The inequality (19) can be extended into

k vkE ≤ k LvkF ; ∀v∈D L
	 


: (37)

the inequality demonstrated above assures the strong solution uniqueness.

Corollary 6. The range of the operator L is closed in F and RðLÞ ¼ RðLÞ and L
−1 ¼ L−1.

Theorem 7. Let Theorem (4) conditions be verified. Then, for any F ¼ ðf ; g; hÞ ∈ F, the

problems (6)–(8) have a unique solution v such that v ¼ L
−1F ¼ L−1F .

Proposition 8. Let Assumption (1) be fulfilled. If for a certain function g ∈ L2(Q), and every
v ∈ D(L) verifying homogenous initial conditions, we have

ðLv; gÞL2ðDÞ ¼ 0; (38)

then g vanishes almost everywhere in D are as follows:

Proof. Introducing a new function σ(x, t) verifies conditions (2) and (3), and σ, σx,Itσx, Itσ
and Cv

βþ1
t σ ∈ L2 Dð Þ, then we pose

v x; tð Þ ¼ I2
t σ;

where

Itσ ¼
Z t

0

σðx; sÞds; I2
t σ ¼

Z t

0

Z s

0

σðx; zÞdzds:

Equation (38) then becomes

cv
βþ1
t I2

t σ�
v

vx
γ x;tð ÞI2

t

vσ
vx

� �� �
� v2

vxvt
η x;tð ÞI2

t

vσ
vx

� �� �
�
Z t

0

ξ t�zð ÞI2
t σ x;zð Þdz; g

� �
L2ðDÞ

¼0:

(39)
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Now, we consider the function

g x;tð Þ¼−ItI
2
xσ: (40)

Obviously, the function g included in L2(D). Equations (39)–(40) lead to

� Cv
βþ1
t I2

t σ;ItI
2
xσ

� �
L2ðDÞ

þ v

vx
γ x;tð ÞI2

t

vσ
vx

� �� �
;ItI

2
xσ

� �
L2ðDÞ

þ v2

vxvt
η x;tð ÞI2

t

vσ
vx

� �� �
;ItI

2
xσ

� �
L2ðDÞ

þ
Z t

0

ξ t�zð ÞI2
t σ x;zð Þdz;ItI

2
xσ

� �
L2ðDÞ

¼ 0

(41)

Note that the function σ verifies conditions (2)�(3), then we have

−
Cv

βþ1
t I2

t σ;ItI
2
xσ

� �
L2ðDÞ

¼−
Cv

β
tIxItσ;IxItσ

	 

L2ðDÞ (42)

v

vx
γ x;tð ÞI2

t

vσ
vx

� �� �
;ItI

2
xσ

� �
L2ðDÞ

¼ 1

2

Z 1

0

γ I2
t σ

� �2
dx�1

2

Z
D

vγ

vt
I2

t σ
� �2

dxdt

þ vγ x;tð Þ
vx

I2
t σ

� �
;ItIxσ

� �
L2ðDÞ

(43)

v2

vxvt
η x;tð ÞI2

t

vσ
vx

� �� �
;ItI

2
xσ

� �
L2ðDÞ

¼ v2η
vxvt

I2
t σ;ItIxσ

� �
L2ðDÞ

þ vη
vt
I2

t σ;Itσ
� �

L2ðDÞ

þ
Z
D

v2η

vx2
ItIxσð Þ2dxdtþ

Z
D

η Itσð Þ2dxdt
(44)

Insertion of Equations (42)–(44) into (41), yields

�2 Cv
β
tIxItσ;IxItσ

	 

L2ðDÞþ

Z 1

0

γ I2
t σ

� �2
dx¼

Z
D

vγ

vt
I2

t σ
� �2

dxdt

�2

Z
D

v2η

vx2
ItIxσð Þ2dxdt�2

Z
D

η Itσð Þ2dxdt�2
v2η
vxvt

þvγ x;tð Þ
vx

� �
I2

t σ;ItIxσ
� �

L2ðDÞ

�2
vη
vt
I2

t σ;Itσ
� �

L2ðDÞ
�2

Z t

0

ξ t�zð ÞI2
sσ x;zð Þdz;ItI

2
xσ

� �
L2ðDÞ

(45)

According to Lemma 1, we bound the first term on the LHS of (45); we have

2 Cv
β
tIxItσ;IxItσ

	 

L2ðDÞ≥

Cv
β
t kIxItσk2L2ðDÞ; (46)

Also, we bound the last three terms on the RHS of (45) utilizing inequality 17, and we then
get
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2
vγ x;tð Þ
vx

þ v2η
vxvt

� �
I2

t σ;ItIxσ
� �

L2ðDÞ
≤ 2 c23þc29
	 
kI2

t σk2L2ðDÞþkIxItσk2L2ðDÞ (47)

2
vη
vt

I2
t σ

� �
;Itσ

� �
L2ðDÞ

≤ 2c4kI2
t σk2L2ðDÞþ

c26
2c24

kItσk2L2ðDÞ (48)

Z t

0

ξ t�zð ÞI2
zσ x;zð Þdz;I2

xItσ
� �

L2ðDÞ
≤ c10T

2kI2
t σk2L Dð Þþ

1

2
kIxItσk2L Dð Þ; (49)

The insertion of estimates (46)–(48) in Equation (45) gives

Dβ−1
τ kIxItσk2L2ðDÞþ

Z 1

0

I2
t σ

� �2
dx≤ δ8

Z
D

I2
t σ

� �2
dxdtþkIxItσk2L2ðDÞ

� �
(50)

with

δ8¼
max c2þ2 c23þc29

	 
þc10T
2þ c2

6

2c4
; 2c10þ3

2

� �
min 1; c0ð Þ (51)

Eliminating the first term on the LHS of (50), using Lemma 2, with

S τð Þ¼
Z τ

0

Z 1

0

I2
t σ

� �2
dxdt (52)

observe that S 0ð Þ¼0, then we get

S τð Þ≤T exp Tδ8ð ÞkIxItσk2L2ðDτÞ; (53)

Similarly, by discarding the second integral on the LHS of (50) and applying (53), we obtain

Dβ−1
τ kIxItσk2L2ðDÞ≤δ8 T exp Tδ8ð Þþ1ð ÞkIxItσk2L2ðDÞ (54)

by Lemma 2, with

S τð Þ¼
Z τ

0

Z 1

0

IxItσð Þ2dxdt

and

CvβτS τð Þ¼Dβ−1
τ kIxItσk2L2ðDÞ;S 0ð Þ¼0;

it follows that���IxItσk2L2ðDτÞ≤Sð0ÞEβ

	
δ8 T exp Tδ8ð Þþ1ð Þτβ
þΓðβÞEβ;β

	
δ8 T exp Tδ8ð Þþ1ð Þτβ
D−β

τ 0ð Þ
¼ 0;

(55)

for any τ∈ [0,T]. Hence inequality (55) shows that g5 0 ae inD. Continuing Theorem 7 proof,

we assume that for a certain function G¼ g;g0;g1ð Þ∈R Lð Þ⊥, we have
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Lv;gð ÞL2 Dð Þþ l1v;g0ð ÞL2 Ωð Þþ l2v;g1ð ÞL2 Ωð Þ¼0; (56)

then we should show that g0 5 0, g1 5 0. Putting v ∈ D(L), verifying homogenous initial
conditions into (56), yields

Lv;gð ÞL2 Dð Þ¼0; ∀v∈ D Lð Þ; (57)

By applying Proposition (8) to (57), we see that g 5 0. Consequently, (56) becomes

l1v;g0ð ÞL2 Ωð Þþ l2v;g1ð ÞL2 Ωð Þ¼0 ∀v∈D Lð Þ; (58)

Since l1v and l2v are independent and their ranges l1 and l2 are everywhere dense in L
2 Ωð Þ, we

conclude that g0 5 g1 5 0, this complete the proof of Theorem 7. -

6. The study of the nonlinear problem
This section is devoted to solving the main problems (1)–(3). Consider now the auxiliary
problem with the homogenous equation:

LV ¼ Cv
βþ1
t V � v

vx
γ x; tð Þ vV

vx

� �
� v2

vxvt
η x; tð Þ vV

vx

� �
�
Z t

0

ξ t � zð ÞV x; zð Þdz ¼ 0 (59)

‘1V ¼ V x; 0ð Þ ¼ 0; ‘2V ¼ vV x; 0ð Þ
vt

¼ 0; x∈Ω; (60)

Z 1

0

V x; tð Þdx ¼ 0; Vx 1; tð Þ ¼ 0; t ∈ 0;Tð Þ; (61)

If V and v are solutions of problems (8)-(6),(1)-(3), respectively, then h 5 v � V satisfies

Lh ¼ Cv
βþ1
t h� v

vx
γ x; tð Þ vh

vx

� �
� v2

vxvt
η x; tð Þ vh

vx

� �
�
Z t

0

ξ t � zð Þh x; zð Þdz

¼ G x; t; h;
vh

vx

� �
(62)

‘1h ¼ h x; 0ð Þ ¼ 0; ‘2h ¼ vh

vt
x; 0ð Þ ¼ 0; x∈Ω; (63)

Z 1

0

h x; tð Þdx ¼ 0; hx 1; tð Þ ¼ 0; t ∈ 0;Tð Þ; (64)

such that the function G

�
x; t; h; vh

vx

�
¼ f

�
x; t; hþ V ; vh

vx
þ vV

vx

�
, verifies the following

condition

jGðx; t;w1; y1Þ � Gðx; t;w2; y2Þj≤ L jw1 � w2j þ jy1 � y2jð Þ forall ðx; tÞ∈D: (65)

Theorem 7 shows that the solution of problems (6)–(8) is unique and depends continuously on
the initial data. It remains to establish a similar proof for problems (62)–(64).We introduce the
space
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~C
1
Dð Þ ¼ w∈C1 Dð Þ such that;

vw2

vtvx
∈C Dð Þ

� �
(66)

Suppose that h and u∈ ~C
1ðDÞ verify homogenous initial and boundary conditions

hðx;TÞ ¼ 0; hðx; 0Þ ¼ 0;
R 1
0 wðx; tÞdx ¼ 0. For u∈ ~C

1ðDÞ, we have

Lh;Ixuð ÞL2ðDÞ ¼ Cv
βþ1
t h;Ixu

	 

L2ðDÞ �

v

vx
γ x; tð Þ vh

vx

� �
;Ixu

� �
L2ðDÞ

� v2

vxvt
η x; tð Þ vh

vx

� �
;Ixu

� �
L2ðDÞ

�
Z t

0

ξ t � zð Þh x; zð Þdz;Ixu

� �
L2ðDÞ

(67)

Computation of all terms of Equation (67), using conditions on h and u, gives

Cv
βþ1
t h;Ixu

	 

L2ðDÞ ¼ −

Cv
βþ1
t Ixh; u

	 

L2ðDÞ (68)

−
v

vx
γ
vh

vx

� �
;Ixu

� �
L2ðDÞ

¼ γ
vh

vx
; u

� �
L2ðDÞ

(69)

−
v2

vxvt
η
vh

vx

� �
;Ixu

� �
L2ðDÞ

¼ v

vt
η
vh

vx

� �
; u

� �
L2ðDÞ

(70)

−

Z t

0

ξ t � zð Þh x; zð Þdz;Ixu

� �
L2ðDÞ

¼
Z t

0

ξ t � zð ÞIxh x; zð Þdz; u
� �

L2ðDÞ
(71)

Insertion of (68)–(71) into (67) yields

Rðh; uÞ ¼ u;IxGð ÞL2ðDÞ (72)

such that

Rðh; uÞ ¼ −
Cv

βþ1
t Ixh; u

	 

L2ðDÞ þ γ

vh

vx
; u

� �
L2ðDÞ

þ v

vt
η
vh

vx

� �
; u

� �
L2ðDÞ

þ
Z t

0

ξ t � zð ÞIxh x; zð Þdz; u
� �

L2ðDÞ
(73)

Definition 9. A function h ∈ L2(0, T, H1(Ω)) is considered as the problems (62)–(64) weak
solution if it satisfies (64) and (72) holds.

Constructing an iteration sequence as follows: let h(0) 5 0, and let defining the sequence

ðhðnÞÞn ∈N as follows: if h(n�1) is given, then for n∈N solve the following problem:

Lh ¼ Cv
βþ1
t hðnÞ � v

vx
γ
vhðnÞ

vx

� �
� v2

vxvt
η
vhðnÞ

vx

� �
�
Z t

0

ξ t � zð ÞhðnÞ x; zð Þdz

¼ G x; t; hðn−1Þ;
vhðn−1Þ

vx

� �
(74)
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‘1h
ðnÞ ¼ hðnÞ x; 0ð Þ ¼ 0; ‘2h

ðnÞ ¼ vhðnÞ

vt
x; 0ð Þ ¼ 0; x∈Ω; (75)

Z 1

0

hðnÞ x; tð Þdx ¼ 0; hðnÞx 1; tð Þ ¼ 0; t ∈ 0;Tð Þ; (76)

Theorem 10. For each fixed n, assume that the solution of problems (74)–(76) h(n)(x, t) is
unique. If we put H(n)(x, t) 5 h(nþ1)(x, t) � h(n)(x, t), then we obtain

LH ðnÞ ¼ Cv
βþ1
t H ðnÞ � v

vx
γ
vH ðnÞ

vx

� �
� v2

vxvt
η
vH ðnÞ

vx

� �
�
Z t

0

ξ t � zð ÞH ðnÞ x; zð Þdz

¼ Ψ n−1ð Þ x; tð Þ (77)

‘1H
ðnÞ ¼ H ðnÞ x; 0ð Þ ¼ 0; ‘2H

ðnÞ ¼ vH ðnÞ x; 0ð Þ
vt

¼ 0; x∈Ω; (78)

Z 1

0

H ðnÞ x; tð Þdx ¼ 0; H ðnÞ
x 1; tð Þ ¼ 0; t ∈ 0;Tð Þ; (79)

with

Ψ n−1ð Þ x; tð Þ ¼ G x; t; h nð Þ;
vh nð Þ

vx

� �
� G x; t; h n−1ð Þ;

vh n−1ð Þ

vx

� �

Lemma11. Under Assumptions (1), and supposing that the condition (65) holds, then for the
linearized problems (77)–(79), the following estimate holds

kH ðnÞk
L2ð0;T;H1 Ωð ÞÞ ≤KkH ðn−1Þk

L2ð0;T;H1 Ωð ÞÞ (80)

where K > 0 is constant given by

K ¼ exp δ10Tð Þ 1þ ΓðβÞEβ;β

	
δ9 exp δ10Tð Þtβ
 Tβ

Γ 1þ βð Þ
� �

Proof. We take the scalar product in L2(Dτ), τ ∈ [0, T] of (77) and the integro-differential
operator MH ðnÞ ¼ −I2

xH
ðnÞ, we get

2 Cv
βþ1
t H ðnÞ;�I2

x

vH ðnÞ

vt

� �
L2 Dτð Þ

� 2
v

vx
γ x; tð Þ vH

ðnÞ

vx

� �
;�I2

x

vH ðnÞ

vt

� �
L2 Dτð Þ

� 2
v2

vxvt
η x; tð Þ vH

ðnÞ

vx

� �
;�I2

x

vH ðnÞ

vt

� �
L2 Dτð Þ

� 2

Z t

0

ξ t � zð ÞH ðnÞ x; zð Þdz;�I2
x

vH ðnÞ

vt

� �
L2 Dτð Þ

¼ 2 Ψ n�1ð Þ x; tð Þ;�I2
x

vH ðnÞ

vt

� �
L2 Dτð Þ

: (81)
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Integrations by parts all terms of (81), by using conditions (78)�(79), proceeding as in the
establishment of Theorem 4, yields

Dβ−1kIx

vH ðnÞ

vt
k2L2ðΩÞ þ c0 þ c5ð Þ k H ðnÞ :; τð Þk2L2 Ωð Þ ≤

Z τ

0

k IxΨ n−1ð Þ x; tð Þk2L Ωð Þdt

þ 5

2
þ c27
2c4

� �Z τ

0

k Ix

vH ðnÞ

vt
:; tð Þk2L Ωð Þdt

þ 2 c23 þ c29
	 
þ c2 þ c8 þ c10T

2
	 
 Z τ

0

k H ðnÞ :; tð Þk2L2 Ωð Þdt

(82)

On the other hand, applying to Equation (77) the operator Ix, and taking into

consideration condition (79), multiplying the resulting equation with vTðnÞ
vx

and integrating
over Dτ, we get

Z
Dτ

Cv
βþ1
t IxH

ðnÞvH
ðnÞ

vx
dxdt�

Z
Dτ
γ x;tð Þ vH ðnÞ

vx

� �2

dxdt�
Z
Dτ

v

vt
η x;tð ÞvH

ðnÞ

vx

� �
vH ðnÞ

vx
dxdt

�
Z
Dτ

Z t

0

ξ t�zð ÞIxH
ðnÞ x;zð ÞvH

ðnÞ

vx
dzdxdt¼

Z
Dτ
IxΨ n−1ð Þ x;tð ÞvH

ðnÞ

vx
dxdt

(83)

After integration by parts of all the terms of (83) and taking into consideration conditions (78),
(79) and using inequality (17), we haveZ

Dτ

Cv
βþ1
t H ðnÞH ðnÞdxdtþc0

Z τ

0

kvH
ðnÞ

vx
:;tð ÞkL2 Ωð Þdtþ

1

2
c4 kvH

ðnÞ

vx
:;τð Þk2L2 Ωð Þ

≤
1

2

Z τ

0

kΨ n−1ð ÞkL2 Ωð Þdtþ c10T
2þ1

	 
Z τ

0

kH ðnÞ :;tð ÞkL2 Ωð Þdt

(84)

Combination of inequalities (83)�(84) gives

Dβ−1
τ kIx

vH ðnÞ

vt
kL2 Ωð Þþ

Z τ

0

vβþ1
t H ðnÞH ðnÞdxdtþc0

Z τ

0

kvH
ðnÞ

vx
:;tð ÞkL2 Ωð Þdtþ

1

2
c4 kvH

ðnÞ

vx
:;τð Þk2L2 Ωð Þ

þ c0þc5ð ÞkH ðnÞ :;τð ÞkL2 Ωð Þ≤
Z τ

0

kΨ n−1ð ÞkL2 Ωð Þdtþ
5

2
þ C

2
7

2C4

 !Z τ

0

kIx

vH ðnÞ

vt
:;tð ÞkL2 Ωð Þdt

þ 2 c23þc29
		 
þc2þc8þc10T

2þ1
	 
Z τ

0

kH ðnÞ :;tð Þk2L2 Ωð Þdt

(85)

Eliminating the last term on the RHS of (85), by using Gronwall’s lemma, it comes
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Dβ−1
τ

�����Ix

vH ðnÞ

vt
kL2 Ωð Þþ

Z τ

0

vβþ1
t H ðnÞH ðnÞdxdtþ c0þc5ð ÞkH ðnÞ :;τð ÞkL2 Ωð Þ

þ 1

2
c4 kvH

ðnÞ

vx
:;τð Þk2L2 Ωð Þþc0

Z τ

0

kvH
ðnÞ

vx
:;tð ÞkL2 Ωð Þdt

≤ exp δ10ð Þ
Z τ

0

kΨ n−1ð Þk2L Ωð Þdtþδ9

Z τ

0

kIx

vH ðnÞ

vt
:;tð Þk2L Ωð Þdt

� �
(86)

where
δ9¼5

2
þ C

2
7

2C4

δ10¼2 c23þc29
	 
þc2þc8þc10T

2þ1

To discard the last integral on the RHS of inequality 86ð Þ, we drop the three first elements
then use the Gronwall’s lemma, it followsZ τ

0

kIx

vH ðnÞ

vt
k2L2 Ωð Þdt≤ΓðβÞEβ;β

	
δ9 exp δ10Tð Þtβ
 exp δ9tð ÞD−β

t kΨ n−1ð Þk2L Ωð Þ (87)

On the other hand, via the condition (65), we getZ τ

0

kΨ n−1ð Þk2L Ωð Þdt≤2L
2

Z τ

0

kH ðn−1Þ :;tð Þk2L2 Ωð ÞþkvH
ðn−1Þ :;tð Þ
vx

k2L2 Ωð Þ

� �
dt (88)

Combining (86)–(88) and by using (35), we get

Dβ−1kIx

vH ðnÞ

vt
k2L2ðΩÞþ

Z τ

0

vβþ1
t H ðnÞH ðnÞdxdt þ

Z τ

0

kvH
ðnÞ

vx
:;tð Þk2L2 Ωð Þdt þkvH

ðnÞ

vx
:;τð Þk2L2 Ωð Þ

þ kH ðnÞ :;τð Þk2L2 Ωð Þ≤δ11L
2

Z T

0

kH ðn−1Þ :;tð Þk2L2 Ωð ÞþkvH
ðn−1Þ

vx
:;tð Þk2L2 Ωð Þ

� �
dt

(89)

where

δ11¼exp δ10Tð Þ 1þΓðβÞEβ;β

	
δ9 exp δ10Tð Þtβ
 Tβ

Γ 1þβð Þ
� �

After discarding the first two terms on the LHS of inequality (89), we getZ τ

0

kvH
ðnÞ

vx
:;tð Þk2L2 Ωð ÞdtþkH ðnÞ :;τð Þk2L2 Ωð ÞþkvH

ðnÞ

vx
:;τð Þk2L2 Ωð Þ

≤ δ11L
2

Z T

0

kH ðn−1Þ :;tð Þk2L2 Ωð ÞþkvH
ðn−1Þ

vx
:;tð Þk2L2 Ωð Þ

� �
dt

(90)

Here, the RHS doesn’t depend on τ so, we can replace the LHS by upper bounds with respect
to τ, we obtain
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Z T

0

kvH
ðnÞ

vx
:;tð Þk2L2 Ωð Þdt þkH ðnÞ :;τð Þk2L2 Ωð ÞþkvH

ðnÞ

vx
:;τð Þk2L2 Ωð Þ

≤ δ11L
2

Z T

0

kH ðn−1Þ :;tð Þk2L2 Ωð ÞþkvH
ðn−1Þ

vx
:;tð Þk2L2 Ωð Þ

� �
dt

(91)

Now, we integrate over 0;Tð Þ, we getZ T

0

kH ðnÞ :;τð Þk2L2 Ωð Þdtþ
Z T

0

kvH
ðnÞ

vx
:;tð Þk2L2 Ωð Þdt

≤ δ12L
2

Z T

0

kH ðn−1Þ :;tð Þk2L2 Ωð ÞþkvH
ðn−1Þ

vx
:;tð Þk2L2 Ωð Þ

� �
dt

(92)

δ12 ¼ δ11L2T

min 1;Tð Þ

We get then the desired inequality (80).

kH ðnÞk
L2ð0;T;H1 Ωð ÞÞ≤ δ12kH ðn−1Þk

Lð0;T;H 1 Ωð ÞÞ (93)

-

Using the convergence of series criteria we conclude that
P

∞

n¼1H
nð Þ converges if δ11L

2T

min 1;Tð Þ<1,

namely if L<
ffiffiffiffiffiffiffiffiffiffiffiffi
min 1;Tð Þ
δ11T

q
. Since H nð Þ x;tð Þ¼h nþ1ð Þ x;tð Þ−h nð Þ x;tð Þ, then the sequence h nð Þ	 


n∈N

given by h nð Þ x;tð Þ¼Pn−1
i¼0H

ið Þþh 0ð Þ x;tð Þ, i∈Nconverges to a function h∈L2 0;Tð Þ;H 1 0;1ð Þð Þ.
In order to show that this limit is the solution of problems (77)–(79), it is sufficient to
demonstrate that h verifies (64) and (72).
We have, from problems (74)–(76), that

R
�
h nð Þ;u

�
¼ u;IxG x;t;h n�1ð Þ;

vh n�1ð Þ

vx

� �� �
L2ðDÞ

(94)

Precisely

R
�
h nð Þ�h;u

�
þRðh;uÞ¼ u;IxG x;t;h n�1ð Þ;

vh n�1ð Þ

vx

� �
�IxG x;t;h;

vh

vx

� �� �
L2ðDÞ

þ u;IxG x;t;h;
vh

vx

� �� �
L2ðDÞ

(95)

using Equation (74), then (95) becomes

R
�
h nð Þ�h;u

�
¼−

cv
βþ1
t Ix h nð Þ�h

	 

;u

	 

L2ðDÞþ γ

v h nð Þ�h
	 


vx
;u

� �
L2ðDÞ

þ v

vt
η
v h nð Þ�h
	 


vx

� �
;u

� �
L2ðDÞ

þ
Z t

0

ξ t�zð ÞIx h nð Þ�h
	 


x;zð Þdz;u
� �

L2ðDÞ
(96)
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By integrating the parts on all terms on the LHS, and taking into consideration conditions on
v and w, (96) transforms into

R
�
h nð Þ�h;u

�
¼−

Cv
βþ1
t h nð Þ�h
	 


;Ixu
	 


L2ðDÞþ γ
v h nð Þ�h
	 


vx
;u

� �
L2ðDÞ

þ η
v h nð Þ�h
	 


vx
;
vu

vt

� �
L2ðDÞ

þ
Z t

0

ξ t�zð ÞIx h nð Þ�h
	 


x;zð Þdz;u
� �

L2ðDÞ

(97)

Applying Cauchy-Schwartz inequality yields

R
�
h nð Þ�h;u

�
≤δ13 kh nð Þ�hk

L2 0;T;H1 Ωð Þð Þ kukL2 Dð Þð þkvu
vt
kL2 Dð Þð

� �
(98)

where

δ13¼max c1þT
c0

2
;c6

� �
and from (95) we have the following estimate

u;IxG x;t;h n�1ð Þ;
vh n�1ð Þ

vx

� �
�IxG x;t;h;

vh

vx

� �� �
L2ðDTÞ

≤
Lffiffiffi
2

p kh nð Þ�hk
L2 0;T;H1 Ωð Þð Þð

kukL2 ðDð Þ (99)

Passing to the limit n → ∞ in (97), and taking into consideration (98)-(99), we obtain

Rðh;uÞ¼ u;IxG x;t;h;
vh

vx

� �� �
L2 Dð Þ

(100)

To conclude that problems (77)–(79) admit a weak solution, we prove that (64) holds. Since

limn→∞ kh nð Þ−hk
L2 0;T;H1 Ωð Þð Þð ¼0 then, we deduce that

R 1

0
hdx¼0 and vh

vx
1;tð Þ¼0.

Therefore, we have established this result:

Theorem 12. Suppose that conditions of Lemma (11) hold, and that L <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
min 1;Tð Þ
δ11T

q
, then the

problems (62)–(64) admit a weak solution in L2(0, T, H1(Ω)).

Now, we prove the uniqueness of problems (62)–(64).

Theorem 13. Under conditions of Lemma (11), the problems (62)–(64) admits unique
solutions.

Proof. Suppose that the problems (62)– (64) admit v1 and v2 as solutions in L2(0, T, H1(Ω)),
then H 5 v1 � v2 belongs to L

2(0, T, H1(Ω)) and verifies

LH ¼ Cv
βþ1
t H � v

vx
γ x; tð Þ vH

vx

� �
� v2

vxvt
η x; tð Þ vH

vx

� �
�
Z t

0

ξ t � zð ÞH x; zð Þdz ¼ Ψ x; tð Þ

(101)

‘1H ¼ H x; 0ð Þ ¼ 0; ‘2H ¼ Ht x; 0ð Þ ¼ 0; x∈Ω; (102)Z 1

0

H x; tð Þdx ¼ 0; Hx 1; tð Þ ¼ 0; t ∈ 0;Tð Þ; (103)

where Ψ x; tð Þ ¼ G x; t; v1;
vv1
vx

	 

−G x; t; v2;

vv2
vx

	 

.

AJMS
29,2

188



This will be done by establishing the same proof of Lemma 11; we obtain

kHk
L2ð0;T;H1 Ωð ÞÞ ≤KkHk

L2ð0;T;H1 Ωð ÞÞ (104)

Since K < 1, then from (80) we have ð1−KÞkHkL2ð0;T;H 1 Ωð ÞÞ ≤ 0, from which we deduce that
v1 5 v2 in L2 0;Tð Þ;H 1 Ωð Þ	 


. -
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