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Abstract

Purpose – In this paper, the authors applied the empirical likelihood method, which was originally proposed
by Owen, to the copula moment based estimation methods to take advantage of its properties, effectiveness,
flexibility and reliability of the nonparametric methods, which have limiting chi-square distributions and may
be used to obtain tests or confidence intervals. The authors derive an asymptotically normal estimator of
the empirical likelihood based on copula moment estimation methods (ELCM). Finally numerical performance
with a simulation experiment of ELCM estimator is studied and compared to the CM estimator, with a good
result.
Design/methodology/approach – In this paper we applied the empirical likelihoodmethodwhich originally
proposed by Owen, to the copula moment based estimation methods.
Findings –Wederive an asymptotically normal estimator of the empirical likelihood based on copulamoment
estimation methods (ELCM). Finally numerical performance with a simulation experiment of ELCM estimator
is studied and compared to the CM estimator, with a good result.
Originality/value – In this paper we applied the empirical likelihood method which originally proposed by
Owen 1988, to the copula moment based estimation methods given by Brahimi and Necir 2012. We derive an
new estimator of copula parameters and the asymptotic normality of the empirical likelihood based on copula
moment estimation methods.

Keywords Archimedean copulas, Asymptotic distribution, Copula models, Method of moments,

Semi-parametric models, Z-estimator

Paper type Research paper

1. Introduction
One of the main topics in multivariate statistical analysis is the statistical inference on the
dependence parameter θ. Many researchers investigated the copula parameter estimation,
namely the methods of concordance [1, 2] fully and the pseudo maximum likelihood [3],
inference function of margins [4, 5], minimum distance [6] and recently the copula moment
and L-moment based estimation methods given in [7, 8].

In this paper we applied the empirical likelihood method to the copula moment based
estimation methods which originally proposed by [9–11]. Several authors investigated the
empirical likelihood see for instance [12–16].

The advantage of this method is that the empirical likelihood has both effectiveness and
flexibility of the likelihoodmethod, and reliability of the non-parametric methods, and it helps
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us to construct confidence intervals without estimating the asymptotic variance, so the
complexity of the asymptotic variance for some estimator especially the CMbased estimators
and the construction of non-parametric confidence intervals via estimating the asymptotic
variance is usually inaccurate.

2. Empirical likelihood for CM based estimation method
We consider the Archimedean copula family defined by CðuÞ ¼ w−1

Pd
j¼1wðujÞ

� �
, where

w : 0; 1½ �→R is a twice differentiable function called the generator, satisfying: w 1ð Þ ¼ 0,
w0 xð Þ < 0, w00 xð Þ≥ 0 for any x∈ 0; 1ð Þ and u ¼ u1; . . . ; udð Þ. The notation w�1 stands for the
inverse function of w. Archimedean copulas are easy to construct and have nice properties. A
variety of known copula families belong to this class, including the models of Gumbel,
Clayton, Frank, . . .(see, Table 4.1 in [17], p. 116).

Let KCðsÞdP C Uð Þ≤ sð Þ, s∈ 0; 1½ �, be the df of rv C Uð Þ, where U ¼ U1; . . . ;Udð Þ, then
the kth-moment Mk Cð Þ, called copula moment, of rv C Uð Þ given in [7] as the expectation of

C Uð Þð Þk, that is
Mk Cð ÞdE C Uð Þð Þk

h i
¼
Z

0;1½ �d
C uð Þð ÞkdC uð Þ; k ¼ 1; 2; . . . (2.1)

Equation (2.1) may be rewritten into:

Mk Cð Þ ¼
Z 1

0

skdKCðsÞ; k ¼ 1; 2; . . . :

Suppose now, for unknown θ∈O, that w 5 wθ, it follows that C 5 Cθ, KC 5 Kθ and
Mk Cð Þ ¼ Mk θð Þ, that is

Mk θð Þ ¼
Z 1

0

skdKθðsÞ; k ¼ 1; 2; . . . ;

from Theorem 4.3.4 in [17] we have for any s∈ 0; 1½ �,KθðsÞ ¼ s−wθ sð Þ=w0
θ sð Þ, it follows that

the corresponding density isK0
θðsÞ ¼ w00

θ sð Þwθ sð Þ= w0
θ sð Þ� �2

. Therefore (2.1), may be rewritten
into

Mk θð Þ ¼
Z 1

0

sk
w00
θ sð Þwθ sð Þ
w0
θ sð Þ� �2 ds; k ¼ 1; 2; . . . (2.2)

In terms of wθ.
The non-parametric likelihood of distribution function KC of rv C Uð Þ is defined by

LðKCÞ ¼
Yn
i¼1

K0
CðC Uið ÞÞ; (2.3)

Where Uid Ui1; . . . ;Uidð Þ. We restrict KC to the one having the probability

pi ¼ K0
CðC Uið ÞÞ > 0

on each observationUi. By a simple calculation, we find the maximizer of the non-parametric
likelihood (2.3) turns to be the empirical distribution function KCn, placing probability 1/n on
each observation. Therefore, similar to the parametric case, non-parametric likelihood ratio of
KC to the maximizer KCn is defined by:
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RðKCÞ ¼ LðKCÞ
LðKCnÞ

¼
Yn

i¼1
piYn

i¼1
1
�
n
¼
Yn
i¼1

ðnpiÞ:

Suppose now that we are interested in a parameter θ∈O⊂Rr, C5 Cθ andKCdKθ that the
parameter θ satisfies the following equations

E½Lk u; θ0ð Þ� ¼ 0; k ¼ 1; 2; . . . ; r (2.4)

where

Lk u; θð Þ½ �k¼1;2;...;rd Cθ uð Þð Þk �Mk θð Þ
h i

k¼1;2;...;r
∈Rr (2.5)

is a vector-valued function, called estimating function. Let the sample X1; . . . ;Xnð Þ from
random vector X ¼ X1; . . . ;Xdð Þ, we define the corresponding joint empirical df by

Fn xð Þ ¼ n−1
Xn
i¼1

1 X1i ≤ x1; . . . ;Xdi ≤ xdf g;

with xd x1; . . . ; xdð Þ, and the marginal empirical df’s pertaining to the sample Xj1; . . . ;Xjnð Þ,
from rv Xj, by

Fjn xjð Þ ¼ n−1
Xn
i¼1

1 Xji ≤ xjf g; j ¼ 1; . . . ; d: (2.6)

According to [18]; the empirical copula function is defined by

Cn uð ÞdFn F−1
1n u1ð Þ; . . . ;F−1

dn udð Þ� �
; foru∈ 0; 1½ �d; (2.7)

where F−1
jn sð Þdinf x : Fjn xð Þ≥ sf g denotes the empirical quantile function pertaining to df

Fjn. For each j 5 1, . . ., d, we compute bUjidFjn Xjið Þ, then setbUid bU 1i; . . . ; bUdi

� �
; i ¼ 1; . . . ; n: (2.8)

and for each k 5 1, . . ., r, we compute

bMkdn−1
Xn
i¼1

Cn
bUi

� �� �k
(2.9)

By substitution of Mk by bMk and solving system (2.4) in θ we obtain the solutionbθCMd bθ1; . . . ;bθr� �
, called the CM estimator for θ.

Assume that the following assumptions H :1½ �− H :3½ � hold.
(1) H :1½ � θ0 ∈O⊂Rr is the unique zero of themapping θ→

R
0;1½ �dL u; θð ÞdCθ0 uð Þwhich is

defined from O to Rr, where L u; θð Þ ¼ L1 u; θð Þ; . . . ;Lr u; θð Þð Þ:
(2) H :2½ � L $; θð Þ is differentiable with respect to θ with the Jacobean matrix denoted by

L
•

u; θð Þd vLk u; θð Þ
vθ‘

� �
r3r

;

L
•

u; θð Þ is continuous both in u and θ, and the Euclidean norm L
•

u; θð Þ
				 				 is dominated by a

dCθ -integrable function h uð Þ.
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(3) H :3½ � The r 3 r matrix A0d
R
0;1½ �dL

•

u; θ0ð ÞdCθ0 uð Þ is non-singular.

Theorem 2.1. Assume that assumptions H :1½ �− H :3½ � hold. Then with probability tending

to one as n → ∞, the solution bθCM converges to θ0. Moreoverffiffiffi
n

p bθCM � θ0

� �
→

D N 0;A−1
0 D0 A

−1
0

� �T� �
; as n→∞;

where D0dvar L ξ; θ0ð Þ þ V ξ; θ0ð Þf g and V ξ; θ0ð Þ ¼ V1 ξ; θ0ð Þ; . . . ;Vr ξ; θ0ð Þð Þ with

Vk ξ; θ0ð Þd
Xd
j¼1

Z
0;1½ �d

v Cθ0 uð Þ� �k
vuj

1 ξj ≤ uj

 �� uj

� �
dCθ0 uð Þ; k ¼ 1; . . . ; r;

where ξd ξ1; . . . ; ξdð Þ is a 0; 1ð Þd-uniform random vector with joint df Cθ0.

Proof. See [7]. ,

Now we define the empirical likelihood ratio function for θ by

L θð Þdsup
p

Yn
i¼1

npið Þ :
Xn
i¼1

piLk Ui; θð Þ ¼ 0; pi > 0;
Xn
i¼1

pi ¼ 1

( )

where p 5 (p1, . . ., pn). This is the maximum of the non-parametric likelihood ratio with the
restriction that the mean of the estimating function is zero under the distribution Kθ.

Let, for k 5 1, . . ., r

L
kð Þ
i ¼ Cθ Uið Þð Þk �Mk θð Þ

and bL kð Þ
i;n ¼ Cn

bUi

� �� �k
�Mk θð Þ

where bMk is defined in (2.9). Then, the empirical likelihood evaluated at θ is defined as

~L θð Þ ¼ sup
p

Yn
i¼1

npið Þ :
Xn
i¼1

piL
kð Þ
i ¼ 0;

Xr
i¼1

pi ¼ 1

( )

Since the L
kð Þ
i ’s depend on Cθ, for an unknown θ, we replace them by the bL kð Þ

i;n ’s. Therefore, an
estimated the empirical likelihood evaluated at θ is defined by

L θð Þ ¼ sup
p

Yn
i¼1

npið Þ :
Xn
i¼1

pibL kð Þ
i;n ¼ 0;

Xn
i¼1

pi ¼ 1

( )

Now, by introducing a vector of Lagrange multipliers λ ¼ λ1; . . . ; λrð Þ∈Rr, to find the
optimal pi’s i.e. maximizing

G ¼
Xn
i¼1

log npið Þ � nλk
Xn
i¼1

pibL kð Þ
i;n þ γ

Xn
i¼1

pi � 1

 !
:
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So, setting vG
vpi

¼ 0 gives

vG

vpi
¼ 1

pi
� nλkbL kð Þ

i;n þ γ:

Therefore, the equation
Pn

i¼1pi
vG
vpi

¼ 0 gives γ 5 �n. Then, pi is given by

pi ¼ 1

n
1þ λkbL kð Þ

i;n

� �−1
¼: pi;k:

We have the problem that all the solutions p1,k, p2,k, . . ., pn,k, λk and γ are not obtained in a
closed form. Note that for k 5 1, 2, . . ., r:

Qn
i¼1pi;k, subject to

Pn
i¼1pi;k ¼ 1; attains its

maximum n�n at pi,k 5 1/n. So we define the empirical likelihood ratio for θ as

R θð Þ ¼
Yn
i¼1

npi;kð Þ ¼
Yn
i¼1

1þ λkbL kð Þ
i;n

� �−1
;

and the corresponding empirical log-likelihood ratio is defined as

L θð Þ ¼ −2 logR θð Þ ¼ 2
Xn
i¼1

log 1þ λkbL kð Þ
i;n

� �
; k ¼ 1; 2; . . . ; r; (2.10)

where the vector λ is the solution of the system of r equations given by

1

n

Xn
i¼1

bL kð Þ
i;n

1þ λkbL kð Þ
i;n

¼ 0; k ¼ 1; 2; . . . ; r: (2.11)

Since (2.11) is an implicit function of λ, we may solve (2.11) with respect to λ by the iterative
procedure such as the Newton-Raphson optimization method or a simple grid search.

Theorem2.2. Assume conditions H :1½ �– H :3½ �hold. Then the limiting distribution ofLðθÞ is
a scaled chi-square distribution with r degrees of freedom, that is,

LðθÞ→ χ2rð Þ

3. Illustrative example and simulation study
We consider the transformed Gumbel copula given by

Cα;β u1; u2ð Þd u−α1 � 1
� �β þ u−α2 � 1

� �β� �1=β
þ 1

� �−1=α

; (3.12)

which is also a two-parameter Archimedean copula with generator wα;β tð Þd t−α − 1ð Þβ. Here
θ ¼ α; βð Þ then r 5 2, and U ¼ U1;U2ð Þ. By an elementary calculation we get the kth CM:

Mk α; βð Þ ¼ ðkþ 1Þβ þ αβ � k

kþ 1ð Þ2β þ kþ 1ð Þαβ:

In particular the first two CM’s are

M1 α; βð Þd2β þ αβ � 1

4β þ 2αβ
and M2 α; βð Þd3β þ αβ � 2

9β þ 3αβ
:
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Then

L
1ð Þ
in Ui; α; βð Þd Cn U1i;U2ið Þð Þ �M1 α; βð Þ

and

L
2ð Þ
in Ui; α; βð Þd Cn U1i;U2ið Þð Þ2 �M2 α; βð Þ

Then

pi;1 ¼ 1

n
1þ λ1 Cn U1i;U2ið Þ �M1 α; βð Þð Þð Þ−1

and

pi;2 ¼ 1

n
1þ λ2 Cn U1i;U2ið Þð Þ2 �M2 α; βð Þ

� �� �−1
where the vector λ ¼ λ1; λ2ð Þ satisfies two equations given byXn

i¼1

1þ λ1 Cn U1i;U2ið Þ �M1 α; βð Þð Þð Þ−1 ¼ 0;

Xn
i¼1

1þ λ2 Cn U1i;U2ið Þð Þ2 �M2 α; βð Þ
� �� �−1

¼ 0

Finally, we get

R α;βð Þ
¼

Xn
i¼1

1þλ1 Cn U1i;U2ið Þ�M1 α;βð Þð Þð Þ−1;
Xn
i¼1

1þλ2 Cn U1i;U2ið Þð Þ2�M2 α;βð Þ
� �� �−1 !

To evaluate and compare the performance of empirical likelihood for CM’s estimator is called
the empirical likelihood copula moment (ELCM) estimator with the CM’s and PML’s
estimator, a simulation study is carried out by considering the above example of bivariate
Gumbel copula family Cα,β. The evaluation of the performance is based on the bias and the
RMSE defined as follows:

Bias ¼ 1

R

XR
i¼1

bθi � θ; RMSE ¼ 1

R

XR
i¼1

bθi � θ
� �2 !1=2

; (3.13)

where bθi is an estimator (from the considered method) of θ from the ith samples for R
generated samples from the underlying copula. In both parts, we selectedR5 1000. To assess
the improvement in the bias and RMSE of the estimators we repeat the following steps:

Step 1: For a given sample X1; . . . ;Xnð Þ from random vector X ¼ X1; . . . ;Xdð Þ, we
define the corresponding joint empirical df by

Cn xð Þ ¼ n−1
Xn
i¼1

1 X1i ≤ x1; . . . ;Xdi ≤ xdf g:

with xd x1; . . . ; xdð Þ. For each j 5 1, . . ., d, compute (2.8).
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Step 2: Solve the following system for k 5 1, . . ., r,Xn
i¼1

1þ λk Cn
bUi

� �� �k
�Mk θð Þ

� �� �−1

¼ 0;

The obtained solution bθELCMd bθ1; . . . ;bθr� �
.

For different sample sizes n with n5 50, 100, 200, 500 with increasing sample size and a
large set of parameters of the true copula Cα,β. The choice of the true values of the parameter
α; βð Þhas to be meaningful, in the sense that each couple of parameters assigns a value of one
of the dependence measure, that is weak, moderate and strong dependence. The selected
values of the true parameters are summarized in Table 1, the results are summarized in
Table 2.

4. Comments and conclusions
From Table 2, by considering three dependence cases: weak (τ 5 0.01), moderate (τ 5 0.5)
and strong (τ 5 0.8), the performance of the ELCM estimator remains quite good in small
sample size. We show that the ELCM estimator is performs better than the CM based
estimator in large one. Moreover, in time-consuming point of view, we observe that for a
sample size n 5 30 with N 5 1000 replications, the central processing unit (CPU) time
to apply ELCM method took 1.442 hours, which takes approximately the same time with
the PLM method and is relatively big to the CM method, which is measured in seconds
22.013. For only one replication, the CPU times (in seconds), for different sample
sizes, are summarized as follows: (n, CPU) 5 (30, 5.2613), (100, 10.891), (200, 16.965),
(500, 25.995), (see Table 3). Which opens the door to new applications in copulas estimation
framework.

5. Proofs
5.1 Proof of Theorem 2.2
For the proof we need the following Lemmas

Lemma 5.1. Under the same conditions as in Theorem 2.1

1ffiffiffi
n

p
Xn
i¼1

bL kð Þ
i;n →N 0; σ21 θð Þ� �

:

Proof. Follows straightaway from Theorem 2.1, see [7].

Lemma 5.2. Under the same conditions as in Theorem 2.1, for k 5 1, 2, . . ., r we have

1ð Þ 1

n

Xn
i¼1

bL kð Þ
i;n

� �2
¼ Op 1ð Þ; 2ð Þ bσ2k θð Þ ¼ 1

n

Xn
i¼1

bL kð Þ
i;n

� �2
þ op 1ð Þ:

τ α β

Weak 0.01 0.1 1.059
Moderate 0.5 0.5 1.600
Strong 0.8 0.9 3.450

Table 1.
The true parameters of

transformed gumbel
copula used for the
simulation study
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n

τ
5
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τ
5

0.
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P
U
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Table 2.
Bias and RMSE of
ELCM estimator of
two-parameter
transformed gumbel
copula
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4
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9
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9
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1
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0
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2

0.
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1

C
M
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0.
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2
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8
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6

�0
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0.
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3
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1

0.
12
0
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0.
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1
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0.
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3
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M
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.0
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0.
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1

�0
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0.
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0

�0
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0

�0
.3
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0.
22
5

�0
.0
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4
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8

0.
20
0

Table 3.
Bias and RMSE of

ELCM, CM and PML
estimators of two-

parameter transformed
gumbel copula

Empirical
likelihood based

estimation
method

199



Proof. (1) From the law of large number, it follows that

1

n

Xn
i¼1

L
kð Þ
i

� �2
¼ E L

kð Þ
1

� �2� �
þ op 1ð Þ ¼ Op 1ð Þ

(2) Let

T ¼ 1

n

Xn
i¼1

bL kð Þ
i;n

� �2
� 1

n

Xn
i¼1

L
kð Þ
i

� �2					
					:

So we can write

T ¼ 1

n

Xn
i¼1

bL kð Þ
i;n � L

kð Þ
i

� � bL kð Þ
i;n � L

kð Þ
i þ 2L

kð Þ
i

� �					
					

≤
1

n

Xn
i¼1

bL kð Þ
i;n � L

kð Þ
i

� �2
þ 2

1

n

Xn
i¼1

bL kð Þ
i;n � L

kð Þ
i

� �
L

kð Þ
i

					
					≡T1 þ 2T2:

We have

T1 ¼ 1

n

Xn
i¼1

Cθ
bUi

� �� �k
� Cn

bUi

� �� �k� �2

¼ Op 1ð Þ;
and

T2 ¼ 1

n

Xn
i¼1

Cθ
bUi

� �� �k
� Cn

bUi

� �� �k� �
L

kð Þ
i

					
					

≤ sup
t

Cθ tð Þð Þk � Cn tð Þð Þk
� � 1

n

Xn
i¼1

L
kð Þ
i

					
					 ¼ Op 1ð Þ:

Hence T ¼ Op 1ð Þ. It follows

bσ2
k θð Þ�1

n

Xn
i¼1

bL kð Þ
i;n

� �2					
					 ¼ 1

n

Xn
i¼1

Cn
bUi

� �� �k
� bMk

� �2

�1

n

Xn
i¼1

Cn
bUi

� �� �k
�Mk θð Þ

� �2
					

					
¼ 1

n

Xn
i¼1

bMk�Mk θð Þ
� � bMk�2 Cn

bUi

� �� �k
þMk θð Þ

� �					
					

≤ bMk�Mk θð Þ
			 			 1

n

Xn
i¼1

bMk� Cn
bUi

� �� �k� �					
þ 1

n

Xn
i¼1

Mk θð Þ� Cn
bUi

� �� �k� �					
≤ bMk�Mk θð Þ
� �2

¼op 1ð Þ:

The proof of Lemma 5.2 is completed. ,
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As showing in [19]; for k 5 1, 2, ..., r,

λk¼Op n−1=2
� �

:

Now applying Taylor’s expansion to L θð Þ, we have

L θð Þ ’ 2
Xn
i¼1

λkbL kð Þ
i;n � 1

2
λkbL kð Þ

i;n

� �2� � !
(5.14)

Note that from (2.11), for k 5 1, 2, . . ., r

Xn
i¼1

bL kð Þ
i;n

1þ λkbL kð Þ
i;n

¼ 0 ¼
Xn
i¼1

bL kð Þ
i;n 1� λkbL kð Þ

i;n þ
λkbL kð Þ

i;n

� �2
1þ λkbL kð Þ

i;n

0B@
1CA

¼
Xn
i¼1

bL kð Þ
i;n � λk

Xn
i¼1

bL kð Þ
i;n

� �2
þ
Xn
i¼1

λ2k bL kð Þ
i;n

� �3
1þ λkbL kð Þ

i;n

(5.15)

From, Lemma 5.2 it follows that for k 5 1, 2, . . ., r

λk ¼
Xn
i¼1

bL kð Þ
i;n

� �2 !−1Xn
i¼1

bL kð Þ
i;n þ op n−1=2

� �
: (5.16)

By (5.15) we get

Xn
i¼1

λkbL kð Þ
i;n

1þ λkbL kð Þ
i;n

¼
Xn
i¼1

λkbL kð Þ
i;n �

Xn
i¼1

λkbL kð Þ
i;n

� �2
þ
Xn
i¼1

λkbL kð Þ
i;n

� �3
1þ λkbL kð Þ

i;n

¼ 0

Note that

Xn
i¼1

λkbL kð Þ
i;n

� �3
1þ λkbL kð Þ

i;n

¼ Op n−1=2
� �

then Xn
i¼1

λkbL kð Þ
i;n ¼

Xn
i¼1

λkbL kð Þ
i;n

� �2
þ op 1ð Þ;

Therefore, it follows from (5.14) and Lemmas 5.1 and (5.16) that

LðθÞ ¼ 2
Xn
i¼1

λkbL kð Þ
i;n � 1

2
λkbL kð Þ

i;n

� �2� � !

¼
Xn
i¼1

λkbL kð Þ
i;n

� �2 !
þ op 1ð Þ

¼
Xn
i¼1

bL kð Þ
i;n

� �2 !−1 Xn
i¼1

bL kð Þ
i;n

 !2

þ op 1ð Þ

→ χ21:

The proof of Theorem 2.2 is completed.
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