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Abstract

Purpose – In 1951, Kenneth Arrow proved that it is not possible to have a group decision-making procedure
that satisfies reasonable requirements like fairness. From the theoretical viewpoint, this is a great result –well-
deserving the Nobel Prize that was awarded to Professor Arrow. However, from the practical viewpoint, the
question remains – so how should we make group decisions? A usual way to solve this problem is to provide
some reasonable heuristic ideas, but the problem is that different seemingly reasonable idea often lead to
different group decision – this is known, e.g. for different voting schemes.
Design/methodology/approach – In this paper we analyze this problem from the viewpoint of decision
theory, the basic theory underlying all our activities – including economic ones.
Findings –We show how from the first-principles decision theory, we can extract explicit recommendations
for group decision making.
Originality/value –Most of the resulting recommendations have been proposed earlier. The main novelty of
this paper is that it provides a unified coherent narrative that leads from the fundamental first principles to
practical recommendations.
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1. Arrow’s impossibility theorem: a brief reminder and the resulting challenge
1.1 What is Arrow’s impossibility theorem
In 1951, Kenneth Arrow proved his famous result – for which he later received a Nobel Prize –
that no voting system is perfect; see Arrow (1951). To be more precise, Arrow tried to find a
voting system – i.e. an algorithm that transforms individual preferences into a resulting
group preference – that would satisfy the following three seemingly natural conditions:

(1) if all voters prefer a to b, then the group should also prefer a to b;
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(2) if for some alternatives a and b, the voters’ preference of a or b remains unchanged,
then the group preference between a and b should also remain unchanged – even if
voters’ preferences about other pairs of alternatives change; and

(3) there is no dictator – i.e. there is no voter whose preferences are always reproduced as
group preferences.

To his surprise – and to the surprise of the whole scientific community – instead of finding
such “perfect” voting procedure, Arrow prove a theorem that such a perfect system is not
possible. In other words, he proved that it is not possible to have a voting system that satisfies
all three requirements.

1.2 Resulting challenge
There are many impossibility results in sciences – or, to be more precise, there are many
theories that imply that some processes are not possible. Probably historically the first such
principle was the energy conservation law, according to which we cannot get energy out of
nothing, the perpetuummobile – a machine that continues working without any fuel – is just
not possible. Next was the second law of thermodynamics, which states, crudely speaking,
that energy cannot pass from a colder to a hotter object: if we place a kettle on a cold stove, it
will not boil. Twentieth century physics added to these examples:

(1) according to special relativity theory, we cannot travel with a speed faster than the
speed of light;

(2) according to quantum physics, we cannot precisely measure both coordinates and
momentum of a particle: if we measure coordinates, momentum changes, and if we
measure momentum, the particle’s coordinates change.

Engineers live within these limitations, these limitations help them avoid pursuing
impossible tasks and concentrate on working devices. In all such cases, an impossibility
result is a challenge but not a catastrophe.

But group decision making is a different issue. We have to make group decisions, we
cannot just stop making them – and we want decisions to be fair, to satisfy some version of
Arrow’s assumptions. So what should we do?

A usual way to solve this problem is to provide some reasonable heuristic ideas, but the
problem is that different seemingly reasonable idea often lead to different group decisions –
this is known, e.g. for different voting schemes.

1.3 What we do in this paper
In this paper, we provide a brief overview of how, in spite of Arrow’s result, we can make
reasonable group decisions.

To be more precise, we analyze this problem from the viewpoint of decision theory, the
basic theory underlying all our activities – including economic ones – and describe the
corresponding recommendations. Most of the resulting recommendations have been
proposed earlier. The main objective of this paper is to provide a unified coherent
narrative that leads from the fundamental first principles to practical recommendations.

2. Natural idea: use more information about the individual preferences
2.1 Need to use additional information about individual preferences
In Arrow’s theorem, all we know about each individual preference is which of the alternatives
this individual prefers. For example, in the case of actual elections, an individual prefers
Candidate 1, next best is Candidate 2, and finally, Candidate 3.
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In practice, however, we have more information. For example, in many elections, we have
two reasonable candidates and one extremist candidate. In this case, Candidate 2 may be
slightly worse than Candidate 1, but electing Candidate 3 would be, in the view of many
voters, a disaster. In this case, the difference between Candidates 1 and 2 ismuch smaller than
the difference between each of these candidates and the awful Candidate 3.

On the other hand, it may happen that we have one reasonable candidate and two extreme
candidates – an extreme leftist and an extreme rightist. In this case, for most voters, both
Candidate 2 andCandidate 3 will be disasters, so the difference between Candidate 1 and any of
the two extreme candidates is much larger than the difference between the two extreme folks.

In both cases, we have the exact same order of candidates: Candidate 1 is the best,
Candidate 2 is the second best and Candidate 3 is the worst. Since Arrow’s theorem assumes
that this order is all we know, this theorem treats these two situations equally. But, of course,
from the common sense viewpoint, these are completely different situations, in which we
should make different decisions.

A natural idea is thus not to restrict ourselves to order between preferences, but to extract
additional information from the individuals: not only who they prefer, but also to what extent
they prefer the corresponding alternative.

2.2 How do we describe this additional information
How can we describe the strength of different preferences in precise terms? This is a question
to which decision theory has a reasonable solution – a reasonable way to describe each
individual’s degree of preference of each alternative by a number; see, e.g. Fishburn (1969),
Luce and Raiffa (1989), Raiffa (1997), Nguyen et al. (2009) and Kreinovich (2014). Let us
describe this solution.

In general, to assign a numerical value to each situation (in our case, to each alternative),
we need to have a continuous scale. For physical quantities, such scales are provided by the
corresponding measuring instrument: a clock measures time, a ruler measures length, etc. It
turns out that such a continuous scale is possible for comparing alternatives as well. Indeed,
suppose that we want to select between several alternatives A1, . . ., An; later other
alternatives may be added. We can also consider “ideal” alternatives:

(1) a very bad alternativeA�which is worse than any alternativeAi that we will actually
encounter, and

(2) a very good alternative Aþ which is better than anything that we will actually
encounter.

For example:

(1) we can imagine a candidate who is so bad that even the worst of folks on the ballot are
angels in comparison, and

(2) we can also imagine a perfect candidate who will solve all our problems and make
everyone prosper.

In economic decision making – e.g. in investing money – such “ideal” alternatives are easy to
describe; for example:

(1) A� means that we lose all the money, and

(2) Aþ means that our investment will grow 100 times in a year.

Now, for each number p from the interval [0, 1], we can consider a “mixed” alternative – we
will denote it byM(p) – in which someone flips several coins or performs any other random
process, and then, depending on the result of this process:
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(1) assigns us the very good alternative Aþ with probability p, and

(2) assigns us the very bad alternative A� with the remaining probability 1 � p.

Since the value p continuously changes from 0 to 1, the mixed alternatives M(p) form a
continuous scale.

Whatever alternatives people face, they always make some choice. So to find out how
much an individual values an alternative A, let this individual compare it with mixed
alternatives M(p) corresponding to different values p.

(1) For some values p, the alternative A will be better; we will denote this by

MðpÞ < A:

(2) For some other values p, the mixed alternative M(p) will be better:

A < MðpÞ:

(3) Finally, for some values p, the individual may claim thatA andM(p) are equally good;
we will denote this by

A∼MðpÞ:
For p 5 0, the mixed alternative means that we get the very bad alternative A� with
probability 1. By our selection of the very bad alternative A�, this alternative is much worse
than any alternative A that we will actually encounter, so M(0) 5 A� < A.

For p5 1, we get the very good alternative Aþ with probability 1. By our selection of the
very good alternative Aþ , this alternative is much better than any alternative A that we will
actually encounter, so A < Aþ 5 M(1).

As the probability p of a very good alternative Aþ increases, the mixed alternative
becomes better and better: if p < p0, then M(p) < M(p0). Thus:

(1) if we had A < M(p) and p < p0, then A < M(p) < M(p0) and hence, A < M(p0);

(2) similarly, if we hadM(p0) < A and p < p0, thenM(p) <M(p0) < A and thus,M(p) < A.

One can show that in this case, there exists the “threshold” value u(A) – which is equal to
sup{p : M(p) < A} 5 inf{p : A < M(p)} – for which:

(1) for all p < u(A), we have M(p) < A, and

(2) for all p > u(A), we have A < M(p).

This threshold value is known as the utility of the alternative A.
In particular, for any small « > 0, we have

MðuðAÞ � εÞ < A < MðuðAÞ þ εÞ:
When the value « is very small – e.g. equal to 0.001 or even to 0.0001 – no one will notice the
corresponding difference in probabilities: 0.5 or 0.501? So, from the practical viewpoint,
alternatives M(u(A) �«) and M(u(A) þ «) are indistinguishable. Thus, the intermediate
alternatives A and M(u(A)) are also practically indistinguishable. We will therefore say
that the original alternative A is equivalent to the mixed alternative M(u(A)) and denote
this by

A≡MðuðAÞÞ:
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Thisway, to each alternativeA, we assign a numberu(A) so thatA<B if and only ifu(A) <u(B).
In other words, we get the desired continuous numerical scale for describing preferences.

2.3 Utility is not uniquely determined
The numerical value of utility depends on our choice isA� andAþ. If we select a different pair
ðA0

−
;A0

þÞ, we will, in general, get different numerical utility values u0(A). What is the relation
between u(A) and u0(A)?

Let us consider the case when A− < A0
−
< A0

þ < Aþ. In this case, in the original scale –
based on the original selection of A� and Aþ – each of the new alternatives A0

−
and A0

þ has a

certain utility uðA0
−
Þ and uðA0

þÞ. Here, by definition of utility:

(1) A0
−
is equivalent to a mixed alternative MðuðA0

−
ÞÞ in which we get Aþ with

probability uðA0
−
Þ and A� with probability 1− uðA0

−
Þ; and

(2) A0
þ is equivalent to a mixed alternative MðuðA0

þÞÞ in which we get Aþ with
probability uðA0

þÞ and A� with probability 1− uðA0
þÞ.

For each alternative A, the fact that it has utility u0(A) in the new scale means that A is
equivalent to a mixed alternative M0(u0(A)) in which:

(1) we get A0
þ with probability u0(A), and

(2) we get A0
−
with probability 1 � u0(A).

Since each A0
−
and A0

þ is, itself, equivalent to a mixed event, thus A is equivalent to the
following two-stage mixed alternative:

(1) first, we select A0
þ with probability u0(A) and A0

−
with the remaining probability 1 �

u0(A);

(2) then, depending on which of the alternatives A0
± we selected on the first stage, we

select Aþ with probability uðA0
±Þ and A� with the remaining probability 1− uðA0

±Þ.
In this two-stage scheme, we get eitherAþ orA�, and the probability of selectingAþ is equal
to

p ¼ u0ðAÞ$uðA0
þÞ þ ð1� u0ðAÞÞ$uðA0

−
Þ ¼ uðA0

−
Þ þ u0ðAÞ$ðuðA0

þÞ � uðA0
−
ÞÞ:

The alternative A is thus equivalent to a mixed event M(p) in which we get Aþ with
probability p andA�with the remaining probability. Thus, by definition of utility, the above
value p is the utility u(A) of the alternative A in the original scale, i.e.

uðAÞ ¼ uðA0
−
Þ þ u0ðAÞ$ðuðA0

þÞ � uðA0
−
ÞÞ:

So, utilities u(A) and u0(A) corresponding to different pairs (A�, Aþ) can be obtained from
each other by a linear transformation.

In other words, utility – just like time or temperature – is defined modulo a linear
transformation.

2.4 So how to make group decisions: analysis of the problem
For each alternative A, we know its utility ui(A) for each individual. So, each alternative is
characterized by a tuple of real numbers y5 (y1, y2, . . .), where yi 5 ui(A) is the utility of this
alternative for the i-th individual.

Based on these tuples, we need to decide which alternative is better for the group. In other
words, for every two alternatives A and B, we need to decide, for the group as a whole:
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(1) whether B is better (we will denote this by A < B),

(2) whether A is better (B < A),

(3) or whether, to the group, A and B are equivalent; we will denote this by

A∼B:

In other words, we need to define a transitive and reflexive (i.e.A≤A) relation≤ on the set of
all possible alternatives – i.e. in effect, on the set of all tuples y. Such relations are known as
pre-orders.We are interested in non-trivial pre-orders – i.e. pre-orders forwhich y§y0 for some
y and y0.

It is also reasonable to require that the pre-order be continuous in the following sense: if
y(k)≤ y0 for all k and y(k)→ y, thenwe should have y≤ y0. Indeed, the limit y(k)→ ymeans that for
large k, the tuple y(k) is very close to y – and thus, practically indistinguishable from y. Since y(k)

and y are indistinguishable, from y(k) ≤ y0, we conclude that y ≤ y0.
Finally, we need to take into account that utilities are not uniquely defined: they are

defined modulo linear transformations. Some of this non-uniqueness can be eliminated if we
take into account that in group decision making, there is always an option not to do
anything – not to build an airport if we cannot agree on its location, not to elect anyone if we
cannot agree, etc. This do-nothing alternative is usually worse than anything on the ballot, so
we can take it as the very bad alternative A�. For this alternative A�, its utility is equal to 0,
for all other alternatives, it should be positive. Once we fix the 0 point, the only remaining
linear transformations are re-scalings, when we replace each individual utility value ui(A)
with a new value u0iðAÞ ¼ ci$uiðAÞ for some ci > 0.

It is reasonable to require that the resulting relation between tuples should not change if
we simply re-scale these values – just like fundamental physical formulas should not change
if we simply change the unit of time. In other words, the relation ≤ should be invariant with
respect to such changes, i.e. for all possible positive values yi and ci, we should have:

ðy1; y2; . . .Þ≤ ðy01; y02; . . .Þ5ðc1$y1; c2$y2; . . .Þ≤ ðc1$y01; c2$y02; . . .Þ:
It turns out – see, e.g. Jaimes et al. (2012) – that each such invariant continuous non-trivial pre-
order has the form

ðy1; y2; . . .Þ≤ ðy01; y02; . . .Þ5
Y
i

y
αi
i ≤

Y
i

ðy0iÞαi ;

for some values αi > 0.
If we additionally require that all individual are treated equally, i.e. that α15 α25 . . ., then

we conclude that

ðy1; y2; . . .Þ≤ ðy01; y02; . . .Þ5
Y
i

yi

 !α

≤

Y
i

y0i

 !α

;

i.e. equivalently, that

ðy1; y2; . . .Þ≤ ðy01; y02; . . .Þ5
Y
i

yi ≤
Y
i

y0i:

Thus, we need to select an alternative for which the product of utilities is the largest. This
selection was first proposed by yet another Nobel Prize winner John Nash – see Nash (1953) –
and is known as Nash’s bargaining solution.

Let us summarize the resulting recommendation.
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2.5 How to make group decisions: recommendation

(1) First, we take the no-decision situation as A� and select some very good ideal
alternative – much better than all available ones – as Aþ.

(2) Then, for each individual i and for each alternative A, we ask the individual to
compare the alternative A with mixed alternatives M(p) in which:

� we get Aþ with probability p, and

� we get A� with the remaining probability 1 � p.

We increase the value p from 0 to 1 and find the value p for whichA is equivalent toM(p). This
value p is the utility ui(A) of the alternative A for the i-th individual.

(3) Finally, we select the alternative A for which the product of utilities is the largest.

2.6 How does this fit with Arrow’s conditions
Out of the three Arrow’s conditions, the first and the third one are clearly satisfied. However,
the second one is not – and, as will show, that this condition is not satisfied make sense.
Indeed, we can imagine a situation when initially:

(1) half of the people strongly preferred A to B, while

(2) another half weakly preferred B.

In this case, from the common sense viewpoint, it makes sense to select A.
But suppose then that some new information changes everyone’s opinion about A to the

worse: e.g. a minor scandal is revealed about the candidate A. As a result:

(1) those who strongly preferred A continue to prefer A but only weakly, while

(2) those who weakly preferred B now prefer it strongly.

In this case, it is reasonable for the group to start selecting B – although, if we ignore which
preferences are strong andwhich are weak (as we do in the original Arrow’s formulation), the
two situations look identical.

3. But what is we only know preferences – as in the original Arrow’s setting?
In the previous section, we considered the case when we thoroughly analyze the opinions of
each individual. This is not realistic to expect in national elections, whenmillions vote. In such
situations, at best, we have individual preferences between candidates. How can we then
make a decision?

Suppose that all we know for each individual is the order between the candidates. In terms
of the utilities, this means that the only information that we have about the utilities uj of
different alternatives j is that 0 < u1 < . . .< un< 1.We do not know the exact values uj, so all
the tuples (u1, . . ., un) satisfying the above inequality are possible. We do not have any reason
to believe that some of these tuples aremore probable and some are less probable. So, it makes
sense to require that all such tuples are equally probable, i.e. that we have a uniform
distribution on the set of all the tuples that satisfy the above inequality.

To make a utility-based decision, we need to select one such tuple for each individual. It is
reasonable to select a tuple �ui for which themean square difference from the actual tuple is the
smallest possible: Z Xn

j¼1

ð�uj � ujÞ2 du1 . . . dun →min:
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It is known that, in general, thisminimum is attainedwhen each �ui is equal to themean value of
the corresponding random variable, and that this mean value is equal to uj5 j/(nþ 1); see, e.g.
David and Nagaraja (2003), Arnold et al. (2008), Ahsanullah et al. (2013), Kosheleva et al. (2016).

In this case, maximizing the product of utilities means selecting an alternativeA for which
maximizing the product of its ranks j 5 ri(A) is the largest – or, equivalently, for which the
sum

P
i

logðriðAÞÞ of the logarithms of the ranks is the largest.

Similarly, we can handle situations inwhich, in addition to (or instead of) ranking, we have
other information about the alternatives. For example, if each voter only ranks the top three
candidates, this is equivalent to the case n 5 4 and thus, leads to assigning:

(1) the mean utility value 4/5 to the top candidate,

(2) the value 3/5 to the second best,

(3) the value 2/5 to the third best and

(4) the value 1/5 to all other candidates.
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