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Abstract

Purpose — This study describes the applicability of the a priori estimate method on a nonlocal nonlinear
fractional differential equation for which the weak solution’s existence and uniqueness are proved. The authors
divide the proof into two sections for the linear associated problem,; the authors derive the a priori bound and
demonstrate the operator range density that is generated. The authors solve the nonlinear problem by
introducing an iterative process depending on the preceding results.

Design/methodology/approach — The functional analysis method is the @ priori estimate method or energy
inequality method.

Findings — The results show the efficiency of a priori estimate method in the case of time-fractional order
differential equations with nonlocal conditions. Our results also illustrate the existence and uniqueness of the
continuous dependence of solutions on fractional order differential equations with nonlocal conditions.
Research limitations/implications — The authors’ work can be considered a contribution to the
development of the functional analysis method that is used to prove well-positioned problems with
fractional order.

Originality/value — The authors confirm that this work is original and has not been published elsewhere, nor
is it currently under consideration for publication elsewhere.

Keywords Existence and uniqueness, A priori estimate, Fractional derivatives and integrals, Integral
condition

Paper type Research paper

1. Introduction
Fractional order partial differential equations have become one of the most popular areas of
research in mathematical analysis. Their application has been utilized in various scientific
fields, such as optimal control theory, chemistry, physics, mathematics, biology, finance and
engineering [1-5].

Integro-differential equations are a combination of derivatives and integrals which are
appealing to both researchers and scientists for their applications in many areas [6-9].
Numerous mathematical formulations of physical phenomena include integro-differential
equations, which may arise in modelling biological fluid dynamics [10-15].

It is important to establish effective methods to solve fractional differential equations
(FDEs). Recently, a great deal of attention was dedicated to FDE solutions utilizing different
methods, including the Adomian decomposition method [16,17], the Laplace transform
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method [18], exponential differential operators [19], the F-expansion method [20], non-Nehari
manifold method [21]and the reproducing kernel space method [22,23], in the search for exact
or analytical solutions. The applicability of most techniques becomes difficult with the
presence of the integral condition. The energy inequality method is a useful tool for studying
nonlocal fractional and classical problems. Compared with other techniques, it has an
essential role in establishing the solution’s existence and uniqueness proof and depends on
density arguments and certain a priori bounds.

There have been few articles related to nonlinear fractional partial equations that
employ the energy inequality method [24]. Furthermore, for partial differential equations
with classical order, many results have utilized this method [25-28]. Motivated by the
previous results, the authors studied a nonlocal nonlinear time-fractional order problem.
Moreover, we demonstrate the solution’s uniqueness, existence and dependence on the
given data.

This article is outlined in the following way: in Section 2, we present the main problem.
The next section is focused on posing the associated linear problem and introducing some
required preliminaries and functional spaces. Then, in Section 4, we develop the energy
inequality method to demonstrate the linear problem’s strong solution’s uniqueness. In
addition, we prove the strong solution’s existence in Section 5. Moreover, we derive a priori
bound and demonstrate the generated operator range density in a Hilbert space. We solve the
nonlinear problem in Section 6 by utilizing the results achieved in Sections 4 and 5, and an
iteration process.

2. Statement of problem
In the region D = Q X [0, T, Q = (0,1), T < oo, we pose the nonlinear fractional equation

9 7% 9 v t
__Captl _ _ _
‘CU - al‘ v ax <Y(x? t) ax> axat (r’(x7 t) ax) /0 é(t Z)U(X7Z)d2

:f(x, L vﬁ) W)
ox
with0< g <1
Associated with initial condition
Lo =0v(x,0) = ¢(x), L= av(;;’ 0 =y(x), x€Q, @

and the boundary condition

1
/ b dr =0, o,(11) =0, te(0,7), 3
0

Such that the known functions y, 7 and ¢ verify Assumption 1, and data functions f, ¢ and y
belong to suitable function spaces as mentioned in Section 3.

In the Caputo definition for a function v, the fractional derivatives of order g + 1 with
0 < p < 1is defined as

B+ 1 ! 7T\
He) =5 / 0 i()t Exﬂs’)} o @

where I'(.) is the gamma function
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and the Riemann-Liouville integral of order 0 < < 1, which is given by

_ 1 Lo, 1)
74
DPv(x,t) = - B /0 7 dr. ©®)

3. Technical tools and associated linear problem
We define some function spaces and tools required to investigate the following linear problem
associated with problems (1)—(3).

Ly = Caf“v G (y(x, 1) av) g (n(x, 1) %) — /; E(t —2)v(x,2)dz = f(x,8) (6)

ox dax)  dxot
dv(x,0
=000 = o). tw="50_y( req o
1
/ o(x,)dx =0, v(1,0)=0, 1e(0,T), ®
0

First, we convert problems (1)—(3) into an equivalent operator form
Lv=7F=(f,ov) ©)

where the unbounded operator L = (L, 41, £2) with L: E — F'is defined in D(L) such that
{ veL*(D), 9 v,dv/dt, dv/dx, 0% /6x*, 9°v /9229t € L*(D)
D(L) =

! (10)
/ v(x,t)ydx =0, wv,(1,)=0,t€(0,7),
0

and v also verify the initial condition. Here E is Banach space containing elements having the
finite norm

dv 1
2 —1 0 2 2 2
I ol = D2 IS e+ 1 oy 1 el om0 1)

and F'is Hilbert space composed of functions normed with

2 & 112 2 : 2
IFlF = H“SLfHLZ(D) + H‘PHLZ(Q) + ||3xW||L2(Q)- 12)

Lemma 1. [29]Let S(f) a nonnegative absolute continuous function verifying the inequality
CrS(t) <ar1S(t) + eo(t), O<a<1, (13)

for almost all t € [0, T, where ¢y is a positive constant and co(f) is an integrable nonnegative
Sfunction on [0, T Then,

S(t) <S(0)E,(c12") + T(@) Eg o (1) D] (1), (14)

where

are Mittag-Leffler function.;.



Lemma 2. [29] On the interval [0, T, any absolute continuous function y(t) verifies the Solvability of
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S S 2y S (D), 0<p<l a  fractiona
Lemma 3. [30] For any ne N, we have 175
157l < (5) ol a9
where
o= [ ’ /. o e . dEs = / % (&.1)de.
Cauchy e-inequality [31]
lab | . —a +—b2 17)

which holds for arbitrary @ and b, and all € > 0.

4. A priori estimate and consequences

Assumption 1. For any (x,t) € D, we suppose that

1) aY((;;’ ! < ¢y, 07/5;;, ! <cs

Mel) o MED o, 19

0277(9;7 D <, Fn(x, )
ot dtdx

Co SY(L t) <c

C4Si’](x, t)765 <

<o, &(x, 1) <cwo

such that ¢t = 0, .. ., 10) are positive constants.
Theorem 4. Let Assumption 1 be fulfilled. Then, any function v € D(L) verify the following
estimate

[olle <C |l Lol (19)

where C > 0 constant independent of v.

Proof. We take the scalar product L?(DF) of equality (6) and the integro-differential

operator My = —2“,%‘;?, such that r € [0, T], we have
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The integration of the first three terms on the left-hand side (LHS) of Equation (20), taking into
consideration initial and boundary conditions (2)—(3), gives

—(caro, -2 _ (cap % 20 _o(cor(3.90),5,% @1)
) 2 ETAETY S ) 0t ) o,
a a ; ad
-2 = y(x,t)—v =% :—/ —yvldxdt—i—Z/ ymsx dxdt
dx dx 12(07) - 01 - 0x
22)

+/1 y(x,7)0%(x, 7)dx — /1 y(x,0)¢ (x)dx

& o mzav o\’ Lan(x,7) ,
_Z(M (n(x, 1) a) "dt)y ” 2/117(6_1‘) dxdt +/O TR (x,7)dx

0, 9 dv n /1617(%0) )
/maz dsat+2 [ F2N ddt+2 = ath  dxdt — [ s

Substituting (21)—(23) into (20) yields

v dv aw\* ! an(x,7)
Cap ov ) 2 _
2( i (”dt) Asxat)y ” +2/D,n(dt> dxdt—i—/o (y(x,r)+ o )v (x,7)dx
(\261) _ i a}' (9 2
2(f(xt) xat> +2(/§t 2)v(x,2)dz, Jxa )LZDr +/ (6t+a ) vedxdt

! an(x,0)\ andv. dy &
+/0 (y(x,O)Jr - )go(x)dx—Z - at\@d i — 2/ (aﬁm) St

24)

By applying inequality (16), we estimate the first and the last two terms on the right-hand side
(RHS) of (24); as such it follows that

o[ 152 arar < / () odndt + / 3.9 25)
RAFT : (3



t
2/ / g(t —Z)U(x,Z)dZ Sz%dxdtﬁclo'fz H UH?(D’) +1/ Jx d At (26)
b “ot LD T2 e
a}’ 627’] a}, 2 62’7 2 ,
_2/ <6x+6x6t> dxdt < 2/1{ (0_x> + <m> v dxdt—&-/r (Jx ) dxdt,

anav,, v\’ 1 [ (o
2| S, atd vt < ¢ / , <g) s+ | (&) (w at> dxdt. 28)

By Lemma 2, the first term on the LHS of (20) becomes

2(%” ( ‘Z)\‘;ﬁ) / g (st )dxdt 29)
L2(DF) v

Hence, by Formulas (25)—(29) and Assumption (1), we obtain

o\ 2 T oov

Caf[ x 2 2

/1( ¢ <~5x§> )dth+/0 H&(wt)”wg)dt‘*'||”(-aT)HL2(Q)

< 51{ | DI it + ol / 152 (Ol }
+52{ / ||v<.,t>\|?,2(g>dt}7

where
2
max(l,cl + ¢35+ E)
51 = . )
min(cy, ¢o + ¢5, 1)
5 e+t +cnT?
>~ min(cy, 6+ s, 1)
Now, since
a0’ )] i
Cap _ —1 1 2
d; msx dt =D'7Se= o) — (||| 30
N3G N = DI G0 ~ T S e 6O
then
~ 61) T 9 2
DS watnm |G Dt 109
d 2 ~ 2 flia o 2 g
< 8 H HL t+ | el + 1820 + ; l Jx&(-»t)”ug) t

+5z{ / || v(.,t)||iz(9)dt,}

(31)
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where

83 = max (51,%)

We need to drop the last term on the RHS of (31). Therefore, we use Gronwall’s lemma, which
yields

Sl [ 15Ot 10
(32)

< 54{/ 13 (O d+ Il @l eyt + 135wz /Ilm*x )Ili<g)df}7

where

54 =exXp (52 T)ég,
Now, by discarding the last two terms on the LHS of (32) then posing S(z) =
Jo 1% (., ||L9<Q dt,C¥ S () = Df_1\|%xg§||L2(g>,With S(0) = 0,in Lemma (1), we obtain

fla 2 —1-, 2 2 2
| 15 Ol <D I St oot | e} 69

where

8 =T(BE T’ 1 e
5 = D(B)Epp(crr )max( ’m)

Combining (32)—(33) yields

1~ OV
Dflllfdxgllizm /H B)lI72 )@t + 100, D) 20
34)
—p-1% 2 ~ 2 2 ~ 2
< {01 e+ [ 1SSt + el + 1Sl |
where
56 = maX(5455, 65),
From given inequality
DA S | 134 @)
we reduce inequality (34) as follows
roov
DGl + [ 15 COlades 1o
(36)

T
2 2 2
< 57{/0 I Sxf(wf)HLm)dtJr [ GDHLZ(Q) + HSXWHLZ(Q)}'



T?
o7 = 0 (1 +7F(1 +ﬁ)>

Since the RHS of estimate (36) is independent of 7, we can take the supremum on the LHS with
respect to 7 over [0, T]. Thus, we get the desired inequality (19). Theorem (4) proof is
complete. M

5. Existence of the linear problem solution
The current section’s aim is to prove the existence of the strong solution of problems (6)—(8).
It remains to demonstrate the density of the range R(L).

Proposition 5. [32] The operator L engendered by problems (1)—(3) has a closure.
Defining the operator equation solution
Lv=F=(f,¢,p),
as a strong solution of problems (6)—(8). The inequality (19) can be extended into
[ vle< || Lollr,  YoeD(L). 37

the inequality demonstrated above assures the strong solution uniqueness.
Corollary 6. The range of the operator Lis closed in F and R(L) = R(L) and I =1

Theorem 7. Let Theorem (4) conditions be verified. Then, for any F = (f,g,h) € F, the
problems (6)—(8) have a unique solution v such that v = [_fl]-' =L1F.

Proposition 8. Let Assumption (1) be fulfilled. If for a certain function g € LAQ), and every
v € D(L) verifying homogenous initial conditions, we have

(Lv:g)LZ(D) =0, (38)

then g vanishes almost everywhere in D are as follows:

Proof. Introducing a new function o(x, #) verifies conditions (2) and (3), and o, 6,36+, 3;0
and €96 € L*(D), then we pose

where
t 5 t N
i‘sta:/ o(x,s)ds, Sta:/ /a(x,z)dzds.
0 0 0

Equation (38) then becomes

9 do 62 do !
cabtlex2 . ~2 [ I = - -2)%%
<3; Slo—o (y(x,l‘)dt (ax)) Yy <f7(x,t)mst (ax>) /Of(t z)dta(x,z)dz,g>l‘2(m

=0.
(39)
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AJMS Now, we consider the function
29,2 g(xn,t)=-3,%%. (40)

Obviously, the function g included in L%D). Equations (39)—(40) lead to
(e 330) (R (52)). 3
180 1O o) \ax \PV gy ) ) 12(0)

62 ~2 do ~ X X 2 (41)
Jr(w <r](x,l‘)dt (&))7 NN 5) (/ §(t—-2)3 )dzv\sf\sx‘;)[;(p)

=0

Note that the function ¢ verifies conditions (2)—(3), then we have

X

d 5 (00 ~2 1 3}’ ~2
— H3I; | — RPN =_ R R d dt
<ax<7’(x7 )] (ax)> X sp)y(m 2/, sta 2/ X 0 X
ay(xvt) ~2 X X
+( ox (Asta),\st\sxa o
62 2 do 2 (92 ~2 671 2
— N 33 = 370,33, 36,3
(6x6t (n(x )3 (‘9%))7 ~ SXG)LZ(D) (dxat o 6)1,2 (at "o SZ‘G)Lzut))

2
—i—/a—Z(Stha)dedt—k/n(fwa)zdxdt
Dax D

S+1ox o~ 2 _ Cafox o~
( AR NN a)LZ(D) ( 33,30, \sx«sta) o) 42

(43)

(44)

Insertion of Equations (42)—(44) into (41), yields

1 2 a
Cap ~2 _ Y (2
—2(°9/3:310,3,3,0) 20 )+/0 y(ms[a) dxf/Dath a) dxdt
az 3’7 a)/(x t) ~2
w xz( o) dxdi — 2/( o) 2dxdt - 2(<a Lo )\t ,\sf‘sx(;)m -

a t
2( a’%f «sta) —2( / f(t—z)i”sfa(mz)dz,%ﬁsia)
L2(D) 0 12(D)

According to Lemma 1, we bound the first term on the LHS of (45); we have

2(°93.0, Asx\?ta) Ca” I Asx%mHiz(D), (46)

Also, we bound the last three terms on the RHS of (45) utilizing inequality 17, and we then
get



Gy(x,t) 627’] 2 2 2 112 ~ &~ 2 SOlvabﬂity Of
2(<T+m Si0 3.0 sz)s 2esta) ISl + 1330w, @D nonlinear
/s A , fractional
2 = (370),3 < 2¢4 |30 ||7: |07 48 i
(at( ‘t")v WT)LZ(D)— Al gto-”LZ(D)_'_ZCiH sz“’HLZ(z)) (48) equation
t
o~ 1 o~ 2

é(tfz);vfa(x,z)dzﬁsi&a) < e T2 %117+ 11 3:3001% s (49)

(/ 0 L2(D) ) HP) 181

The insertion of estimates (46)—(48) in Equation (45) gives

1 2 2
D300 o + / (370) dx<ay ( / (3%o) drat+ \|sxsta\|iz<l)>) (50)
0 D
with
2
max (cz+2(c§ +c3)+ei T35, 2010 +%)

min(1, ¢p) 1)

Oy =

Eliminating the first term on the LHS of (50), using Lemma 2, with

/ / o) dd 52
observe that S(0) =0, then we get

S(z)<T exp(T5s)[|3:3:0] 7 ) (53)

Similarly, by discarding the second integral on the LHS of (50) and applying (53), we obtain
D1 3,R06 72y <8(T exp(T85) +1) | 3:300 ]2 (54)

by Lemma 2, with

T 1
S()= / / (3,30) dd
0 0

and
€o0S(r) =D 13,3162 S(0) =0,
it follows that
RFA o <S(0)E; (8(T exp(T8s) +1)7") +T(B)Ey 5 (85( T exp(T6s) +1)7") D7 (0)
f— 07

(55)
for any 7 €0, 7. Hence inequality (55) shows that g = 0 ae in D. Continuing Theorem 7 proof,
we assume that for a certain function G=(g,g0,g1)€R(L)", we have
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29,2 (L"U:g)LZ(D) +(llyng)LZ(Q)+(ZZU7g1)L2(Q):0a (56)
then we should show that gy = 0, g7 = 0. Putting v € D(L), verifying homogenous initial
conditions into (56), yields

(Eﬂ,g)sz) :07 Yve D(L)a (57)

182

By applying Proposition (8) to (57), we see that g = 0. Consequently, (56) becomes
(llvagO)LZ(g)"'(127}7g1)L2(g):0 VUED(L)7 (58)

Since A and kv are independent and their ranges /4 and , are everywhere dense in L?(Q), we
conclude that gy = g; = 0, this complete the proof of Theorem 7. H

6. The study of the nonlinear problem
This section is devoted to solving the main problems (1)—(3). Consider now the auxiliary
problem with the homogenous equation:

_cgny_ 9 AR v _/’ _ -
LV =¢]""V P y(x, 1) P Fyen n(x,t) P ch(t 2)V(x,2)dz=0 (59)

IV (x,0)

OV =V0=0, &V=""o

—0, xeQ, (60)
1

/ Vie,de =0, Vi(1,6)=0, te(0,T), 61)
0

If ¥V and v are solutions of problems (8)-(6),(1)-(3), respectively, then z = v — V satisfies
] oh 0 oh !
_ Coptly _ _
Lh=C9"h— o (y(x, 2 ax) (n(x, ! ax) IR G

 9xot

_ G<x, : h,%) 6

ox

oh

bl =nh(x,0) =0, bh= r (x,00)=0, x€Q, 63)

1
/ hx, B)dx =0, (1,6)=0, te(0,T), 64)

0

such that the function G(x, t,h, g—’z) =f (x, tLh+ V,‘;—ﬁJr%), verifies the following
condition

|G(x, t,w1,31) — G(x,t, w2, ¥2)| < L(Jwy — we| + [y1 —2|) forall (x,£)eD.  (65)

Theorem 7 shows that the solution of problems (6)—(8) is unique and depends continuously on
the initial data. It remains to establish a similar proof for problems (62)—(64). We introduce the
space
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CcD) = {weC (D) such that, % axEC(D)} (66) nonlinear
o1 , o -~ fractional
Suppose that 7 and ueC (D) verify hornogenous initial and boundary conditions equation
hx, T) = Oh(xO—OfO xta’x—OForueC( ), we have
d oh
_ s+l
(LR, 352y = (O oy Ss0) ) = (6_x (y(x’ ! 6_x> ’ Sw) 12(0) =5
67
_(6_2< (x z‘)a—h> ”su) —(/}(t—z)h(xz)a’z“xu)
dxat U ox)’ o 12(D) 0 ’ o L%(D)
Computation of all terms of Equation (67), using conditions on /2 and #%, gives
(COFh, San) o gy = = (CH IS u) 1y, (68)

ah) ~ ) ( oh >

S (69)

<6x( 9 2(D) ax’ [2(D)

9 o\ d [ oh

(i () )., = G 05) )., &
t ¢

- (/ E(t —2)h(x,2)dz, qu) = </ E(t — 2)3,h(x,2)dz, u) (71)
0 [2(D) 0 L2(D)

Insertion of (68)—(71) into (67) yields
R(hyu) = (u ,JxG)La(D) (72)
such that

oh a [ oh
Cap+l on 9
R(h,u) = ( RN ”)L2<D) + (y ox’ u)LZ(D) * (51‘ (77 ax>7u>L2(D)

+ (/t E(t —2)3,h(x,2)dz, u) (73)
0 ()

Definition 9. A function h € L0, T, H\(Q)) is considered as the problems (62)—(64) weak
solution if it satisfies (64) and (72) holds.

Constructing an iteration sequence as follows: let 2(0) = 0, and let defining the sequence
(h™), € N as follows: if 7"~V is given, then for # € N solve the following problem:

a ([ onm 0> [ oht
Cap+lpm) _ Y _
Lh="0"H dx <}/ ox ) 6x6t< > / i %2)dz

(n—1)
:G< x, ¢, WY, on ) (74)

0x
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29,2 LR =R (x,0) =0, LAY = 5 (2,00 =0, x€Q, (75)

1
/ W (e, dx =0, KP(1LH) =0, te(0,T), 76)
0

184 Theorem 10. For each fixed n, assume that the solution of problems (14)—76) K" (x, 1) is
unique. If we put H(x, 1) = D, 1) — h®x, 1), then we obtain

a [ 0H™ 0> ([ 9H®™ !
n) _ Captlprn) _ _ _ _ (n) d:
LH' T H! o (y P ) ey <17 I ) /o E(t —2)H" (x,2)dz

=9rD(g 1) 7
()
GH® — HO (5,0 =0, £,H" — ‘”{TS‘O) ~0, reQ @9)
1
/ HO(x,6)dx =0, HY(1,8)=0, te(0,7T), @9)
0

with

(n-1) _ (n) _ n-1)
P (1) G(x, th ox ) G< x, 2, bl —ax )

Lemma 11. Under Assumptions (1), and supposing that the condition (65) holds, then for the
linearized problems (77)—(79), the following estimate holds

[eag ||L2(o TH(@ )<K||Hn g ||L2(0,T.H1(Q)) (80)

where K > 0 is constant given by

K =exp (6107) (1 +T(B)Ep(8g exp (510T)") 1”(1T-|li ﬂ))

Proof. We take the scalar product in LAD"), 7 € [0, T] of (77) and the integro-differential
operator MH™ = —J2H™, we get

(n) (n)
(Ca”“H ) o2 (%) -
ot ) 2om ox ox ot ) 2r)
82 (x t) aH(n) (ngaH(n)
axat "0 ) T )

aH n
- 2( / E(t —2)HY (x,2)dz, —*—— )
0 o ) pawry

:z(w V(x,b), (‘iaH ) . @81)
% /)




Integrations by parts all terms of (81), by using conditions (78)—(79), proceeding as in the
establishment of Theorem 4, yields

- Hn n n—
DR e + (@ ) | O < [ 88,

5 ¢ oH"

i A 82
+<2+264)/0 [RR )

+E+d) +aratat?) [ IH g
0

On the other hand, applying to Equation (77) the operator J,, and taking into
consideration condition (79), multiplying the resulting equation with %ﬁ” and integrating
over D', we get

aH ) dH ™ 9 OH"™N 9H™
C /Hl(w 7n)
/ 0N H = —dndl ~ /Ty(x,t)< o ) dxdt — /D at("( t)—ax) ot

(n) (n)
/ / E(t—2) 3 H (x, )aH deddt = / ;Nsx‘P("“D(x,t)aH dvdt

83)
After integration by parts of all the terms of (83) and taking into consideration conditions (78),

(79) and using inequality (17), we have

- © OH" 1 H"
/Tca?HH( ) ( )dxdt—i—co/o I P (.,t)||Lz(Q)dt+EC4|| Fye (D220

1/ . (84)
<3 /0 PV 2(ydt+ (10 T2 +1) /0 [ H (1) 2t

Combination of inequalities (83)—(84) gives

n

oH™ oH'
1)z ﬂ)dH‘ C4H ( 7)”22(9)

ot ||L)(Q

n i n— o C2 i o~ 6H<n)
+(C()+Cs) HH( )(7T)|‘L2(Q)SA H lP( 1)||L2(Q)dt+ <§+ﬁ)/0 ||m5x7(,t)||L2(Q)dt

DS / ST HWHY dydt +c,
Jo

H(2(E+E) + et e +enT?+1) / 0|2yt

Eliminating the last term on the RHS of (85), by using Gronwall’s lemma, it comes
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A aH(n) T
JMS D/}_l‘?s HLZ(Q)—i—/ af+lH(ﬂ)H<n)dxdt+(C() +C5) HH(n)(7T)||LZ(Q)

29,2 LA Y
30l T oo / 1 86)
186 < exp (80 {/ || b ||L dt+59/ ||“sr )Hi(ﬂ)dt}
where 5 C2

%=5% 3¢,

S10=2 (CS—FCg) “+Co+Cg +610T2+1

To discard the last integral on the RHS of inequality (86), we drop the three first elements
then use the Gronwall’s lemma, it follows

! X aH(n) — n—
/O IS @@t ST(B)Ey s (Soexp(810 7)) exp(&a) D) [0V [Figy  (87)

On the other hand, via the condition (65), we get
T . T oOH ™ 1)
[ gaser [ (e oo+ 1 a6
0 0 X

Combining (86)—(88) and by using (35), we get

Ly OH? g OH" 9H"
L A T /G’MH dxdl‘+/ 1= GOt + 1 =5 () 240

at

5 H(n 1)
+ HH<">(.,T)||iz(9)55n[,2/0 (”H(n 1)(.,t)||iz +|| (. t)”iZ(Q))dt
(89)
where
Sn=exp(81T) ( 1+T(p)Epp(Soexp(s T)tf‘)L
11 =€XPLo10 5.5 (89€xp(S19 FAip)
After discarding the first two terms on the LHS of inequality (89), we get
aH n n aH?’l
R A L A T
(90)

Hnl

< sul? / (HH“‘”(J)H@ ki <t>||iz<g))dt

Here, the RHS doesn’t depend on 7 so, we can replace the LHS by upper bounds with respect
to 7, we obtain



OH™ OH™
|| Pl D2t +IHH (7) [0 T l=5C Oz
©1)
2 n— 1 2 aHn 2 2
< oul HH (D2 + (D)2 ) dt
Now, we integrate over (0,7"), we get
T aH )
| i o [ QST
92
2 ’ (n-1) 2 H(n 2 2 ( )
< oul? [ (IH Ol +HI g )
SnLAT
“ " min(1,7)
We get then the desired inequality (80).
|17 ||L7(0TH1 )<512||H HL(OA,T,Hl(Q)) ©3)

Using the convergence of series criteria we conclude that > | H® converges if m}é <1,

namely if L < |/™%D. Since H" (x,t) =h0+D (x,) = h" (x,t), then the sequence (A" ))neN

givenby 2" (x, 1) = Z?ZOIH +7O (x,t),i€ N converges toa function ke L?((0, T),H'(0,1)).
In order to show that this limit is the solution of problems (77)—(79), it is sufficient to
demonstrate that % verifies (64) and (72).

We have, from problems (74)—(76), that

(n—1)
R(h<"> u) - (usc (x £, 10 ah—) ) 94)
ox 12()

Precisely

(n—1)
R — ) +R(bw) = (10,36 (2,00 P 2) 56 wthg o
6.96 LZ(D)

+ (u,SxG (x t,h ah))
"0x 12(D)

using Equation (74), then (95) becomes

(n) _
R(h(”)—h,u) (a/f+1~ ( h) ) )+<y6(h h>,u> 2
L2(D)

+(&<n <hax ) > (/ Et—2)3 h)(x,z)dzm)LZ(D)

(96)

(95)
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By integrating the parts on all terms on the LHS, and taking into consideration conditions on
v and w, (96) transforms into

(h —h
R(H" =) == (O (1" *h)’s’f”)wuﬁ (y ( ox )’u) 12(0)

©7)
e () ) #( [ de-an 0 -z
0x at Lz LQ(D)
Applying Cauchy-Schwartz inequality yields
R(B =) 0 16 = Bl iy (o 1 5l ) 9
where
813 =max (cl + T%O,cs)
and from (95) we have the following estimate
anr-1 oh
R§ hY ) =3,
(w6 (mee 025 ) -6 wtng )><> VAl e )
Il el 2 ) ©9)

Passing to the limit # — oo in (97), and taking into consideration (98)-(99), we obtain

R(h,u)= (u,%xG <x7t,h,%>) (100)
9%/ ) 12y

To conclude that problems (77)—(79) admit a weak solution, we prove that (64) holds. Since
iy || B9 = D1|| 2((0ra (@ )70then we deduce that fo hdx=0and 2(1,t) =0.
Therefore, we have established this result:

Theorem 12. Suppose that conditions of Lemma (11) hold, and that L < 4 /m‘; 1TT  then the
problems (62)—64) admit a weak solution in L0, T, H\(Q)).

Now, we prove the uniqueness of problems (62)-(64).

Theorem 13. Under conditions of Lemma (11), the problems (62)—(64) admits unique
solutions.

Proof. Suppose that the problems (62)— (64) admit v; and v, as solutions in L4(0, 7, H*(S),
then H = v; — v, belongs to LX0, T, HY(€)) and verifies

CH = o H - (y(x, ) %) v (n(x, ) %) _ / ; E(t — 2)H(x, 2)dz = W(x, 1)

ax 0x0t
(101)
OH = H(x,0) =0, 6H = H(x,0)=0, reQ, (102)
1
[ Hnar=0, H@H=0. te@.), (103)
0

where ¥(x,t) = G(x, 1,01, %) — G(x, 1,05, %2).



This will be done by establishing the same proof of Lemma 11; we obtain

HH”LZ(O,T.Hl @) SKHH”LZ(O,T,Hl @) (104)

Since K <1, then from (80) we have (1K) ||H || ;29,7 171(q)) <0, from which we deduce that
v =0, inL*((0,7),H'(Q)). A
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