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Abstract

Purpose — In this paper, the authors applied the empirical likelihood method, which was originally proposed
by Owen, to the copula moment based estimation methods to take advantage of its properties, effectiveness,
flexibility and reliability of the nonparametric methods, which have limiting chi-square distributions and may
be used to obtain tests or confidence intervals. The authors derive an asymptotically normal estimator of
the empirical likelihood based on copula moment estimation methods (ELCM). Finally numerical performance
with a simulation experiment of ELCM estimator is studied and compared to the CM estimator, with a good
result.

Design/methodology/approach —In this paper we applied the empirical likelihood method which originally
proposed by Owen, to the copula moment based estimation methods.

Findings — We derive an asymptotically normal estimator of the empirical likelihood based on copula moment
estimation methods (ELCM). Finally numerical performance with a simulation experiment of ELCM estimator
is studied and compared to the CM estimator, with a good result.

Originality/value — In this paper we applied the empirical likelihood method which originally proposed by
Owen 1988, to the copula moment based estimation methods given by Brahimi and Necir 2012. We derive an
new estimator of copula parameters and the asymptotic normality of the empirical likelihood based on copula
moment estimation methods.

Keywords Archimedean copulas, Asymptotic distribution, Copula models, Method of moments,
Semi-parametric models, Z-estimator
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1. Introduction

One of the main topics in multivariate statistical analysis is the statistical inference on the
dependence parameter 6. Many researchers investigated the copula parameter estimation,
namely the methods of concordance [1, 2] fully and the pseudo maximum likelihood [3],
inference function of margins [4, 5], minimum distance [6] and recently the copula moment
and L-moment based estimation methods given in [7, 8].

In this paper we applied the empirical likelihood method to the copula moment based
estimation methods which originally proposed by [9-11]. Several authors investigated the
empirical likelihood see for instance [12-16].

The advantage of this method is that the empirical likelihood has both effectiveness and
flexibility of the likelihood method, and reliability of the non-parametric methods, and it helps
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us to construct confidence intervals without estimating the asymptotic variance, so the
complexity of the asymptotic variance for some estimator especially the CM based estimators
and the construction of non-parametric confidence intervals via estimating the asymptotic
variance is usually inaccurate.

2. Empirical likelihood for CM based estimation method
We consider the Archimedean copula family defined by C(u) = ¢! (Zj‘-lzlcp(uj)), where

¢:[0,1] - R is a twice differentiable function called the generator, satisfying: ¢(1) =0,
@' (x) < 0,¢"(x)>0forany x € (0,1)andu = (u, . . ., ug). The notation ¢~ stands for the
inverse function of ¢. Archimedean copulas are easy to construct and have nice properties. A
variety of known copula families belong to this class, including the models of Gumbel,
Clayton, Frank, . . .(see, Table 4.1 in [17], p. 116).

Let Kc(s):==P(C(U) <s), s€[0,1], be the df of rv C(U), where U = (Uy, ..., Uy), then
the kth-moment M, (C), called copula moment, of rv C(U) given in [7] as the expectation of
(C(U))*, that is

Mk(C):=[E{(C(U))k} - / (C(u))dC(u), k=1,2, ... @1

0.1

Equation (2.1) may be rewritten into:
1
Mi(C) = / FdKe(s), k=1,2,....
0

Suppose now, for unknown 0 € O, that ¢ = ¢y, it follows that C = Cy, K¢ = Ky and
My (C) = My(0), that is

1
My(6) = / FdKy(s), k=1.2,...,
0

from Theorem 4.3.4 in [17] we have for any s € [0, 1], Kg(s) = s — @y (s)/ ¢p(5), it follows that
2

the corresponding density is Kj(s) = ¢;(s)eg(s)/ (@p(s))". Therefore (2.1), may be rewritten
into

%"(j)ds, F=1,2,... 2.2
A8))

1 "
My(6) = / %0
0

In terms of ¢g.
The non-parametric likelihood of distribution function K¢ of rv C(U) is defined by

£e) = [[Kecru), 23)

Where U;:= (U, ..., Uy). We restrict K¢ to the one having the probability
b =Ke(C(U) >0

on each observation U;. By a simple calculation, we find the maximizer of the non-parametric
likelihood (2.3) turns to be the empirical distribution function K, placing probability 1/# on
each observation. Therefore, similar to the parametric case, non-parametric likelihood ratio of
K¢ to the maximizer K¢, is defined by:



ek Ilp ¢
R(Kc¢) = === — 1 (mp)).
L(Kc,) l_L_:1 1/n g
Suppose now that we are interested in a parameter @ € O c R”, C = Cyand K- := Kp that the
parameter @ satisfies the following equations

[E[Lk(u,Ho)] = O,k = 17 2, T (24)

where

L),y = |(G@) ~MO)] e 5)
is a vector-valued function, called estimating function. Let the sample (X, ...,X,,) from
random vector X = (X, ...,X;), we define the corresponding joint empirical df by

Fy(x)=n" Z Xy <x,..., Xy < x4},
=1

withx:= (x1, . .., %,), and the marginal empirical df’s pertaining to the sample (Xjy, . . ., Xj,),
from rv X}, by

Fx) =n Y HXi<x},j=1,....d. (26)

i1
According to [18]; the empirical copula function is defined by
Co(w)=F, (Fy (), ..., Foh (ug)), forue 0,1, 2.7

1n

where ;' (s):=inf{x : F},(x) > s} denotes the empirical quantile function pertaining to df

n
Fj,.Foreachj =1, ..., d, we compute Uj;:=Fj,(X), then set

~

Uizz((A]h-,...,(A]di),izl,...,n. @8)

and foreach 2 =1, .. ., », we compute
~ e o k
My=n" g (Cn (U)) 29)

By substitution of M, by M » and solving system (2.4) in € we obtain the solution

@CM = (@1, . ,@), called the CM estimator for 6.

Assume that the following assumptions [H.1] — [H.3] hold.

(1) [H.1] 6y € O c R"is the unique zero of the mapping § — f[OJ]dL(u; 0)dCy,(u) which is
defined from O to R, where L(u;8) = (L1(u;8),...,L,(u;6)).

(2) [H.2] L(-;0) s differentiable with respect to 8 with the Jacobean matrix denoted by

Lwoy= "0

I:(u; 0) is continuous both in uand 6, and the Euclidean norm i(u; 9)

is dominated by a

dCy -integrable function 2 (u).
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() [H.3] The » X » matrix Ag:= f[oﬁl]dI:(u; 0y)dCy,(u) is non-singular.

Theorem 2.1. Assume that assumptions [H 1] — [H.3] hold. Then with probability tending

to one as n — oo, the solution 0 converges to 6y Moreover
M T
\/;2(0 —00) EN(OAngO(Agl) ) asn— oo,

where Dy:=var{L(&;0y) + V(&;00)} and V(af; 0o) = (V1(&00), ..., V,(&600)) with

C 0
Vil&io): Z/ f;u] 1{§J<MJ}_MJ)dC90( ), k=1,...,7,
where E= (&, . .., &) is a (0,1)-uniform random vector with joint df Cy,
Proof. See[7] .

Now we define the empirical likelihood ratio function for 8 by

_Sup{H(npz Zpth 27 >pl > 0 sz = 1}

where p = (b1, . . ., p,). This is the maximum of the non-parametric likelihood ratio with the
restriction that the mean of the estimating function is zero under the distribution K.
Let, fork=1,....7»
= (G(U)" — My(8)

and
(k)

I = (. (G,-))k VAT)

where M 1 1s defined in (2.9). Then, the empirical likelihood evaluated at @ is defined as

Lo )—sgp{l_[ (npy) sz O,ipizl}

Since the L ’s depend on Cy, for an unknown @, we replace them by the L s Therefore, an
estimated the empirical likelihood evaluated at € is defined by

Lo )—sip{l_[ (np;) Zpl Yo Zpl_1}

Now, by introducing a vector of Lagrange multipliers A = (4;,...,4,) €R’, to find the
optimal p;’s i.e. maximizing

G= ; log(np;) — ni ;plLl L7 <;pl — 1) )



So, setting g—g = 0 gives
G 1 (k)
—=——nklL; .
o b e
Therefore, the equation Y ,p; 37? = 0 gives y = —n. Then, p; is given by
-1

bi= % (1 + ﬂkﬁ?) =:Dip-

We have the problem that all the solutions p1 z, P2z - - -, Duso A and y are not obtained in a
closed form. Note that for &2 = 1, 2, ..., 7 [[/_,Dis subject to > pip = 1, attains its
maximum # " at p;, = 1/n. So we define the empirical likelihood ratio for € as

n n

RO) = [Jowi) = [ (1+ zszff)_l,

=1 =1

and the corresponding empirical log-likelihood ratio is defined as

< ~(k
£(6) = ~21ogR(0) =2 ) log(1+ Ml ) k=127, 2.10)
=1
where the vector A is the solution of the system of » equations given by

% 0k =1,2,...,7. (CARY

Since (2.11) is an implicit function of A, we may solve (2.11) with respect to A by the iterative
procedure such as the Newton-Raphson optimization method or a simple grid search.

Theorem 2.2. Assume conditions [H 1-[H .3] hold. Then the imiting distribution of L(0) s
a scaled chi-square distribution with v degrees of freedom, that is,

L(O) -,

3. Illustrative example and simulation study
We consider the transformed Gumbel copula given by

8 -1/a
Guntine)= (=1 + 2 1) "41) 12

which is also a two-parameter Archimedean copula with generator ¢, 4(¢) = (17" — 1)’ Here
0 = (a, ) then» = 2, and U = (U;, U»). By an elementary calculation we get the %th CM:

(k+ 1) +ap—k
Mi(a.p) = .
W) = G 8 s (et Dap

In particular the first two CM’s are
2P+ ap—1

3 -2
M (a, p):= 46 + 2ap =

and Ms(a, B):= BT 3ap
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Then
LY (Ui a, )= (C,(Uy, Un)) — Mi(at, B)

and
LP (U a, B) = (C,(Uy, Uy))* — My(at, )
Then
1 _
pia = (L+ 4(Co(U, Uy) = Mi(a. )™
and

po = (144 ((GU )P ~ (e )

where the vector 1 = (41, 42) satisfies two equations given by

n

> A+ 4(G(U, Ux) = Ma(a, )™ = 0,
.n (1+/12((Cn(U1i,U2z'))2*MZ(a"B)»_l =0
Finally, we get
R(a.p)
= (Z(1+/11(C;1(U1i7U21-)_Ml(a’ﬂ)))17. (1+/12((Cn(Uu,UZi))Z_Mz(a,ﬂ)>)_1>

To evaluate and compare the performance of empirical likelihood for CM’s estimator is called
the empirical likelihood copula moment (ELCM) estimator with the CM’'s and PML’s
estimator, a simulation study is carried out by considering the above example of bivariate
Gumbel copula family C, 4. The evaluation of the performance is based on the bias and the
RMSE defined as follows:

1/2
Bias :zle ZR:&- — 0, RMSE = (1% zR: (5,- _ 9)2) , (3.13)
=1 =1

where /9\1 is an estimator (from the considered method) of 8 from the /th samples for R
generated samples from the underlying copula. In both parts, we selected R = 1000. To assess
the improvement in the bias and RMSE of the estimators we repeat the following steps:

Step 1: For a given sample (X, ...,X,) from random vector X = (Xi,...,Xy), we
define the corresponding joint empirical df by
Cu(x)=n"" Z 1{X <x1,..., Xy <24}
=1

with x:= (%1, ...,%,). Foreachj = 1, ..., d, compute (2.8).



Step 2: Solve the following system fork =1, ..., 7, Empirical
likelihood based

n R A -1
> <1 +h ((Cn (0)) - Mk(g))) =0, estimation
AEZL:CIM ~ - method
The obtained solution 6 = (61, A 67)

For different sample sizes # with # = 50, 100, 200, 500 with increasing sample size and a 197
large set of parameters of the true copula C, 4. The choice of the true values of the parameter
(a, f) has to be meaningful, in the sense that each couple of parameters assigns a value of one
of the dependence measure, that is weak, moderate and strong dependence. The selected
values of the true parameters are summarized in Table 1, the results are summarized in
Table 2.

4. Comments and conclusions

From Table 2, by considering three dependence cases: weak (r = 0.01), moderate (zr = 0.5)
and strong (z = 0.8), the performance of the ELCM estimator remains quite good in small
sample size. We show that the ELCM estimator is performs better than the CM based
estimator in large one. Moreover, in time-consuming point of view, we observe that for a
sample size n = 30 with N = 1000 replications, the central processing unit (CPU) time
to apply ELCM method took 1.442 hours, which takes approximately the same time with
the PLM method and is relatively big to the CM method, which is measured in seconds
22.013. For only one replication, the CPU times (in seconds), for different sample
sizes, are summarized as follows: (z, CPU) = (30, 5.2613), (100, 10.891), (200, 16.965),
(500, 25.995), (see Table 3). Which opens the door to new applications in copulas estimation
framework.

5. Proofs
5.1 Proof of Theorem 2.2
For the proof we need the following Lemmas

Lemma 5.1. Under the same conditions as in Theorem 2.1

ZL —>N062 ))

nn

Proof. Follows straightaway from Theorem 2.1, see [7].

Lemma 5.2. Under the same conditions as in Theorem 2.1, for k =1, 2, ..., v we have

NN 2 IR NN
® > (L) =00, @50)=3 (L) +o).
=1 i=1
T a B Table 1.
The true parameters of
Weak 0.01 0.1 1.059 transformed gumbe]
Moderate 0.5 0.5 1.600 copula used for the

Strong 0.8 0.9 3450 simulation study
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Proof. (1) From the law of large number, it follows that

22 () = (1) ] ram =00

(2) Let

So we can write

T o RS- - e
=1
< % 21: (L - Lﬁk))z +2 % Z(Z(k) ~ L)L =T 42T,
We have

and

Hence T = O,(1). It follows

a0 (L))

i=1

The proof of Lemma 5.2 is completed.




As showing in[19], for k =1, 2, ..., 7, Empirical

Ar=0,(n7'1?). likelihood based
Now applying Taylor’s expansion to £(), we have estimation
) , method
. (&) (k)
£(0) ~2 <21 (szl.‘n - é(szm) >> (5.14)
- 201

Note that from (2.11), fork = 1,2, ..., 7

~(k (k)
. L, ") ~®) (’Mim)
= 0= in 1- j’kLi,n ~(k)
T 1+ /lkLt ” i-1 14+ 4L,

(6.15)

I
(]
:h
>

i-
/N
£
~—~
i
=

From, Lemma 5.2 it follows that for £ =1, 2, .

= (Z( ) ) ZLM +0,(n72). (5.16)

=1

By (56.15) we get
. ; L ) , . (/Ikz(k))g
¢ wh) ST (LY £ A g
ZZ] It ikLl ; ; ki 2:21 ( & z,ﬂ’t) 14 jszl(};)
Note that
3
n (/IlﬂLl n) _ 01, (n_l/z)
=1 1+ AkL, "
then

i/’{kzz(;: - Z <ﬂ’}’L1 n) + Oﬁ(l)’
=1

=1

Therefore, it follows from (5.14) and Lemmas 5.1 and (5.16) that

2 <Z (/IkLl g (zﬁL, ) ) )
(z; MLy, ) +0,(1)

( y zn ) <ZL1 n) +017(1)

- )( 1
The proof of Theorem 2.2 is completed.

£(0)
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