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Abstract

Purpose – This paper aims to prove some fixed-point theorems for a general class of mappings in modular
G-metric spaces. The results of this paper generalize and extend several known results to modular G-metric
spaces, including the results of Mutlu et al. [1]. Furthermore, the authors produce an example to demonstrate
the applicability of the results.
Design/methodology/approach – The results of this paper are theoretical and analytical in nature.
Findings – The authors established some fixed-point theorems for a general class of mappings in modular
G-metric spaces. The results generalize and extend several known results to modular G-metric spaces,
including the results of Mutlu et al. [1]. An example was constructed to demonstrate the applicability of the
results.
Research limitations/implications – Analytical and theoretical results.
Practical implications – The results of this paper can be applied in science and engineering.
Social implications – The results of this paper is applicable in certain social sciences.
Originality/value –The results of this paper are new andwill open up new areas of research in mathematical
sciences.
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1. Introduction
In search for the generalization of classical metric spaces, in 1966, Gahler [2], introduced the
concept of 2-metric spaces and proved that its results exists. Dhage [3] extend the work in [2]
in which D-metric spaces were introduced. These authors claimed that their results
generalized the concept of metric spaces.

In 2003, Mustafa and Sims [4] claimed that the fundamental topological properties of
D-metric spaces introduced by Dhage [3] were incorrect. To ameliorate the drawbacks about
D-metric spaces, Mustafa and Sims [5] introduced a generalization of metric spaces, which
they called G-metric spaces and proved some fixed-point theorems, and in [6], Mustafa et al.
proved some fixed-point results on complete G-metric spaces.
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Modular theories on linear spaces were given by Nakano in his two monographs [7, 8],
where he developed a spectral theory in semiordered linear spaces (vector lattices) and
established the integral representation for projections acting in this modular spaces. Nakano
[7] established some modulars on real linear spaces, which are convex functionals.
Nonconvex modulars and the corresponding modular linear spaces were constructed by
Musielak and Orlicz [9]. Orlicz spaces and modular linear spaces have already become
classical tools in modern nonlinear functional analysis.

In 2010, a remarkable work of Chistyakov [10] introduced an aspect of metric spaces called
modular metric spaces or parameterized metric spaces with the time parameter λ (say), and
his purposewas to define the notion of amodular on an arbitrary set and developed the theory
of metric spaces generated by modulars, called modular metric spaces and, on the basis of it,
defined new metric spaces of (multi-valued) functions of bounded generalized variation of a
real variable with values in metric semigroups and abstract convex cones.

In the same year, Chistyakov [11], as an application, presented an exhausting description
of Lipschitz continuous and some other classes of superposition (Nemytskii) operators, acting
in these modular metric spaces. Chistyakov developed the theory of metric spaces generated
by modulars and extended the results given by Nakano [7], Musielak and Orlicz [9] and
Musielak [12] to modular metric spaces. Modular spaces are extensions of Lebesgue, Riesz
and Orlicz spaces of integrable functions.

The development of theory of metric spaces generated by modulars, called modular
metric spaces attracted many research mathematicians still investigating fixed-point
results in this area, including Chistyakov himself. Chistyakov [13] also established some
fixed-point theorems for contractive maps in modular spaces. It is related to contracting,
rather generalized average velocities than metric distances, and the successive
approximations of fixed points converge to the fixed points in a weaker sense as
compared to the metric convergence in [13] and other fixed-point results in modular metric
spaces can be found in [1, 14]. Considering applicability, these fixed-point results are
applied in finding the fixed-point solution of nonlinear integral equations see [14–16] and
references therein, while [17] deals with application to partial differential equation in
modular metric spaces. Interested readers may see [16, 18–21] and the references therein
for further studies in modular function spaces.

In 2013, Azadifar et al. [22] introduced the concept of modular G-metric space and
obtained some fixed-point theorems of contractive mappings defined on modular G-metric
spaces. Our intention in this paper is to extend the fixed-point theorem ofMutlu et al. [1] from
the setting of modular metric spaces to modular G-metric spaces. Our results extend and
generalize several known results in the literature. For results in non-unique fixed-point
theorems in modular metric spaces, readers should also see Hussain [23] and references
therein.

Zhao [24] 2019 applied the exponential dichotomy, and Tikhonov and Banach fixed-point
theorems are used to study the existence and uniqueness of pseudo almost periodic solutions
of a class of iterative functional differential equations of the form x0ðtÞ ¼Pk

n¼1

P∞

l¼1Cl;nðtÞ
ðx½n�ðtÞÞl þ GðtÞ, where x[n](t) is the nth iterate of x(t).

Recently, Combettes and Glaudin [25] constructed iteratively, a common fixed-point of
nonexpansive operators by activating only a block of operators at each iteration. In the more
challenging class of composite fixed-point problems involving operators that do not share
common fixed points, current methods require the activation of all the operators at each
iteration, and the question of maintaining convergence while updating only blocks of
operators is open. They propose amethod that achieves this goal and analyzed its asymptotic
behavior. Weak, strong and linear convergence results are established by exploiting a
connection with the theory of concentrating arrays. Applications to several nonlinear and
nonsmooth analysis problems are presented, ranging from monotone inclusions and
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inconsistent feasibility problems to variational inequalities and minimization problems
arising in data science.

2. Preliminaries

Definition 2.1. [22] Let X be a nonempty set, and let ωG : (0,∞)3 X3 X3 X→ [0,∞] be a
function satisfying;

(1) ωG
λ ðx; y; zÞ ¼ 0 for all x, y, z ∈ X and λ > 0 if x 5 y 5 z,

(2) ωG
λ ðx; x; yÞ > 0 for all x, y ∈ X and λ > 0 with x ≠ y,

(3) ωG
λ ðx; x; yÞ≤ωG

λ ðx; y; zÞ for all x, y, z ∈ X and λ > 0 with z ≠ y,

(4) ωG
λ ðx; y; zÞ ¼ ωG

λ ðx; z; yÞ ¼ ωG
λ ðy; z; xÞ ¼ � � � for all λ> 0 (symmetry in all three variables),

(5) ωG
λþμðx; y; zÞ≤ωG

λ ðx; a; aÞ þ ωG
μ ða; y; zÞ, for all x, y, z, a ∈ X and λ, ν > 0,

then the function ωG
λ is called a modular G-metric on X.

Remarks 2.1. (a) The pair (X, ωG) is called a modular G-metric space, and without any
confusion, we will take XωG as a modular G-metric space. From condition (5) above, if ωG is
convex, then we have a strong form as,

(b) ωG
λþμðx; y; zÞ≤ωG

λ
λþμ
ðx; a; aÞ þ ωG

μ
λþμ
ða; y; zÞ,

(c) If x 5 a, then (5) above becomes ωG
λþμða; y; zÞ≤ωG

μ ða; y; zÞ and
(d) Condition (5) is called rectangle inequality.

Definition 2.2. [22] Let (X, ωG) be a modular G-metric space. The sequence fxngn∈N in X is

modular G-convergent to x, if it converges to x in the topology τðωG
λ Þ.

A function T : XωG →XωG at x∈XωG is called modular G-continuous if ωG
λ ðxn; x; xÞ→ 0 then

ωG
λ ðTxn;Tx;TxÞ→ 0, for all λ > 0.

Remark 2.1. The sequence fxngn∈N is modular G-converges to x as n → ∞, if

lim
n→∞

ωG
λ ðxn; xm; xÞ ¼ 0. That is for all e > 0 there exists n0 ∈N such that ωG

λ ðxn; xm; xÞ < e

for all n, m ≥ n0. Here we say that x is modular G-limit of fxngn∈N.
Definition 2.3. [22] Let (X, ωG) be a modular G-metric space, then fxngn∈N ⊆ XωG is said to

bemodular G-Cauchy if for every e> 0, there exists ne ∈N such thatωG
λ ðxn; xm; xlÞ < e for all n,

m, l ≥ ne and λ > 0.
A modular G-metric space XωG is said to be modular G-complete if every modular G-Cauchy
sequence in XωG is modular G-convergent in XωG .

Proposition 2.1. [22] Let (X, ωG) be a modular G-metric space, for any x, y, z, a ∈ X, it
follows that

(1) If ωG
λ ðx; y; zÞ ¼ 0 for all λ > 0, then x 5 y 5 z.

(2) ωG
λ ðx; y; zÞ≤ωG

λ
2

ðx; x; yÞ þ ωG
λ
2

ðx; x; zÞ for all λ > 0.

(3) ωG
λ ðx; y; yÞ≤ 2ωG

λ
2

ðx; x; yÞ for all λ > 0.
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(4) ωG
λ ðx; y; zÞ≤ωG

λ
2

ðx; a; zÞ þ ωG
λ
2

ða; y; zÞ for all λ > 0.

(5) ωG
λ ðx; y; zÞ≤ 2

3 ðωG
λ
2

ðx; y; aÞ þ ωG
λ
2

ðx; a; zÞ þ ωG
λ
2

ða; y; zÞÞ for all λ > 0.

(6) ωG
λ ðx; y; zÞ≤ωG

λ
2

ðx; a; aÞ þ ωG
λ
4

ðy; a; aÞ þ ωG
λ
4

ðz; a; aÞ for all λ > 0.

Proposition 2.2. [22] Let (X, ωG) be a modular G-metric space and fxngn∈N be a sequence in
XωG. Then the following are equivalent:

(1) fxngn∈N is ωG-convergent to x,

(2) ωG
λ ðxn; xÞ→ 0 as n → ∞, i.e. fxngn∈N converges to x relative to modular metric ωG

λ ð:Þ,

(3) ωG
λ ðxn; xn; xÞ→ 0 as n → ∞ for all λ > 0,

(4) ωG
λ ðxn; x; xÞ→ 0 as n → ∞ for all λ > 0 and

(5) ωG
λ ðxm; xn; xÞ→ 0 as m, n → ∞ for all λ > 0.

The following construction was motivated by conditions (3) and (4) of Proposition 2.2 above
and [1].

Let ωG : (0, ∞) 3 X 3 X 3 X → [0, ∞] be a modular G-metric on X, XωG be a modular
G-metric space, B ⊆ XωG and κ : B→Rþ∪f∞g be a function on B. κ is called lower
semicontinuous on B if lim

n→∞
ωG
λ ðx; xn; xnÞ ¼ 0 0 κðxÞ≤ lim

n→∞
inf κðxnÞ, or lim

n→∞
ωG
λ ðx; x; xnÞ ¼ 0

0 κðxÞ≤ lim
n→∞

inf κðxnÞ for all λ > 0 and fxngn≥1 ⊆ B. B is closed, if the limit of a modular

G-convergent sequence in B always belongs to B. Also B is modular G-bounded, if
δωGðBÞ ¼ supfωG

λ ðx; y; yÞ : x; y∈B; ∀ λ > 0g is finite.

3. Main results
We begin this section with the following results, which extends the results of Mutlu et al. [1]
from the setting of modular metric spaces to modular G-metric spaces.

Theorem 3.1. Let ωG be a modular G-metric on X, XωG be a complete modular G-metric
space, κ : XωG →Rþ∪f∞g be a lower semicontinuous function on XωG and T : XωG →XωG be a
self-map such that

κðTxÞ þ ωG
λ ðx;Tx;TxÞ≤ κðxÞ (3.1)

for all x∈XωG and λ > 0. Then T has a fixed point in XωG.

Proof. For any x∈XωG , let FðxÞ ¼ fy∈XωG : ωG
λ ðx; y; yÞ≤ κðxÞ− κðyÞ; ∀ λ > 0g and η(x)

5 inf{κ(y) : y ∈ F(x)}. Since x ∈ F(x), therefore, F(x) ≠Ø and 0 ≤ η(x) ≤ κ(x). Let x∈XωG be an
arbitrary point. Now, we construct a sequence fxngn≥1 inXωG as follows. Let x5 x1 and when

x1, x2, . . ., xn have been chosen, choose xnþ1∈ F(x) such that κðxnþ1Þ≤ ηðxnÞ þ 1
2n for all n∈N.

By the process above, we get a sequence fxngn≥1 satisfying the conditions.

ωG
λ ðxn; xnþ1; xnþ1Þ≤ κðxnÞ � κðxnþ1Þ; ηðxnÞ≤ κðxnþ1Þ≤ ηðxnÞ þ 1

2n
(3.2)

for all n∈N and λ > 0. Then fκðxnÞgn≥1 is a nonincreasing sequence in R, and it is bounded
blow by zero. So, the sequence fκðxnÞgn≥1 is convergent to a real number M ≥ 0 (say). By
inequality (3.2), we get
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M ¼ lim
n→∞

κðxnÞ ¼ lim
n→∞

ηðxnÞ (3.3)

Now, let k∈N be arbitrary, from inequalities (3.2) and (3.3), there exits at least a positive
number Nk such that κðxnÞ < M þ 1

2k
for all n ≥ Nk. Since κ(xn) is monotone, we get

M ≤ κðxmÞ≤ κðxnÞ < M þ 1
2k
for m ≥ n ≥ Nk. It follows that

κðxnÞ � κðxmÞ < 1

2k
for all m≥ n≥Nk: (3.4)

Without loss of generality, suppose thatm > n andm; n∈N. From inequality (3.2), we get

ωG
λ

m−n
ðxn; xnþ1; xnþ1Þ≤ κðxnÞ � κðxnþ1Þ; for

λ

m� n
≥
λ

n
> 0: (3.5)

Suppose that m; n∈N and m > n∈N. Applying rectangle inequality repeatedly, i.e.
condition (5) of Definition (2.1) we have

ωG
λ ðxn; xm; xmÞ≤ωG

λ
m−n

ðxn; xnþ1; xnþ1Þ þ ωG
λ

m−n
ðxnþ1; xnþ2; xnþ2Þ þ ωG

λ
m−n

ðxnþ2; xnþ3; xnþ3Þ

þωG
λ

m−n
ðxnþ3; xnþ4; xnþ4Þ þ � � � þ ωG

λ
m−n

ðxm−1; xm; xmÞ

≤ωG
λ
n
ðxn; xnþ1; xnþ1Þ þ ωG

λ
n
ðxnþ1; xnþ2; xnþ2Þ þ ωG

λ
n
ðxnþ2; xnþ3; xnþ3Þ

þωG
λ
n
ðxnþ3; xnþ4; xnþ4Þ þ � � � þ ωG

λ
n
ðxm−1; xm; xmÞ

≤κðxnÞ � κðxnþ1Þ þ κðxnþ1Þ � κðxnþ2Þ þ � � � þ κðxm−1Þ � κðxmÞ
¼ κðxnÞ � κðxmÞ

(3.6)

for all m > n ≥ Nk for some Nk ∈N. Then by inequality (3.4), we have

ωG
λ ðxn; xm; xmÞ <

1

2k
; (3.7)

for all m, l, n ≥ Nk for some Nk ∈N, so that by condition (2) of proposition (2.1), we have

ωG
λ ðxn; xm; xlÞ≤ωG

λ
2
ðxn; xm; xmÞ þ ωG

λ
2
ðxl ; xm; xmÞ; (3.8)

so that

lim
n;m;l→∞

ωG
λ ðxn; xm; xlÞ≤ lim

n;m→∞
ωG

λ
2
ðxn; xm; xmÞ þ lim

l;m→∞
ωG

λ
2
ðxl ; xm; xmÞ

≤ lim
n;m→∞

ωG
λ ðxn; xm; xmÞ þ lim

l;m→∞
ωG

λ ðxl ; xm; xmÞ

<
1

2k
þ 1

2k

¼ 2

2k
¼ 21−k:

(3.9)

Thus, as k → ∞, we have
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lim
n;m;l→∞

ωG
λ ðxn; xm; xlÞ ¼ 0: (3.10)

Therefore, we can say straightaway that fxngn∈N is modular G-Cauchy sequence. The

completeness of (Xω, ω
G) implies that for any λ > 0, lim

n;m→∞
ωG

λ ðxn; xm; uÞ ¼ 0, i.e. for any e > 0,

there exists n0 ∈N such that ωG
λ ðxn; xm; uÞ < e for all n;m∈N and n,m ≥ n0, which implies

that lim
n→∞

xn → u∈XωG as n→∞. But κ : XωG →Rþ∪f∞g is a lower semicontinuous function

on XωG , using inequality (3.6), we get

κðuÞ≤ lim
m→∞

infðκðxmÞÞ
≤ lim

m→∞
infðκðxnÞ � ωG

λ ðxn; xm; xmÞÞ
¼ κðxnÞ � ωG

λ ðxn; u; uÞ
(3.11)

Thus, we have that ωG
λ ðxn; u; uÞ≤ κðxnÞ− κðuÞ. So that u ∈ F(xn) for all n∈N and hence

η(xn)≤ κ(u). Then by inequality (3.3), we getM≤ κ(u). Moreover, by lower semicontinuity of κ
and inequality (3.3), we have κðuÞ≤ lim

n→∞
inf κðxnÞ ¼ M. So κ(u)5M. From inequality (3.1), we

know that Tu ∈ F(u), such u ∈ F(u). For n∈N, we have

ωG
λ ðxn;Tu;TuÞ≤ωG

λ
2
ðxn; u; uÞ þ ωG

λ
2
ðu;Tu;TuÞ

≤ωG
λ ðxn; u; uÞ þ ωG

λ ðu;Tu;TuÞ
≤ κðxnÞ � κðuÞ þ κðuÞ � κðTuÞ
¼ κðxnÞ � κðTuÞ:

(3.12)

Thus, Tu ∈ F(xn), and this implies that η(xn) ≤ κ(Tu). Hence, we obtain M ≤ κ(Tu). From
inequality (3.1), we get κ(Tu)≤ κ(u). As κ(u)5M, we have κ(u)5M≤ κ(Tu)≤ κ(u). Therefore,
κ(Tu) 5 κ(u). Then from inequality (3.1), we get ωG

λ ðu;Tu;TuÞ≤ κðuÞ− κðTuÞ
¼ κðuÞ− κðuÞ ¼ 0. Thus, Tu 5 u. Therefore, T has a fixed point in XωG . ,

Remark 3.1. Suppose that ωG is a modular G-metric on X, XωG be a complete modular
G-metric space, κ : XωG →Rþ∪f∞g be a lower semicontinuous function on XωG and
T : XωG →XωG be a self-map. To get inequality (3.1) of Theorem 3.1 in Mutlu et al. [1], we
invoke the definition of modular G metric space as follows for any λ > 0, define

ωλðx; y; zÞ ¼ 1
2λ x− yj j þ y− zj j þ x− zj jf g. Take y 5 Tx and z 5 Tx, then inequality (3.1)

transform into

ωλðx;TxÞ≤ κðxÞ � κðTxÞ (3.13)

for all x ∈ Xω and λ > 0. Then T has a fixed point in Xω, which is clearly the result in Mutlu
et al. [1].

Theorem 3.2. Let ωG be a modular G-metric on X, XωG be a complete modular G-metric
space, κ : XωG →Rþ∪f∞g be a lower semicontinuous function on XωG and T : XωG →XωG be a
self-map such that for some positive integer, m ≥ 1,

ωG
λ ðx;Tmx;TmxÞ≤ κðxÞ � κðTmxÞ (3.14)

for all x∈XωG and λ > 0. Then T has a fixed point in XωG for some positive integer m ≥ 1.
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Proof. By Theorem 3.1,Tm has a fixed point say u∈XωG for some positive integerm≥ 1, by
using inequality (3.14) for some positive integer m ≥ 1. Now Tm(Tu) 5 Tmþ1u 5
T(Tmu) 5 Tu, so Tu is a fixed point of Tm. Hence, we have Tu 5 u. Therefore, u is a fixed
point ofT because fixed point ofT is also fixed point ofTm for some positive integerm≥ 1.,

Next, we produce the following example to demonstrate the applicability of our results.

Example 3.1. Let XωG ¼ R and we define the mapping ωG : ð0;∞Þ3R3R3R→ ½0;∞�
by ωG

λ ðx; y; yÞ ¼ 2
λ x− yj j for all x; y∈R and λ > 0. So we can see that ðR;ωGÞ is a complete

modular G-metric space and let us define T : ðR;ωGÞ→ ðR;ωGÞ by Tx ¼ 1
x
for x∈Rþn f0g

and κ : ðR;ωGÞ→Rþ∪f∞g by κðxÞ ¼ 3
2 xj j for which κ(x) defined above is lower

semicontinuous. Now we verify the inequality (3.1) of Theorem 3.1 as follows; For
x∈Rþn f0g and λ > 0, we have

ωG
λ ðx;Tx;TxÞ ¼ ωG

λ x;
1

x
;
1

x

� �

¼ 1

λ
x� 1

x

����
����þ 1

x
� 1

x

����
����þ x� 1

x

����
����

� �

¼ 2

λ
x� 1

x

����
����

¼ 2

λ

x2 � 1

x

����
���� ¼ 2

λ

ðx� 1Þðxþ 1Þ
x

����
����

¼ 2

λ

x� 1j j xþ 1j j
xj j

� �

≤
2

λ

x� 1j j xþ 1j j
xþ 1j j

� �

¼ 2

λ
x� 1j j≤ xj j:

And

κðxÞ � κðTxÞ ¼ 3

2
xj j � 3

2

1

xj j
¼ 3

2
xj j � 1

xj j
� �

¼ 3

2

xj j2 � 1

xj j

 !

¼ 3

2

ð xj j � 1Þð xj j þ 1Þ
xj j

� �

≤
3

2

ð xj j � 1Þð xj j þ 1Þ
xj j þ 1

� �

¼ 3

2
xj j � 1ð Þ

≤
3

2
xj j:
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Therefore, ωG
λ ðx;Tx;TxÞ≤ κðxÞ− κðTxÞ for all λ > 0.Hence, the mapping T has a fixed point.

The trivial fixed point of this map, T is 1.

Remark3.2. Aswe can see clearly in this Example 3.1 that themapT has a trivial fixed point
at 1.

Proposition 3.3. Let ωG be a modular G-metric on X, and XωG be a complete modular
G-metric space, κ : XωG →Rþ∪f∞g be a lower semicontinuous function on XωG , which is

bounded from below, then there exists a point u∈XωG such that κðuÞ < κðzÞ þ ωG
λ ðu; z; zÞ for

each z∈XωG ; z≠ u and for all λ > 0.

Proof. Following the proof of Theorem 3.1, we get a sequence fzngn≥1 such that zn → u∈XωG

as n→∞. Now for any u∈XωG , define FðuÞ ¼ fz∈XωG : ωG
λ ðu; z; zÞ ≤ κðuÞ− κðzÞ ∀ λ > 0g

and η(u) 5 inf{κ(z) : z ∈ F(u)}. We will show that u ∉ F(u) as z ≠ u. Suppose, if possible,
otherwise. Let v ∈ F(u) for some v ≠ u. Then we have that for all λ > 0,
0 < ωG

λ ðu; v; vÞ≤ κðuÞ− κðvÞ implies κ(v) < κ(u) 5 M, since

ωG
λ ðzn; v; vÞ≤ωG

λ
2
ðzn; u; uÞ þ ωG

λ
2
ðu; v; vÞ

≤ωG
λ ðzn; u; uÞ þ ωG

λ ðu; v; vÞ
≤ κðznÞ � κðuÞ þ κðuÞ � κðvÞ
¼ κðznÞ � κðvÞ:

(3.15)

for all λ > 0, v ∈ F(zn) for n ≥ 1. So η(zn) ≤ κ(v) for all n ≥ 1. Therefore,M ¼ lim
n→∞

ηðznÞ≤ κðvÞ.
Hence,M ≤ κ(v), which is a contradiction to the fact that κ(v) < κ(u)5M. Therefore, for each
z∈XωG ; z≠ u 0 z∉FðuÞ, that is z≠ u 0 ωG

λ ðu; z; zÞ > κðuÞ− κðzÞ. Hence, κðuÞ < κðzÞþ
ωG

λ ðu; z; zÞ for each z∈XωG ; z≠ u and for all λ > 0. ,

Proposition 3.4. Let ωG be a modular G-metric on X, and XωG be a complete modular
G-metric space, κ : XωG →Rþ∪f∞g be a lower semicontinuous function on XωG , which is
bounded from below, then for every y∈XωG and γ > 0, there exists x0 ∈XωG such that

κðx0Þ < κðxÞ þ γωG
λ ðx; x; x0Þ on XωGnfx0g and κðx0Þ≤ κðyÞ− γωG

λ ðx0; y; yÞ, for all λ > 0.

Proof. Define X
γ
ωG ¼ fz∈XωG : κðzÞ≤ κðyÞ− γωG

λ ðz; y; yÞ; ∀ λ > 0g. Then X
γ
ωG is a

nonempty complete modular G-metric space and κ : XωG →Rþ∪f∞g be a lower
semicontinuous function on XωG , which is bounded from below. Let FðxÞ ¼ fz∈X

γ
ωG :

κðxÞ≥ κðzÞ þ γωG
λ ðz; x; xÞ; ∀ λ > 0g. Then for every x∈X

γ
ωG , F(x) ≠ Ø and closed. Also

z ∈ F(x) implies F(z) ⊆ F(x). Choose x1 ∈X
γ
ωG with κ(x1) < ∞ and when x1, x2, . . ., xn have

been chosen, we can find xnþ1 ∈ F(x) such that κðxnþ1Þ < inffκðuÞ : u∈FðxnÞg þ 1
2n for

n ≥ 1. For any z ∈ F(xnþ1) ⊆ F(xn), we get that for all λ > 0,

γωG
λ ðz; xnþ1; xnþ1Þ≤ γωG

λ
2
ðz; xn; xnÞ þ γωG

λ
2
ðxn; xnþ1; xnþ1Þ

≤ γωG
λ ðz; xn; xnÞ þ γωG

λ ðxn; xnþ1; xnþ1Þ
≤ κðxnÞ � κðzÞ þ κðxnþ1Þ � κðxnÞ
¼ κðxnþ1Þ � κðzÞ
≤ inffκðuÞ : u∈FðxnÞg � κðzÞ þ 1

2n

≤
1

2n
:

(3.16)
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So that δωGðFðxnÞÞ→ 0 as n → ∞, for all λ > 0. Since X γ
ωG be a complete modular G-metric

space, ∩∞
n¼1FðxnÞ ¼ fx0g. Since the intersection is a singleton set, we proceed as

follows. Now, x0 ∈ F(xn) implies that F(x0) ⊆ F(xn) for n ≥ 1, we get F(x0) 5 {x0}, so
that for all λ > 0, κðx0Þ < κðxÞ þ γωG

λ ðx; x; x0Þ on X γ
ωGnfx0g. Again, the inequality

κðx0Þ < κðxÞ þ γωG
λ ðx; x; x0Þ hold on XωGnX γ

ωG since for z∉X γ
ωG , for all λ > 0, we have

κðyÞ− γωG
λ ðz; y; yÞ < κðzÞ and thus, together with the fact that x0 ∈X γ

ωG , we have

κðx0Þ≤ κðyÞ � γωG
λ ðx0; y; yÞ

≤ κðyÞ � γωG
λ
2
ðz; y; yÞ � γωG

λ
2
ðx0; z; zÞ

≤ κðyÞ � γωG
λ ðz; y; yÞ � γωG

λ ðx0; z; zÞ
< κðzÞ � γωG

λ ðx0; z; zÞ:

(3.17)

We are now at home since for all λ > 0, κðx0Þ < κðzÞ− γωG
λ ðx0; z; zÞ. ,

Theorem 3.5. Let ωG be a modular G-metric on X, and XωG ;YωG are complete modular
G-metric spaces. Let T : XωG →XωG be an arbitrary self mapping. Suppose that there exists a
closed mapping L : XωG →YωG, and κ : LðXωGÞ→Rþ∪f∞g be a lower semicontinuous
function on XωG , which is bounded from below, and for every γ > 0, there exists x∈XωG such
that ωG

λ ðx;Tx;TxÞ≤ κðLxÞ � κðLTxÞ; (3.18)

γωG
λ ðLx;LTx;LTxÞ≤ κðLxÞ � κðLTxÞ; (3.19)

for all λ > 0. Then, T has a fixed point in XωG .

Proof. For any x∈XωG , put Tx 5 y and let FðxÞ ¼ fy∈XωG : ωG
λ ðx; y; yÞ≤ κðxÞ

− κðLyÞ and γωG
λ ðLx;Ly;LyÞ≤ κðLxÞ− κðLyÞ ∀ λ > 0g and η(x) 5 inf{κ(Ly) : y ∈ F(x)}.

Since x∈ F(x), therefore, F(x)≠Ø and 0≤ η(x)≤ κ(Lx). Let x∈XωG be an arbitrary point. Now,
we construct a sequence fxngn≥1 in XωG as follows. Let x 5 x1 and when x1, x2, . . ., xn have

been chosen, choose xnþ1 ∈ F(x) such that κðLxnþ1Þ≤ ηðxnÞ þ 1
2n for all n∈N. By the process

above, we get a sequence fxngn≥1 satisfying the conditions.

ωG
λ ðxn; xnþ1; xnþ1Þ≤ κðxnÞ � κðLxnþ1Þ; (3.20)

γωG
λ ðLxn;Lxnþ1;Lxnþ1Þ≤ κðLxnÞ � κðLxnþ1Þ; (3.21)

and

κðLxnþ1Þ � 1

2n
≤ ηðxnÞ≤ κðLxnþ1Þ; (3.22)

for all n∈N and λ > 0. Then from inequalities, (3.20), (3.21), fκðLxnÞgn≥1 is a nonincreasing
sequence in R, and it is bounded blow by zero. So, the sequence fκðLxnÞgn≥1 is a modular
G-convergent and converges to a real number β ≥ 0 (say). By inequality (3.22), we get

β ¼ lim
n→∞

κðLxnÞ ¼ lim
n→∞

ηðxnÞ (3.23)

Now, let k∈N be arbitrary, from inequalities (3.20),(3.21) and (3.23), there exits at least a
positive number Nk such that κðLxnÞ < β þ 1

2k
for all n ≥ Nk. Since κ(Lxn) is monotone for
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m ≥ n ≥ Nk, we get β≤ κðLxmÞ≤ κðLxnÞ < β þ 1
2k
for m ≥ n ≥ Nk. It follows that

κðLxnÞ � κðLxmÞ < 1

2k
for all m≥ n≥Nk: (3.24)

Without loss of generality, suppose that m > n and m; n∈N. From inequalities (3.20) and
(3.21), we get

ωG
λ

m−n
ðxn; xnþ1; xnþ1Þ≤ κðLxnÞ � κðLxnþ1Þ; (3.25)

ωG
λ

m−n
ðLxn;Lxnþ1;Lxnþ1Þ≤ κðLxnÞ � κðLxnþ1Þ; for

λ

m� n
> 0; (3.26)

or since λ
m− n

≥ λ
n
, we have

ωG
λ
n
ðxn; xnþ1; xnþ1Þ≤ κðLxnÞ � κðLxnþ1Þ; (3.27)

ωG
λ
n
ðLxn;Lxnþ1;Lxnþ1Þ≤ κðLxnÞ � κðLxnþ1Þ; for

λ

n
> 0: (3.28)

Suppose thatm; n∈N andm > n∈N. Using rectangle inequality repeatedly, i.e. condition 5
of Definition (2.1), we have

ωG
λ ðxn; xm; xmÞ≤ωG

λ
m−n

ðxn; xnþ1; xnþ1Þ þ ωG
λ

m−n
ðxnþ1; xnþ2; xnþ2Þ þ ωG

λ
m−n

ðxnþ2; xnþ3; xnþ3Þ

þωG
λ

m−n
ðxnþ3; xnþ4; xnþ4Þ þ � � � þ ωG

λ
m−n

ðxm−1; xm; xmÞ

≤ωG
λ
n
ðxn; xnþ1; xnþ1Þ þ ωG

λ
n
ðxnþ1; xnþ2; xnþ2Þ þ ωG

λ
n
ðxnþ2; xnþ3; xnþ3Þ

þωG
λ
n
ðxnþ3; xnþ4; xnþ4Þ þ � � � þ ωG

λ
n
ðxm−1; xm; xmÞ

≤ κðLxnÞ � κðLxnþ1Þ þ κðLxnþ1Þ � κðLxnþ2Þ þ � � � þ κðLxm−1Þ � κðLxmÞ

¼ κðLxnÞ � κðLxmÞ;
(3.29)

for all m > n ≥ Nk for some Nk ∈N. Then by inequality (3.24), we have

ωG
λ ðxn; xm; xmÞ <

1

2k
; (3.30)

for all m, l, n ≥ Nk for some Nk ∈N, so that by condition (2) of proposition 2.1, we have

ωG
λ ðxn; xm; xlÞ≤ωG

λ
2
ðxn; xm; xmÞ þ ωG

λ
2
ðxl ; xm; xmÞ; (3.31)

so that
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lim
n;m;l→∞

ωG
λ ðxn; xm; xlÞ≤ lim

n;m→∞
ωG

λ
2
ðxn; xm; xmÞ þ lim

l;m→∞
ωG

λ
2
ðxl ; xm; xmÞ

≤ lim
n;m→∞

ωG
λ ðxn; xm; xmÞ þ lim

l;m→∞
ωG

λ ðxl ; xm; xmÞ

<
1

2k
þ 1

2k

¼ 2

2k
¼ 21−k:

(3.32)

Thus, as k → ∞, we have

lim
n;m;l→∞

ωG
λ ðxn; xm; xlÞ ¼ 0: (3.33)

Therefore, we can say straightaway that fxngn∈N is modular G-Cauchy sequence in XωG .
Again, using the same procedure, we get

γωG
λ ðLxn;Lxm;LxmÞ≤ γωG

λ
m−n

ðLxn;Lxnþ1;Lxnþ1Þ þ γωG
λ

m−n
ðLxnþ1;Lxnþ2;Lxnþ2Þ

þ γωG
λ

m−n
ðLxnþ2;Lxnþ3;Lxnþ3Þ þ γωG

λ
m−n

ðLxnþ3;Lxnþ4;Lxnþ4Þ

þ � � � þ γωG
λ

m−n
ðLxm−1;Lxm;LxmÞ

≤ γωG
λ
n
ðLxn;Lxnþ1;Lxnþ1Þ þ γωG

λ
n
ðLxnþ1;Lxnþ2;Lxnþ2Þ

þ γωG
λ
n
ðLxnþ2;Lxnþ3;Lxnþ3Þ þ γωG

λ
n
ðLxnþ3;Lxnþ4;Lxnþ4Þ

þ � � � þ γωG
λ
n
ðLxm−1;Lxm;LxmÞ

≤ κðLxnÞ � κðLxnþ1Þ þ κðLxnþ1Þ � κðLxnþ2Þ
þ � � � þ κðLxm−1Þ � κðLxmÞ
¼ κðLxnÞ � κðLxmÞ;

(3.34)

for all m > n ≥ Nk for some Nk ∈N. Then by inequality (3.24), we have

γωG
λ ðLxn;Lxm;LxmÞ <

1

2k
; (3.35)

for all m, l, n ≥ Nk for some Nk ∈N, so that by condition (2) of proposition 2.1, we have

γωG
λ ðLxn;Lxm;LxlÞ≤ γωG

λ
2
ðLxn;Lxm;LxmÞ þ γωG

λ
2
ðLxl ;Lxm;LxmÞ; (3.36)

so that
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lim
n;m;l→∞

γωG
λ ðLxn;Lxm;LxlÞ≤ lim

n;m→∞
γωG

λ
2
ðLxn;Lxm;LxmÞ þ lim

l;m→∞
γωG

λ
2
ðLxl ;Lxm;LxmÞ

≤ lim
n;m→∞

γωG
λ ðLxn;Lxm;LxmÞ þ lim

l;m→∞
γωG

λ ðLxl ;Lxm;LxmÞ

<
1

2k
þ 1

2k

¼ 2

2k
¼ 21−k:

(3.37)

Thus, as k → ∞, we have

lim
n;m;l→∞

γωG
λ ðLxn;Lxm;LxlÞ ¼ 0: (3.38)

Therefore, we can say straightaway that fLxngn∈N ismodular G-Cauchy sequence inYωG . The

completeness of (Xω, ω
G) and (Yω, ω

G) implies that for any λ > 0, lim
n;m→∞

ωG
λ ðxn; xm; uÞ ¼ 0, i.e.

for any e > 0, there exists n0 ∈N such that ωG
λ ðxn; xm; uÞ < e for all n;m∈N and n, m ≥ n0,

which implies that lim
n→∞

xn → u∈XωG as n→∞ and for any λ > 0, lim
n;m→∞

ωG
λ ðLxn;Lxm; vÞ ¼ 0,

i.e. for any e > 0, there exists n0 ∈N such that ωG
λ ðLxn;Lxm; vÞ < e for all n;m∈N and n,

m ≥ n0, which implies that lim
n→∞

Lxn → v∈XωG as n → ∞. The fact that L is closed mapping

implies that Lu5 v. But κ : XωG →Rþ∪f∞g is a lower semicontinuous function onXωG , using
inequality (3.29), we get

κðvÞ ¼ κðLuÞ≤ lim
m→∞

infðκðLxmÞÞ
≤ lim

m→∞
infðκðLxnÞ � ωG

λ ðxn; xm; xmÞÞ
¼ κðLxnÞ � ωG

λ ðxn; u; uÞ
(3.39)

Thus, we have thatωG
λ ðxn; u; uÞ≤ κðLxnÞ− κðLuÞ for all λ> 0. Again, using inequality, (3.34),

we have

κðvÞ ¼ κðLuÞ≤ lim
m→∞

infðκðLxmÞÞ
≤ lim

m→∞
infðκðLxnÞ � γωG

λ ðLxn;Lxm;LxmÞÞ
¼ κðLxnÞ � γωG

λ ðLxn; u; uÞ
(3.40)

Thus, we have that γωG
λ ðLxn; u; uÞ≤ κðLxnÞ− κðLuÞ for all λ > 0. So that u ∈ F(xn) for all

n∈N, and hence, η(xn)≤ κ(Lu). So by inequality (3.23), we get β ≤ κ(Lu). Meanwhile, by lower
semicontinuity of κ and inequality (3.23), we have κðvÞ ¼ κðLuÞ≤ lim

n→∞
inf κðxnÞ ¼ β.

Therefore, κ(Lu) 5 β. By Proposition 3.3, we have that x ≠ u 0 x ∉ F(u) and Proposition
3.4 for y∉X γ

ωG . From inequalities (3.18), (3.19), we know that LTu ∈ F(u), such u ∈ F(u). For

n∈N, we have

AJMS
28,2

214



ωG
λ ðxn;Tu;TuÞ≤ωG

λ
2
ðxn; u; uÞ þ ωG

λ
2
ðu;Tu;TuÞ

≤ωG
λ ðxn; u; uÞ þ ωG

λ ðu;Tu;TuÞ
≤ κðLxnÞ � κðLuÞ þ κðLuÞ � κðLTuÞ
¼ κðLxnÞ � κðLTuÞ:

(3.41)

Thus, LTu ∈ F(xn), and this implies that η(Lxn) ≤ κ(LTu). Hence, we obtain β ≤ κ(LTu). From
inequalities (3.18), (3.19), we get κ(LTu) ≤ κ(Lu). As κ(Lu) 5 β, we have
κ(Lu) 5 β ≤ κ(LTu) ≤ κ(Lu). Therefore, κ(LTu) 5 κ(Lu). Then from inequality (3.18) and

(3.19), we get ωG
λ ðu;Tu;TuÞ≤ κðLuÞ− κðLTuÞ ¼ κðLuÞ− κðLuÞ ¼ 0. Thus, Tu 5 u.

Therefore, T has a fixed point in XωG . ,

Theorem 3.6. Let ωG be a modular G-metric on X, and XωG ;YωG are complete modular
G-metric spaces. Let T : XωG →XωG be an arbitrary self-mapping for some positive integer
m ≥ 1. Suppose that there exists a closed mapping L : XωG →YωG for each integer m ≥ 1, and
κ : LðXωGÞ→Rþ∪f∞g be a lower semicontinuous function on XωG , which is bounded from
below, and for every γ > 0, there exists x∈XωG such that

ωG
λ ðx;Tmx;TmxÞ≤ κðLmxÞ � κðLmTmxÞ; (3.42)

γωG
λ ðLmx;LmTmx;LmTmxÞ≤ κðLmxÞ � κðLmTmxÞ; (3.43)

for all λ > 0. Then, T has a fixed point in XωG for some positive integer m ≥ 1.

Proof. By Theorem 3.5, Tm has a fixed point say u∈XωG for some positive integer m ≥ 1,
by using inequalities (3.42) and (3.43) for some positive integer m ≥ 1. Now
Tm(Tu) 5 Tmþ1u 5 T(Tmu) 5 Tu, so Tu is a fixed point of Tm. Thus, we have Tu 5 u.
Therefore, u is a fixed point of T. because fixed point of T is also fixed point of Tm for some
positive integer m ≥ 1. ,

Remark 3.3. The results of Theorem 3.6 improve and generalize several known results in
the literature, including the results of Mutlu et al. [1].

4 . Conclusion and future work
All fixed-point results obtained in this paper do not require the uniqueness of the fixed point of
mappings under consideration.As a future direction of study, itwill be of interest to prove some
new fixed-point results for the nonunique fixed-point theorems established in this paper. More
precisely, geometric properties of the set Fix(T) can be investigated as a future problem for a
self-mapping T on a modular G-metric space in the case of nonunique fixed point.
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