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Abstract

Purpose - In this study, the authors introduce a solvability of special type of Langevin differential equations
(LDEs) in virtue of geometric function theory. The analytic solutions of the LDEs are considered by utilizing the
Caratheodory functions joining the subordination concept. A class of Caratheodory functions involving special
functions gives the upper bound solution.

Design/methodology/approach — The methodology is based on the geometric function theory.
Findings — The authors present a new analytic function for a class of complex LDEs.

Originality/value — The authors introduced a new class of complex differential equation, presented a new
technique to indicate the analytic solution and used some special functions.

Keywords Subordination and superordination, Analytic function, Univalent function, Open unit disk,
Majorization
Paper type Research paper

1. Introduction

Langevin differential equation (LDE) is one of the most important differential equation in
mathematical sciences, including fluid, Brownian motion, thermal and wavelet studies. It
investigated wildly in view of various types of geometric, stochastic and analysis studies (see
for example references [1-5]). An arbitrary model of LDEs is studied in [6-8] including
analytic solutions. The existence and stability of a class of LDEs with two Hilfer-
Katugampola fractional derivatives is investigated in [9]. Moreover, the existence of LDE is
illustrated suggesting different types of geometry [10, 11].

LDEs of a complex variable are applied to simulate special types of polymer and
nanomaterials, including the conduct of the polymers [12]. Based on this priority of LDEs of a
complex variable, we aim to study this class analytically. The technique of the geometric
function theory is used recently by Ibrahim and Baleanu [13] to determine the fractal solution.
They utilized different notions such as the subordination and super-ordination, majorization,
Caratheodory functions, convex functions and special functions (see [14-16)).

Here, we discuss the upper bound solution of LDEs of a complex variable in feature of
geometric function theory. We illustrated a list of conditions that implies a univalent result in
U (the unit disk). The mechanism of our proof is considered utilizing the Caratheodory
functions joining the subordination concept. A class of Caratheodory functions involving
special functions gives the upper bound solution.
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2. Complex Langevin differential equations
The LDE of a complex variable can be realized by the next formula [17].

1'@) +ay' () =F(x(z)), z€C, 21)

where a > 0 indicates the oscillation coefficient, and F is the noise factor. To study the
geometric properties of Eq.2.1), we consider zeu ={z€C: |z| <1}, and y@) is a
normalized function satisfying the expansion y(z) =z + Y . ,x,2". Rearrange Eqn (2.1)
with complex coefficient, then the homogeneous formula is given by

() (1), e

where ¢(z) is analytic function in U. It is clear that W(0) = 1, for all ¢(z) € U (see the following
example).

Example 2.1. Let data given by
1) x@) =2/(1 — 2),cz) = 2, then we have W) = 1 + z + 32° + 52° + 7z* + 92° + O(®);
@ x@) =2z/(1—2) clz) = 2, then we get W(2) = 1 4 22 + 62° + 122° 4 18" + 242° + O(%);

©B) ¢) =1 —zand y(z) = z/(1 — 2), then we obtain ¥(z) = 1 + 3z + 32* + 32° + 32*
+32° + 0%

@ ¢ =61 and y(z) = z/(1 — z), then we obtain W(z) = 1 + 3z + 52° + 72> + 92" + 112°
+ 0@).

We denote by P(A, B), the class of functions
1+Awk)  1+Az
P = 14 Bw(z) =1 + Bz
where w satisfies w(0) = 0 and |w(z)| < 1;and -1 <B<A <1,then P(4,B) C P(ﬁ) isthe
Janowski class. Next, we define a class of analytic functions.
Definition 2.2. The function y(z) =z + > _,2 ,,2", z€ U is in M(p) if and only if

2,11 /
w-so(E) ()

(zeu, p(0) =1, p'(0) >1,ceu, ¢(z) €V).

Now consider starlike function as follows:

=t 1-Z4E_ 2
Pl = 1= T2 T2 0

and a convex function
z 2 2 Z
QE(Z)~—1/pe(Z) = 1+§+€+ﬂ+m+



(see[18]-P415). We note here that the coefficients are approximating to the Bernoulli numbers
such that

e —1\ 1
%( - )zé, 0<¢£<1.793. ...

Hence, R (":252‘ 1) >1/p,(-1) =1

Our design is generated by the Caratheodory functions, which are operated in [19]. In this
situation, we establish the necessary conditions of the joining bounds of ¥(z) consuming
a Caratheodory function. Note that, when ¢(z) is a constant, the class M.(p) reduces to the
well-known class in [20].

2.1 Geometric properties
Some geometric properties are illustrated as follows:

Proposition 2.3. Consider the functional Y(2) such that p(z) = zy(z)' /y(z). Then y() is
starlike in U, whenever ¢(z) =z, N(z) > 0 and

-V )MN(@) <) < VE)(NR().
Proof. Suppose the functional

P(2) = ¢lz) (22;{(2()2 )) + (Zj(i§)>

(2) (ZX(Z) ) =2(20/(2)) + 2" (2) — 2(2)

yields that
W(2) = 2(2'(2) +2°(2) + (L = 2)p(2), z€U.

By [18]}-Example 2.4m, we have A(z) = z, Blz) = z, Cz) = 1 — z and D(z) = 0, where the
assumptions imply that 9 (z) > 0 we get the conclusion

N[A(2)zp' (2) + B(2)p*(2) + C(2)p(2) + D(2)]

= Ne(zp'(2) +2b%(2) + (1 - 2)p(2)]

> 0=NR(p(z)) > 0.
Corresponding to the above conclusion, we indicate that y(z) is starlike. O

Proposition 2.3 can be generated for i (¢(z)) > 0 as follows:

Proposition 2.4. Consider the functional W) such that p(z) = zy(2)' /x(z). Then y@) is
starlike in U, whenever N(¢(z)) > 0 and

Se@)]* < 3(R(s@))"

Proposition 2.5. (Integral existence result)
Consider the functional V() = p2).qR), where p@2) = zy2) Iy (2) and

o) =< (1+2).
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If ¢(0) = 1 and the subordination

! 1 2
(a1+az)+2q(2) +Z>+1 ‘

o <wra(15) ¢ 5

holds such that a; + as = f1 + P > 0, then the integral

1/(B1)
+ a1 +an
V= (Bt [ eveqac)
satisfies the following conclusion

(V(Z)E/\, V(z)/2 %0, %(ﬂfvé()) ZZ(S) + ﬁz) > 0).

Proof. Consider ¥(z) with ¢(z) = 1, then a computation implies that

2)/(2)) ( Z){”(Z))

¥Y(z) = 1+ .

@=(Z3) (%5

Since, p(0) = 1 and ¢(0) = 1 with ¥P(z) = p)qz) # 0 for some z, € U. Then in view of
[18]-Theorem 2.5¢, we have the desired conclusion. O

Proposition 2.6. Consider the functional ¥(z) = p2).q(), where p) = zy (@) Iy(z) and

o= (1+ %), q0) =1

If one of the following facts is indicated
) 97‘(“1 <2>) $5>0

q(z)
@ | (Zg(zf n 5) | <VIT25, 6> 0
© [Z

then the integral

6 Z
Wia)= (25*11)(2) /0 55—1q(§)d§)
satisfies the conclusion

(W(z) enW()/z#0,0 (Zuvzliz) L@ 1) > o) .

Proof. A computation implies that




Since p(0) = 1 and ¢(0) = 1 with P) = p)q) # 0 for some z, € U. Then in view of
[18]-Corollary 2.5c.1, we get the desired conclusion. O

Next example shows the integral existence result of the convex Koebe function z/(1 — z). We
confirm that the integral formula is also convex because it is majorized by z/(1 — 2).

Example 2.7. Let y(z) = z/(1 — z) and ¢(z) = 1, then we have pz) = 1/(1 — z) and

0= (1)

14z
1z
=142 422 + 2" +22° + 0(2°).

Thus, we obtain

2q'(2)

q(z)

Then by letting § = 1, we conclude that the integral existence result satisfies

]
<5+1©5>Q315<m@y<a

o ‘ -1
W)= g | & aaz

-0 (129

=(z-1)(z+2log(1-2))
=z-2/3-2"/6—-2"/10-2°/15+ O(") €A,

which achieves all indicated facts in Proposition 2.5. Since the coefficient bounds of W(z) are
motorized by the coefficient bounds of y(z), then we conclude that W(z) is convex. Moreover,
the iteration of the integral existence theorem of a convex function (y(z)) remains convex in the
open unit disk (W(W. . .(W(z)))). As a conclusion, this example provides a chain of analytic
convex solutions of LDEs in u. Next remark shows the important relation of W(z) with the
function of nephroid plane curve. This leads to use W{z) as an official formula in a nephroid
plane curve instead of using parametric functions. Moreover, Proposition 2.5 implies a
positive real solution of LDEs; for example, by assuming f; = 1, f» = 0, we get

R (ZVM;’(L? + Zgéf))) > 0 because Wi(z) and ¢(z) are starlike in U satisfying i (%@) > 0 and

4

N (Zgézf) > 0. As a comparison with recent methods, our method provides in spite of an

analytic solution, the strategy of the existing integral formula involving the analytic solution
is still analytic in U. Note that this solution is univalent in U. All recent techniques provided an
analytic solution without geometric presentations. Our method describes the analytic
solution and its integration geometrically.

Remark 2.8. Itis well known that the function () = 1 + z — 2°/3 (see Figure 1) translates
the unit circle onto a 2-cusped curve tilled nephroid satisfying ((w—1)* + v% —4/9)° —
4/3v* = 0. The functional w(z):=1 + W(z) can be expanded by (see Figure 2)
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Figure 1.
The plot of w(z)
1,6 .5 .4 3 \ N
Re[ao (22°-32%-s7 r-loz +302#30)J (where z= x+i_ [m(l(_z 5 35 s 103 ‘302*30)) (e T e
~—~—— 30
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Figure 2.

The plot of w(z)




w(z) = w(z) —2' /6 —2° /10 -2 /15 + O(2"). Langevin
differential
We shall use wi(z) to define some interesting classes of analytic functions. equations

3. Computations
This section deals with some computational outcomes utilizing a sigmoid function. 89
Note that a sigmoid function is bounded analytic in convex complex domain (see Figure 3).

Theorem 3.1. Suppose that y € A achieves the inequality

% 2
1+u('z @e) < k=012
[P(2)]

where ¥(z) = ¢(2) (22((;()2)) + (Zf(g)), z€U. Then
z
‘P(Z) <pe(z) = mv zZeU
when p > max up.
Re( 20" ](wherez=x+ly) Im[ 2o ](wherez:xu‘y)
o +1f o7 +1}
# | :

— -
b n
- s \

e
()
o

Figure 3.

o The plot of sigmoid

function s(z) = #,
£

where its max is a o

and its min is at 1 %
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(1) maxy, = max{?—g(e _qy, Bl ))} ~1.1628.

(72(e - 2))

2 maxp

_ —-35 35
- max{(72(10g(€ —1)—1)) (72log(e — 1))}

_ max 35¢ 35
B 72" 72(e — 2)

~1.321.

Proof. Case [A] assume that £ = 0=1+ u(z2¥'(2)) < -2

Formulate a function X}, : U— C by the structure

1/z 2 2
X @) =1+=- (2 72+—1200+...),
where
-1
Cl+e¢

E—é—i- 2 (7))  (312) (691z")
2 721200 282240 ' 6531840 1756339200

+ O(2") + constant.

It is clear that X,,(z) is an analytic solution of

, 2
1 Jr,u(ZX”(Z)) = [ Z€U 3.1
Consider the functional 11(z):=u (ZX;, (z)) = +e_z -1=24 —i» Which is starlike in U [19].

This implies that for &(z):=11(z) + 1, we have

(8] (5o

Consequently, Miller-Mocanu Lemma [18] indicates that

1+u(z¥(2) <1 +y(zX;l(z)) =¥(2) < X,(2).

To end this organization, we aim to show that X,(z) < p,z). Obviously, X,(z) increases in
(=1, 1) for some u that is fulfilling



< -1+ 62_—61 + log(2) 4 log(e — 1) — log(3e — 1))

1+
U

~1 Jrﬁ

H
<X.(-1)<X,(1)

1+e) -1 (I+e)
~1 2tanh

o) PR S,/
~1 1.4306
U

Since the function p,(z) fulfills the relation

o= 17 <Ripu o) w14 Y P <o),

n=1

then consequently, we arrive at the inequality

(17 <X,(-1) <X, (1) <efe ~ 1)

whenever p satisfies

_ 35 -
U>max _max{ﬁ(e—l), ))}~1.1628.

Consequently, we obtain

z
X,(2)< m:>‘I’(z)< T

Case [B]: consume the case k = 1=1+p (Z\LP(IS)) <7 fﬁ-

Formulate a function Y, : U — C by the equation

1/z 2 2
Y,,(z):exp<; <é_ﬁ+%+'“>)'

Clearly, we have a solution Y,(2) (Y,(0) = 1) of the differential equation

zY! (2) 2
u _
1+”<Yﬂ(z)> = 11w ZEU.

(32)

Consider the starlike function ®(z) = 2/(1 4 ¢%) — 1 then the functional (z) = &(z) +1

implies N (ngég)) =N (Zg (/Z(‘)Z)) > 0. Again Miller-Mocanu Lemma gives
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29,1 1 +u(szf(§)) <l+u (ZY“(Z)) =)<V, (2).

Proceeding, we have
(e—1)"'<Y,(-1)<Y,(1)<e(e—1)"

92 if y when
U > max j;
_ =35 35
'_HMX{UQO%de—l)—1»’02bg@-n)}
~1.1.

This implies

z z
< <=
Vo< =)<

zeu.

Case [C]: assume that k = 2=1 + u (2;2'/8) < fe —
The function

D()* 1,1 §,§+i+ B
W=\t o))

is a solution for the differential equation
zD (z) 2
1+ X = . 3.3
”(x@) T+e 63

As a conclusion, Miller-Mocanu Lemma yields

z¥'(z) 2D, (2) -
1+M(T2(2)><1+/¢<%> ¥(2)<Dy(2).

Accordingly, we have
(=17 <D(-1)<D,(1) <ele 1)~

if u, recognizes the upper and lower bounds

p >max gy
= max{@ _® }
72" T2(e —2)
~1.321
This indicates the relation
D)< —2—=W(z)< 2~ zeu



Theorem 3.1 can be extended to functions in P. We omit the proof. Langevin

Theorem 3.2. Let p € P achieving the inequality differential
2(2) 9 equations
7] < , k=0,1,2, u>1.321.
p(2)] 1+e=
Then 93

PE) <p@) = = zeU.

We deal with the function g (z) = ©=, which is convex univalent.

Theorem 3.3. Consider the hypotheses of Theorem 3.1. Then

¥(2) <eo(2).
when v > Max vy.
B 35 (35¢)\ _
(1) maxuv) = max{m7 W} ~1.321
35 —35
@ e mes{ e DT

(35(e—1) 35
(72(e —2)) T2(c —1)

(3) max v, = max{ } ~1.162.

Proof. Clearly, we have (¢e—1)/e <M (0.(2)) <e—1. Consequently, we obtain (¢ — 1)/
e < X,(—1) £ X,(1) < e — 1 whenever v satisfies

D 2> max vy
= max vy, = max __% %
B 0 (72(e—2)) 72
~1.321.

This implies the relation
-1 -1
< <
X, (@)= =<

In the same manner, we get
v 2>2maxuv;

B 35 -35
- max{wz log(e — 1)) (72(log(e — 1) - 1>>}
~1.12



AJMS Consequently, we obtain
29,1 é—1 -1
z = .

Finally, we have

D > Mmax vy
94 @1 3
N (72(e — 2))" 72(e — 1)
~1.162.
This implies that the result
e—1 e —1
D, ¥
)< ()<

O
Theorem 3.3 can be generalized by utilizing p € P. The proof is similar to the above proof.

Theorem 3.4. Suppose that p € P satisfies

Iu(ZP (Z)> -2 E=0,1,2, u>1.321.

b)) 1+e*

Then

p(2) <g.(2) = P zZEU.

Next result indicates the upper bound:

_1+Az

J(2) 7@,(—1§B<AS1),

(bi-linear transformation) which is starlike function with positive real part.
Theorem 3.5. Consider one of the following inequalities
(1) 1+£4(2Y(2))<vz+ 1,£>max{ly, {1}, where

0= 2(0.22599B + 0.22599)
0 — (A — B) )

B+1#0, A — B#0;

and

2((B — 1)(log(2) ~ 1))
(A-B)

0= ,B—1#0, A— B#0.

@2 1+ Z(z %) <vz+1,¢>max{ly, (3}, where

., 21+ V(2) +1og(2) —log(1+/(2))))

2zn — ilog (%) 7




(B+1¢0,A+1¢0, 10g<i—ﬂ) +27mz'760>

and

2iflog(2) ~1)) . (A-1\ .
N ;1 2 A%1,B#1;
’ 27Tn—i10g(‘;%)’ og B_1 +2iin+0,A#1,B+#1;

3 1+ é(z ly;(z)) <vz+ 1,£>max{ly, s}, where

¥ (z)
_ 2(0.225987 A + 0.225987) ;
4= A—B) ,B+1+#0, A+B;
_2((A —1)(log(2) — 1))
ls = A-B) , B—1#£0A+#B.

Then ¥(z)< 4%, (-1<B < A<1).
Proof. Case[AlLetk=0=1+/¢(z¥(2))<vz+1L

Define a function F; : U — C admitting the structure
2
Fiz) = ”Z(*/Z“ —log(1+Vz+1 ) —1+10g(2)).

It is clear that F(z) is analytic in U satisfying F,(0) = 1, and it is a solution of the differential
equation

1+£(zF,(2)) = Vz+1, zeu. (3.4

Therefore, this yields 11(z):=¢ (2F}(2)) = vz + 1 —1is starlike in U. So in view of Miller-
Mocanu Lemma, we get

1+u(z¥'(2)) <1+ £2F,(2) =¥ (2)< F(2).

To end this argument, we must show that F(z) < J(z). Evidently, F,(z) increases in (—1, 1),
such that Fy(—1) < F,(1). Since

1-A 1+
1 _BSFZ(_U <F(1)< T+

N

oy

whenever ¢ > max{/, /1} where

_2(0.22599B — 0.22599) .
to = A-B , B+1#0,A—B#0;

and

_2((B—1)(log(2) - 1))
0= A-B ,B—1#0, A— B#0.
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Consequently, we obtain
Fy(2)<J(z)=¥(2)<J(2), zeu.

Case [B]: assume that £ = 1=1 +£( ) z+ 1
The function

Si(2) = exp <% (\/24-—1 - log(l +vz+1 ) -1+ 10g(2))>.

is a solution of the differential equation

1+e(zsilf(§)) - Vz11, zeu. 35)

Then again, in virtue of the Miller-Mocanu Lemma, we arrive at

1+ u (Z;](,S)) <1+ €<Z;2(S))> =W(2)< S(2).

Thus, we obtain

S

1-4 1+
l—BSSK(_l)SSE(l)Sl—f—

o

whenever £ > max{/,, {3} where

[ (2i(-1+/(2) +1log(2) —log(1+ \/@))),

2nn — ilog (ﬁﬂ)

B+1 .
<B+17&0,A+1¢0, log(A——i—l> +27rm;é0>
and

M7 o (A 1)+2mn;éo A#1,B#1.

b= 2mn — ilog (41) S\B-1

This indicates the relations
Si(2)<J(2)=%()<](z), zeu.
) z+ 1.

Case[C]: suppose that b = 2=1+ /¢ (

2
The function e

Quz) = (1 —%(\/Z—&-—l ~log(1+Vz+1) -1 +10g(2)))_1

is a solution of the differential equation



2Q,(2)\
1+’“(Q;(z)> =Vz+1, zeu. (3.6)

Clearly, Miller-Mocanu Lemma implies

z2V¥'(2) 2Q)(2)\ _,
1+£<W2(2))<1+£<Q§’(2)> Y(2)< @(2).

Accordingly, we have

1-A 1+A4A
1 _BSQ[(—U SQz(l)Sl B
if ¢5 recognizes the upper and lower bounds
2(0.225987 A +-0.225987) _
Ly = 4-B) ,B+1+#0, A+B;
_2((A-1)(log(2) — 1))
ls = 4-B , B—1#0A+#B.
This brings that
Qu(2)<J(z)=Y¥(2)<J(2).

O
Note that, in Theorem 3.5, we can replace W(z) by the general function p(z) € P to get
p(2) < Jiz). We advance to extant the upper bound result of Eq. (2.3) by the singular function
AMz) = 1 + sin(z), z € U, where it is with positive real part. The proof is quite similar to Theorem
3.5; therefore, we omit it.

Theorem 3.6. Consider one of the following inequalities
1) 1417(2¥'(2))<Vz + 1,7 >max{r, 71}, where

79 = 2(—1 +/(2) +1log(2) - log(l + \/(27)))csc(1);

and
71 = 2(log(2) — 1)(—csc(1)).

2 1+ T(Z \;/(f))) <vz+ 1,7 >max{ry, 73}, where

_2(-1+ V(@) +1og(2) —log(1++/(2)))

log(1 + sin(1)) ’

T2

and

_ 2(log(2) - 1)
= log(1 — sin(1))’
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¥(2)
14:2<—1+\/@+10g( 10g(1+\/_)> (1+csc(1));
= 2(log(2) — 1)(=(csc(1) — 1)).

3) 1+1( >)< z+ 1,7 >max{r4, 15}, where

Then ¥(2) <1 +sinz),z€eU.

By using the technique of Theorem 3.5, we have the following result using w(z).

Theorem 3.7. Consider one of the following inequalities

%)) 1+é(

1) 14£(2¥'(2))<vz+1,£2max{ly, b} = {4(10g—1o 1)}21(@;2)7) 6) } 2.816:

@ 1+ e(=5E) <VEF L ez max(en ) = {0 s Loy

)<\/§1‘ C>max{ly, b5} = { 101;%) 3)>) zgg(;o)g(S } —04

Then

Y)<w(z)=1+2-2"/3-2"/6-2"/10-2°/15+ O(¢"), zeu.

In Theorems 3.6 and 3.7, one can replace W(z) by p(z) to get more general results
p) <1 + sin(z) and p(z) < w(z) respectively.

4. Conclusion

From above, we conclude that LDEs can be recognized in terms of a complex variable z € u.
We illustrated a list of sufficient conditions for the existence of holomorphic univalent
solutions. Our next study will be considered for a generalized class of analytic functions in the
open unit disk.
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