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Abstract

Purpose –When the probability of each model is known, a natural idea is to select the most probable model.
However, in many practical situations, the exact values of these probabilities are not known; only the intervals
that contain these values are known. In such situations, a natural idea is to select some probabilities from these
intervals and to select amodel with the largest selected probabilities. The purpose of this study is to decide how
to most adequately select these probabilities.
Design/methodology/approach – It is desirable to have a probability-selection method that preserves
independence. If, according to the probability intervals, the two events were independent, then the selection of
probabilities within the intervals should preserve this independence.
Findings – The paper describes all techniques for decision making under interval uncertainty about
probabilities that are consistent with independence. It is proved that these techniques form a 1-parametric
family, a family that has already been successfully used in such decision problems.
Originality/value – This study provides a theoretical explanation of an empirically successful technique for
decision-making under interval uncertainty about probabilities. This explanation is based on the natural idea
that the method for selecting probabilities from the corresponding intervals should preserve independence.

KeywordsDecision making under uncertainty, Interval uncertainty about probabilities, Independent events,

Maximum likelihood approach

Paper type Research paper

1. Formulation of the problem
1.1 Need for indirect measurements and data processing
In many practical situations, we are interested in the quantity y that is difficult – or even
impossible to measure directly. For example, we may be interested in tomorrow’s
temperature or in next year’s gross domestic product (GDP). Since we cannot measure the
quantity y directly, we need to measure it indirectly, i.e.:

(1) find easier-to-measure quantities x1, . . ., xn which are related to y by a known
dependence y ¼ f x1; . . . ; xnð Þ,
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(2) measure the values of these quantities, resulting inmeasurement results~x1; . . . ;~xn, and

(3) compute the desired estimate ~y ¼ f ~x1; . . . ; ~xnð Þ by applying the algorithm f to the
results ~xi of measuring xi.

Computing ~y is an important particular case of data processing.

1.2 Need to find a model
In many practical situations, we know the function f x1; . . . ; xnð Þ. For example, in celestial
mechanics, we know how the future location y of a celestial body depends on the current
location and velocity of this and other bodies. However, in many other practical situations, we
do not know this dependence. In such cases, we need to determine this dependence from the
experiments and/or observations. Specifically.

(1) In several (K) cases, we know both the values x
kð Þ
i of the inputs xi and the value y

kð Þ of
the desired quantity y, and

(2) We need to find the dependence f x1; . . . ; xnð Þ that is consistent with all these
observations, i.e. for which, for all k from 1 to K, we have

y kð Þ ¼ f x
kð Þ
1 ; . . . ; x kð Þ

n

� �
: (1)

1.2.1 Terminological comment.

(1) The resulting function y ¼ f x1; . . . ; xnð Þ serves as a model of the corresponding
situation.

(2) In statistics, the problem of finding a model is known as regression.

(3) In computer science, the same problem –when solved by an algorithm – is knownwas
machine learning.

(4) In this paper, we use theword “model” in the general scientific sense – as a description
of a real-life process, i.e. in this case, as a function f(x1, . . ., xn) that estimates the
desired quantity y. To avoid possible confusion, it should be mentioned that in
statistics, sometimes, a “model” means a family of such functions – e.g. all linear
functions or all linear functions that depend only on the first k variables x1, . . ., xk.

1.3 Need to select a model

(1) To describe a general function f x1; . . . ; xnð Þ, we need to describe infinitely many
parameters – e.g. the values of the function at all the tuples x1; . . . ; xnð Þ for which all
the values xi are rational.

(2) Our only requirement on possible functions is to satisfy K equations (1).

Here, the number of parameters much larger than the number of equations. Thus, there are, in
general, many different functions that fit all the observations.

We therefore need to select one of these functions, i.e. we need to select a model.

1.4 How a model is selected now: case when we know probabilities
In some cases, we know the probabilities pi of different models. In this case, a reasonable idea
is to select themost probablemodel, i.e. themodel whose probability is the largest: pi ¼ max

j
pj.
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Such a selection is, e.g. one of the main ideas behind the maximum likelihood approach to
model selection; see, e.g (Sheskin, 2011). In this method, usually, we maximize the probability
p by solving the equivalent problem of minimizing the quantity

L¼def � ln pð Þ:

1.4.1 Comment. It should be mentioned that, strictly speaking, likelihood is not the
probability of a model; it is the probability of the data according to this model. To come up
with the probability of the model, we need to use Bayesian approach. In this approach, if we
assume that a priori all models are equally probable – i.e. that prior distribution is uniform –
then likelihood becomes proportional to the probability of the model, so that maximizing
likelihood is equivalent to maximizing the model’s probability.

1.5What if we only have partial information about probabilities: description of the situation
Often, we only have partial information about the probabilities. For example, instead of the
exact values pi of each probability, we only know the lower bound p

i
and the upper bound

pi: p i
≤ pi ≤ pi.

In this case, the only information that we have about the probability pi is that this
probability is contained on the interval

�
p
i
; pi

�
. Thus, this situation is known as interval

uncertainty.

1.6 How to make a decision under such interval uncertainty: a natural idea
In situations with interval uncertainty, it is desirable to apply well-traditional probability-
based decision making technique. To do this, we need to select, within each of the intervals

p
i
; pi�

h
, one of the values pi, and then select the model with the largest value of this selected

probability pi.

1.7 Resulting challenge
How do we select a value pi in each interval? There are many different ways to select, which
one should we choose?

1.8 What we do in this paper
In this paper, we show that a natural condition on the selection of the probability values from
the corresponding intervals uniquely determine a 1-parametric family of such selections – the
only selections that satisfy this natural condition.

2. Main result
2.1 Natural condition: informal description
Wewant to find amapping that assigns, to each interval of probability values, a number from
this interval. It is desirable to select this mapping so that it preserves important properties of
the situation.

In probabilistic techniques, one of the most important notions is the notion of
independence. It is therefore reasonable to require that the desired intervals-to-numbers
mapping satisfy the following condition: If the two events were independent, then this
mapping should preserve this independence.
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2.2 Let us formalize this natural condition
If two events with probabilities p1 and p2 are independent, then the probability of them
occurring at same time is equal to the product p1 $ p2 of the corresponding probabilities. If for
each of these events, we only know the interval

�
p
i
; pi

�
of possible values of its probability,

then possible values of the probability that both events occur is equal to the set of possible
values �

p1$p2 : p1 ∈
�
p
1
; p1

�
and p2 ∈

�
p
2
; p2

��

one can easily check that this set is equal to the interval
�
p
1
$p

2
; p1$p2

�
; see, e.g. (Jaulin et al.,

2012), (Kubica, 2019; Mayer, 2017; Moore et al., 2009). Indeed, for non-negative values pi, the
product function p1, p2↦p1 $ p2 is (nonstrictly) increasing with respect to each of its
variables. Thus:

(1) The smallest possible value of this function when pi ∈
�
p
i
; pi

�
is attained when both

inputs are the smallest possible, i.e. when pi ¼ p
i
for both i, and

(2) The largest possible value of this function when pi ∈
�
p
i
; pi

�
is attained when both

inputs are the largest possible, i.e. when pi ¼ pi for both i.

Thus, we arrive at the following definition.

Definition. We say that amapping f that maps each subinterval p ; p��
of the interval 0; 1½ �

into a number f p ; pÞ�
from this interval is natural if it satisfies the following

condition: for all values p
1
≤ p1 and p

2
≤ p2, we have

f
�
p
1
$p

2
; p1$p2

	 ¼ f
�
p
1
; p1

	
$f
�
p
2
; p2

	

Proposition. A mapping is natural if and only if, for some α∈ 0; 1½ �, it has the form

f
�
p ; p

	 ¼ p
α
$p

1−α
:

Discussion. The function L ¼ −ln pð Þ is decreasing with respect to p. Thus, when
p∈ p ; p��

, then:

(1) The smallest value L of L ¼ −ln pð Þ is attained when p is the largest, i.e. when p ¼ p:

L ¼ −ln pð Þ;

(2) The largest value L of L is attained when p is the smallest, i.e. when p ¼ p :

L ¼ −ln p Þ:�

For the values L ¼ −ln pð Þ, L ¼ −ln pð Þ, and L ¼ −ln p Þ�
, the above formula takes the form

L ¼ α$Lþ 1− αð Þ$L . Interestingly, this is exactly Hurwicz optimism-pessimism criterion
that is used for decision making under interval uncertainty; see, e.g. (Hurwicz, 1951;
Kreinovich, 2014; Luce and Raiffa, 1989).
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This model selection has been successfully used; see, e.g. (Denœux, 2023).
Proof of the Proposition.

1. It is easy to prove that the above formula leads to a natural mapping. So, to complete the
proof, it is sufficient to prove that every natural mapping has this form.

Let f p ; pÞ�
be a natural mapping. Let is prove that it has the desired form.

2. For each p, by definition of a natural mapping, the value f p; pð Þ belongs to the interval
p; p½ � and is, thus, equal to p. In particular, for p 5 0, we get

f 0; 0ð Þ ¼ 0:

3. Let us first take p1 ¼ p2 ¼ 0 and p1 ¼ p2 ¼ 1. In this case, the naturalness condition
implies that f 0; 1ð Þ$f 0; 1ð Þ ¼ f 0; 1ð Þ. Thus, either f 0; 1ð Þ ¼ 1 or f 0; 1ð Þ ¼ 0. Let us
consider these two possible cases one by one.

4. Let us first consider the case when f 0; 1ð Þ ¼ 1.

4.1. In this case, for every a∈ 0; 1½ �, for p
1
¼ 0, p1 ¼ 1, p

2
¼ 1, and p2 ¼ 1, we get

f 0; 1ð Þ$f a; 1ð Þ ¼ f 0; 1ð Þ. Since f 0; 1ð Þ ¼ 1, this means that f a; 1ð Þ ¼ 1 for all a.

4.2. Now, for all possible p ≤ p for which p > 0, naturalness leads to

f
�
p ; p

	 ¼ f p; pð Þ$f �p
p; 1	

As we have proven in Section 4.1 of this proof, the second factor f p =p; 1Þ�
is equal to 1. The

first factor f p; pð Þ is, by Part 2 of this proof, equal to p.
So, for all cases when p > 0, we have f p ; pÞ ¼ p

�
.

4.3. For p ¼ 0, the formula f p ; pÞ ¼ p
�

is also true – by Part 2 of this proof. Thus, this
formula holds for all p ≤ p. This corresponds to α 5 0.

5. Let us now consider the case when f 0; 1ð Þ ¼ 0.

In this case, naturalness implies that, for all p, we have

f 0; pð Þ ¼ f 0; 1ð Þ$f 0; pð Þ

and hence f 0; pð Þ ¼ 0. Let us now consider intervals for which p > 0, and thus, for

F Að Þ¼def− ln f exp −Að Þ; 1ð Þð Þ, we always have F Að Þ≥ 0. In particular, F 1ð Þ≥ 0.

5.1. Let us first consider the values f a; 1ð Þ corresponding to a > 0. When a < b,
then we have f a; 1ð Þ ¼ f a=ð b; 1Þ$f b; 1ð Þ. Since f a=ð b; 1Þ is a probability, it is smaller
than or equal to 1, thus, f a; 1ð Þ≤ f b; 1ð Þ, i.e. f a; 1ð Þ is a nonstrictly increasing
function of a.

5.2. Each value a > 0 can be represented as exp −Að Þ for A ¼ −ln að Þ. By definition of the
natural mapping, each such value f a; 1ð Þ for a > 0 is greater than or equal to a > 0 and
thus, f a; 1ð Þ > 0. So, we can take logarithm of these values as well. Let us denote

F Að Þ¼def− ln f exp −Að Þ; 1ð Þð Þ. Probabilities f exp −Að Þ; 1ð Þ are smaller than or equal to 1, so

ln f exp −Að Þ; 1ð Þð Þ≤ 1 ¼ 0

and thus, forF Að Þ¼def− ln f exp −Að Þ; 1ð Þð Þ, we always haveF Að Þ≥ 0. In particular, F 1ð Þ≥ 0.
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5.3. Let us prove that F Að Þ is a (nonstrictly) increasing function.

Indeed, if A < B, then �A > � B. Since exp xð Þ is an increasing function, we get
exp −Að Þ > exp −Bð Þ. Since f a; 1ð Þ is a nonstrictly increasing function of a, we conclude
that f exp −Að Þ; 1ð Þ≥ f exp −Bð Þ; 1ð Þ. Since ln xð Þ is an increasing function, we
conclude that

ln f exp −Að Þ; 1ð Þð Þ≥ ln f exp −Bð Þ; 1ð Þð Þ:

Multiplying both sides by �1, we get

−ln f exp −Að Þ; 1ð Þð Þ≤ � ln f exp −Bð Þ; 1ð Þð Þ;

i.e. F Að Þ≤F Bð Þ. The statement is proven.

5.4. For values f a; 1ð Þ, naturalness implies that f a$b; 1ð Þ ¼ f a; 1ð Þ$f b; 1ð Þ. For
a ¼ exp −Að Þ and b ¼ exp −Bð Þ, we have a$b ¼ exp − Aþ Bð Þð Þ, thus,

f exp − Aþ Bð Þð Þ; 1ð Þ ¼ f exp −Að Þ; 1ð Þ$f exp −Bð Þ; 1ð Þ:

By taking negative logarithms of both sides, we get

F Aþ Bð Þ ¼ F Að Þ þ F Bð Þ: (2)

5.5. For every integer m, formula (2) implies that

F m$Að Þ ¼ F Aþ � � � þ A m timesð Þð Þ ¼
F Að Þ þ � � � þ F Að Þ m timesð Þ ¼ m$F Að Þ: (3)

in particular, for m 5 n and A 5 1/n, we get F 1ð Þ ¼ n$F 1=ð nÞ, hence
F 1=nð Þ ¼ 1=nð Þ$F 1ð Þ: (4)

for a general m and A 5 1/n, we get F m=ð nÞ ¼ m$F 1=ð nÞ. Due to (4), we get
F m=ð nÞ ¼ m=ð nÞ$F 1ð Þ, i.e. F rð Þ ¼ r$F 1ð Þ for all rational number r.

5.6. For every real number x and for every positive integer n, we can take, asmn, an integer
part of n $ x, so thatmn ≤ n $ x <mnþ 1. By dividing all parts of this inequality by n, we
get mn=n≤ x < mn þ 1ð Þ=n. In the limit n → ∞, we get mn/n → x and mn þ 1ð Þ=n→ x.

By Part 5.3 of this proof, the function F Að Þ is nonstrictly increasing, thus
F mn=ð nÞ≤F xð Þ≤F mn þ 1ð Þ=ð nÞ. Due to Part 5.5, this means that

mn=nð Þ$F 1ð Þ≤F xð Þ≤ mn þ 1ð Þ=nð Þ$F 1ð Þ:
In the limit n → ∞, we have

mn=nð Þ$F 1ð Þ→ x$F 1ð Þ and mn þ 1ð Þ=nð Þ$F 1ð Þ→ x$F 1ð Þ:
Thus, in the limit, we get x $ F(1) ≤ F(x) ≤ x $ F(1), i.e. F xð Þ ¼ x$F 1ð Þ.

5.7. By definition, F Að Þ ¼ −ln f exp −Að Þ; 1ð Þð Þ, thus,
f exp −Að Þ; 1ð Þ ¼ exp −F Að Þð Þ ¼ exp −A$F 1ð Þð Þ:

substituting A ¼ −ln að Þ into this expression, we get
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f a; 1ð Þ ¼ eln að Þ$F 1ð Þ ¼ eln að Þ� 	F 1ð Þ ¼ aF 1ð Þ:

The condition that f a; 1ð Þ≥ a implies that F 1ð Þ≤ 1, thus F 1ð Þ∈ 0; 1½ �.
5.8. For every pair 0 < p ≤ p, naturalness implies that

f
�
p ; p

	 ¼ f
�
p; p

	
$f
�
p


p
	

by Part 2 of this proof, the first factor in this product is equal to p. Due to Part 5.7, we get the
expression for the second factor, thus we get

f
�
p ; p

	 ¼ p$
�
p


p
	F 1ð Þ

¼ p
F 1ð Þ

$p
1−F 1ð Þ

:

This is exactly the desired formula, for α ¼ F 1ð Þ – limited to the case when p > 0. Then:

(1) If α 5 0, we get the case considered in Part 4 of this proof.

(2) For α > 0 and p ¼ 0, we have 0α$p
1−α ¼ 0, and f 0; pð Þ ¼ 0 by Part 5, so the desired

equality holds for all p ≤ p.

The proposition is proven.
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