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Abstract

Purpose –The purpose of this study is to extend the classical noncentral F-distribution under normal settings
to noncentral closed skew F-distribution for dealing with independent samples frommultivariate skew normal
(SN) distributions.
Design/methodology/approach – Based on generalized Hotelling’s T 2 statistics, confidence regions are
constructed for the difference between location parameters in two independent multivariate SN distributions.
Simulation studies show that the confidence regions based on the closed SN model outperform the classical
multivariate normal model if the vectors of skewness parameters are not zero. A real data analysis is given for
illustrating the effectiveness of our proposed methods.
Findings – This study’s approach is the first one in literature for the inferences in difference of location
parameters under multivariate SN settings. Real data analysis shows the preference of this new approach than
the classical method.
Research limitations/implications – For the real data applications, the authors need to remove outliers
first before applying this approach.
Practical implications –This study’s approachmay applymanymultivariate skewed data using SN fittings
instead of classical normal fittings.
Originality/value – This paper is the research paper and the authors’ new approach has many applications
for analyzing the multivariate skewed data.

Keywords Confidence regions, Pivotal method, Location parameter, Multivariate skew normal family,

Hotelling’s T 2

Paper type Research paper

1. Introduction
Although the normal distribution is a standard assumption for modeling observations in
general, practitioners and researchers prefer more flexible models that account for the
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non-normality when the data collected in finance and econometric fields. The family of skew
normal (SN) distributions, introduced by Azzalini (1985) for the univariate case, Azzalini and
Valle (1996) for the multivariate case and Chen and Gupta (2005) for the matrix variate case,
becomes a popular parametric family in statistical analysis of real data which account for
asymmetry. There are several successful applications using SN, like modeling skewness
premium of a financial asset by Carmichael and Co€en (2013), addressing “wrong skewness”
problems in stochastic frontier models by Wei et al. (2021). Here just list a few, an updated
review was given by Adcock and Azzalini (2020).

Based on the definition given in Arellano-Valle et al. (2005), a p-dimensional random vector
Y is said to be SN distributed with the location parameter vector μ∈Rp, the scale parameter

matrixΣ (a p3 p positive definite matrix), and the shape parameter vector λ∈Rp, denoted as
Y ∼SNp μ;Σ; λð Þ, if its probability density function (pdf) is given by

fY yð Þ ¼ 2fp y; μ;Σð ÞΦ λ0Σ−1=2 y � μð Þ� �
; y ∈Rp

; (1)

wherefp(∙; μ,Σ) is the pdf of the p-dimensional normal distributionwith themean vector μ and
the covariancematrix Σ, andΦ(∙) is the cumulative distribution function (cdf) of the univariate
standard normal distribution. Extensions of Equation (1) are investigated bymany researchers
(see Azzalini and Capitanio, 1999; Wang et al., 2009; Young et al., 2016; Li et al., 2018).

For the univariate SN family, constructing plausibility regions for skewness parameter
was discussed by Zhu et al. (2017) using inferential models (IMs). The joint plausibility
regions for location parameter and skewness parameter were studied byMa et al. (2018) when
scale parameter is known using IMs, and the joint plausibility regions for location parameter
and scale parameter were constructed by Zhu et al. (2018) when skewness parameter is given.
For multivariate SNmodel, the confidence regions for location parameter are obtained byMa
et al. (2019). In thiswork, we study the difference of location parameters based on independent
multivariate SN distributions so that the generalized Hotelling’s T2, and noncentral closed
skewF-distributions are used. Under the assumption of equal but unknown scale parameters,
the confidence regions for differences of location parameters of themultivariate SNmodel are
proposed. Simulation studies show that the proposed confidence regions have higher relative
coverage frequency rates than those in classical normal model for skewed data.

The organization of this paper is listed below. In Section 2, the definition of matrix variate
SN distribution is introduced and some useful properties of sampling distribution on
difference of sample means are derived. In Section 3, the confidence regions on the difference
of location parameters by pivotal method are proposed when scale parameters from two
populations are assumed to be equal but unknown. A group of simulation studies, which
illustrate the effectiveness of our proposed methods, are given in Section 4, followed by a real
data example in Section 5. The conclusion is given in Section 6.

2. Matrix variate SN distributions and sampling distributions
LetMn3k be the set of all n3 kmatrices over the real fieldRandRn ¼ Mn3 1. The transpose
of a matrixA is denoted asA0. The n3 n identity matrix is denoted as In, the constant vector
ð1; . . . ; 1Þ0 ∈Rn is denoted as 1n, and �J n ¼ 1

n
1n1

0
n. For B ¼ ðb1;b2; . . . ;bnÞ0 ∈Mn3 k with

bi ∈Rk, let VecðBÞ ¼ ðb0
1;b

0
2; . . . ;b

0
nÞ0 ∈Rnk. For positive definite matrixT∈Mn3n, we use

T�1, T1/2 and T�1/2 to denote, respectively, the inverse, symmetric square root of T, and
symmetric square root of T�1. For B ∈ Mm3n, C ∈ Mn3p, we use B ⊗ C to denote the
Kronecker product of B and C. Through this paper, N(0, 1) represents the standard normal
distribution and bold phase letters represent vectors.

Definition 2.1. Ye et al. (2014) The n 3 p random matrix Y is said to have a SN matrix
distribution with location matrix M, scale matrix V ⊗Σ and skewness
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parameter matrix γ ⊗λ0, denoted by Y ∼ SNn3 p M ;V ⊗Σ; γ⊗ λ0ð Þ, if
y ≡Vec Yð Þ∼ SNnp μ;V ⊗Σ; γ⊗ λð Þ, where M ∈ Mn3p, V ∈ Mn3n,

μ ¼ Vec Mð Þ, γ∈Rn
and λ∈Rp

Suppose that X1 ∈Mn1 3 p and X2 ∈Mn2 3 p are two independent sample matrices such that

Xi ∼SNni 3 p 1ni ⊗ μ0i; Ini ⊗Σi;1ni ⊗ λ0i
� �

(2)

for i5 1, 2. We are interested in analyzing the difference vector μd 5 μ1 � μ2. The sampling
distributions of the sample mean and sample covariance matrix are given by Ma et al. (2019)
in following Lemma.

Lemma 2.1. Ma et al. (2019) Let Y ∼ SNn3 p 1n ⊗ μ0; In ⊗Σ;1n ⊗ λ0ð Þ. Then,
�Y ¼ 1

n
10
nY

� �0
∼ SNp μ;

Σ
n
;
ffiffiffi
n

p
λ

� �
and

ðn� 1ÞS ¼ Y 0 In � �J n
� �

Y ∼Wp n� 1;Σð Þ

are independently distributed, where Wp n− 1;Σð Þ represents the p-dimensional Wishart
distribution with n � 1 degrees of freedom and the mean Σ.

By Lemma 2.1, we have

�X i ¼ 1

ni
10
ni
Xi

� �0
∼ SNp μi;

Σi

ni
;
ffiffiffiffi
ni

p
λi

� �
(3)

and

ðni � 1ÞSi ¼ X 0
i Ini � �J ni
� �

Xi ∼Wp ni � 1;Σið Þ (4)

for i 5 1, 2. It is natural to use the statistic �X d ¼ �X 1 −
�X 2 to inference on μd.

The difference between two independent SN distributed random vectors follows a closed
SN distribution, which is reviewed below.

Definition 2.2. (Gonza
́
lez-Fari

́
as et al. (Gonzalez-Farias et al., 2004) A random vector

Y ∈Rp
is said to have closed SN distribution (CSN), denoted as

CSNp;q μ;Σ;D; v;Δð Þ, if its pdf is
fp;q y; μ;Σ;D; v;Δð Þ ¼ Cfp y; μ;Σð ÞΦq D y � μð Þ; v;Δð Þ; y ∈Rp

;

where C−1 ¼ Φq 0; v;Δþ DΣD0ð Þ, p ≥ 1, q ≥ 1, μ∈Rp
, Σ∈Mþ

p3 p, D ∈ Mq3p, v ∈Rq
,

Δ∈Mþ
q3 q and fk $; η;Ωð Þ, Φk $; η;Ωð Þ are the pdf and cdf of a k-dimensional normal

distribution.
For simplicity, we assume that ν 5 0 so that Y ∼ CSNp,q(μ, Σ, D, Δ). The following two

properties of CSN can lead to the distribution of �X d.

Lemma 2.2. (Gonza
́
lez-Fari

́
as et al. (Gonzalez-Farias et al., 2004) LetY∼ CSNp,q(μ,Σ,D,Δ)

(1) For an arbitrary constant b ∈Rp
,

Y þ b ∼CSNp;qðμþ b;Σ;D;ΔÞ (5)
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(2) For nonzero real number c∈R,

cY ∼CSNp;q

�
cμ; c2Σ; c−1D;Δ

�
; (6)

(3) Let Y i ∼CSNp;qiðμi;Σi;Di;ΔiÞ, for i 5 1, 2, be independently distributed. Then,

Y 1 þ Y 2 ∼CSNp;q1þq2

�
μ1 þ μ2;Σ1 þ Σ2;D*;Δ*

�
(7)

where

D* ¼ D1Σ1 Σ1 þ Σ2ð Þ−1
D2Σ2 Σ1 þ Σ2ð Þ−1

� �
; Δ* ¼ A11 A12

A21 A22

� �
and

A11 ¼ Δ1 þ D1Σ1D
0
1 � D1Σ1 Σ1 þ Σ2ð Þ−1Σ1D

0
1;

A22 ¼ Δ2 þ D2Σ2D
0
2 � D2Σ2 Σ1 þ Σ2ð Þ−1Σ2D

0
2;

A12 ¼ �D1Σ1 Σ1 þ Σ2ð Þ−1Σ2D
0
2:

In term of CSN, �X i ∼CSNp;1 μi;
Σi

ni
; niλ

0
iΣ

−1=2
i ; 1

� �
for i5 1, 2. Thus, we obtain the distribution

of �X d.

Theorem 2.1. Let �X d ¼ �X 1 − �X 2 with �X i ∼CSNp;1 μi;
Σi

ni
; niλ

0
iΣ

−1=2
i ; 1

� �
for i 5 1, 2.

Then,

�X d ∼CSNp;2 μd;Σd;Dd;Δdð Þ (8)

where

μd ¼ μ1 � μ2; Σd ¼ Σ1

n1
þ Σ2

n2

Dd ¼
λ01Σ

1=2
1 Σ−1

d

−λ02Σ
1=2
2 Σ−1

d

 !
; Δd ¼

A11 A12

A21 A22

 ! (9)

with

A11 ¼ 1þ n1λ
0
1λ1 � λ01Σ

1=2
1 Σ−1

d Σ1=2
1 λ1;

A22 ¼ 1þ n2λ
0
2λ2 � λ02Σ

1=2
2 Σ−1

d Σ1=2
2 λ2;

A12 ¼ A21 ¼ λ01Σ
1=2
1 Σ−1

d Σ1=2
2 λ2:

Proof. By part (2) and (3) of Lemma 2.2, the desired result follows immediately. ,

Remark. If λ2 5 0, i.e. X2 following multivariate normal distribution with mean μ2
and covariance Σ2

n2
, the distribution of difference �X d has the form

X d ∼CSNp;1ðμd;Σd; λ
0
1Σ

1=2
1 Σ1=2

d ; A11Þ which can be further expressed as

X d ∼SNp ðμd;Σd;Σ
1=2
1 λ1=A

1=2
11 Þ.
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Figure 1 presents the contour of bivariate closed SN for various combinations of shape

parameter parameters D with different scale parameter Σ ¼ 1 ρ
ρ 1

� �
. Specifically, the gray

contours show D5 0 with ρ5 0, 0.5 and�0.5; the green contours show D ¼ 0 0
3 0

� �
with

ρ5 0, 0.5 and�0.5; the blue contours showD ¼ 1 − 5
0 0

� �
with ρ5 0, 0.5 and�0.5 the red

contours show D ¼ 1 − 5
3 0

� �
with ρ5 0, 0.5 and�0.5. From another point of view, these

contour plots present bivariate normal distribution (gray), SN distribution (green and blue)
and closed SN distribution (red).

3. Inference on difference of location parameters
In this section, the inference on the difference of location parameter is proposed when the
scale parameter Σ1 and Σ2 are unknown but assumed to be equal, say Σ15 Σ25 Σ. The main
result is based on the generalized Hotelling’s T2 under multivariate SN setting.

3.1 Some related distributions
At first, we consider the distribution of S ¼ �X d − μd

� �0Σ−1
d

�X d − μd
� �

. The following
definition and lemma by Zhu et al. (2019) are useful to derive the distribution of S.

Definition 3.1. Zhu et al. (2019)LetX∼CSNp,q(μ, Ip,D,Δq). The distribution ofX
0X, denoted

by X 0X ∼CSχ2pðλ; δ1; δ2;ΔqÞ, is called a noncentral closed skew chi-
square distribution with degrees of freedom p, noncentrality parameter
λ 5 μ0μ, skewness parameters δ1 5 Dμ, δ2 5 DD0 and parameter Δq

Lemma 3.1. Zhu et al. (2019) Let X ∼ CSNp,q(μ, Σ, D, Δ) and Q 5 X0WX with a

nonnegative definite W ∈ Mp3p. If Σ1/2WΣ1/2 is idempotent of rank k, then

Q∼CSχ2kðλ; δ1; δ2;ΩqÞ, where λ 5 μ0Wμ, δ1 5 DΣWμ, δ2 5 DΣWΣD0 and
Ωq 5 Δ þ D(Σ �ΣWΣ)�1D0

Based on Theorem 2.1 and Lemma 3.1, we obtain the following result.

Proposition 3.1. Let S ¼ �X d − μd
� �0Σ−1

d
�X d − μd
� �

. Then, S ∼CSχ2pð0;0; δ2;ΩÞ with

δ2 ¼ n1n2
n1þn2

λ01λ1 λ02λ1
λ02λ1 λ02λ2

 !
and Ω ¼

1þ n21λ
0
1λ1

n1 þ n2

n1n2λ
0
2λ1

n1 þ n2

n1n2λ
0
2λ1

n1 þ n2
1þ n22λ

0
2λ2

n1 þ n2

0BBB@
1CCCA.
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2

Figure 1.
Contour plot of
bivariate normal, SN
and close SN
distributions with
various values of
parameters
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Proof. From part (i) of Lemma 2.2, we have �X d − μd ∼CSNp;2ð0;Σd;Dd;ΔdÞ. Since
Σ1=2
d Σ−1

d Σ1=2
d ¼ Ip is an idempotent of rank p, the desired result follows

immediately. ,

Remark. Comparing with one sample case, the distribution of quantity nð �X − μÞ
0Σ−1ð �X − μÞ∼ χ2p for �X ∼ SNp μ; Σ

n
;
ffiffiffi
n

p
λ

� �
is free of the skewness parameter λ.

Here, the distribution of S follows noncentral closed SN distribution given above
which depends on the parameters δ2 and Ω. Readers are referred to check out
Figures 5 and 6 in Zhu et al. (2019) for the density curves of CSχ2(0, 0, δ2, Ω).

3.2 Confidence region of μd
In this subsection, we will extend the Hotelling’sT2 statistic frommultivariate normal setting
to the multivariate SN setting, called the generalized Hotelling ’s T2 ¼ n1n2

n1þn2

ð �X d − μdÞ0S−1
p ð �X d − μdÞ, to construct the confidence regions for the difference of location

vector where ðn1 þ n2 − 2ÞSp ¼ n1 − 1ð ÞS1 þ n2 − 1ð ÞS2. First we need to derive the
distribution of Sp, then extend the F-distribution to closed skew F-distribution which can
describe the distribution of T2 under the multivariate SN setting.

Proposition 3.2. Let ðn1 þ n2 − 2ÞSp ¼ n1 − 1ð ÞS1 þ n2 − 1ð ÞS2 with S1 and S2 defined by
equation (4) Then, (n1 þ n2 � 2)Sp ∼ Wp(n1 þ n2 � 2, Σ)

Proof. By Lemma 2.1, (ni� 1)Si∼Wp(ni� 1, Σ) for i5 1, 2 are independently distributed.
Thus, the well-known properties of Wishart distribution for sums and scale
transformation lead to the desired result. ,

To obtain the distribution ofT2, we need the followingwell-known result (Lemma 3.2, Mardia
et al. (1980), Theorem 3.4.7) and extended version of the F-distribution, called closed skew F-
distribution, Definition 3.2, which was introduced by Zhu et al. (2019).

Lemma 3.2. If H ∼Wp m;Σð Þ, m > p, then the ratio a0Σ−1a=a0H−1a ∼ χ2m−pþ1 for any
fixed p-vector a

Definition 3.2. Zhu et al. (2019) Let U1 ∼CSχ2n1ðλ; δ1; δ2;ΔmÞ, U2 ∼ χ2n2, and U1 and U2 are

independent. The distribution of F ¼ U1=n1
U2=n2

is called the noncentral

closed skew F-distribution with degrees of freedom n1 and n2, and
parameters λ, δ1, δ2 and Δm, denoted by F ∼CSFn1;n2ðλ; δ1; δ2;ΔmÞ

Based on above definition, the pdf of noncentral closed skew F-distribution can be
obtained below.

Proposition 3.3. Let F ∼CSFn1;n2ðλ; δ1; δ2;ΔmÞ. The pdf of F is given by

fFðx; λ; δ1; δ2;ΔmÞ ¼
Z

∞

0

n1v

n2
f1

n1xv

n2
; λ; δ1; δ2;Δm

� �
f2ðvÞdv (10)

where f1(∙; λ, δ1, δ2, Δm) and f2(∙) are pdf of CSχ2n1ðλ; δ1; δ2;ΔmÞ and χ2n2, respectively.

Proof. Let F ¼ U1=n1
U2=n2

with U1 ∼CSχ2n1ðλ; δ1; δ2;ΔmÞ, U2 ∼ χ2n2 independently distributed.

The joint density of (U1, U2) is fðU1;U2Þðu; vÞ ¼ f1ðuÞf2ðvÞwhere f1(∙) and f2(∙) are
pdf of U1 and U2, respectively. Then change of variables x ¼ n2u

n1v
, h5 v, for x > 0,

h>0. The Jacobian of this transformation is n1v/n2. So integratingwith respect to v
over 0 < v < ∞ leads to desired results.

By Lemma 3.2 and Definition 3.2, we obtain the distribution of T2 as follows.
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Theorem 3.1. For two independently distributed random matrices

Xi ∼SNni 3 p 1ni ⊗ μ0i; Ini ⊗Σ;1ni ⊗ λ0i
� �

for i ¼ 1; 2;

where λi’s are known. Let �X i, Si be given by equation (3) and (4), �X d ¼ �X 1 −
�X 2, and

Sp ¼ n1 − 1ð ÞS1 þ n2 − 1ð ÞS2. Then, the distribution of T
2 ¼ n1n2

n1þn2
ð �X d − μdÞ0S−1

p ð �X d − μdÞ is
given by

n1 þ n2 � p� 1

pðn1 þ n2 � 2Þ T
2
∼CSFp;n1þn2−p−1ð0; 0; δ2;ΩÞ; (11)

where δ2 ¼ n1n2
n1þn2

λ01λ1 λ02λ1
λ02λ1 λ02λ2

� �
and Ω ¼

1þ n21λ
0
1λ1

n1 þ n2

n1n2λ
0
2λ1

n1 þ n2

n1n2λ
0
2λ1

n1 þ n2
1þ n22λ

0
2λ2

n1 þ n2

0BBB@
1CCCA.

Proof. Rewrite T2 as

T2 ¼ n1n2

n1 þ n2

�X d � μd
� �0Σ−1 �X d � μd

� �
�X d � μd
� �0Σ−1 �X d � μd

� �.
�X d � μd
� �0

S
−1
p

�X d � μd
� �:

Since Sp and �X d − μd are independent by Lemma 2.1, the conditional distribution of

w ¼ ðn1 þ n2 � 2Þ �X d � μd
� �0Σ−1 �X d � μd

� �.
�X d � μd
� �0

S
−1
p

�X d � μd
� �

∼ χ2n1þn2−p−1

given �X d − μd by Proposition 3.2 and Lemma 3.2. It is clear that w∼ χ2n1þn2−p−1
since the

conditional distribution does not depend on �X d − μd. On the other hand, sinceΣ
−1
d ¼ n1n2

n1þn2
Σ−1,

then n1n2
n1þn2

�X d − μd
� �0Σ−1 �X d − μd

� � ¼ �X d − μd
� �0Σ−1

d
�X d − μd
� �

which follows closed skew

chi-square distribution CSχ2pð0;0; δ2;ΩÞ from Proposition 3.1. Therefore, the desired result

follows by Definition 3.2.
Based on above results, we construct confidence regions for the difference of location

parameter μd by using generalized Hotelling’s T2 as a pivotal statistics.

Theorem 3.2. Assume two samples satisfying (2) with unknown Σ1 and Σ2 but Σ15 Σ2 and
known λ1 and λ2. Then, the 100 1− αð Þ%confidence regions for μd is given by

C
P
μd

αð Þ ¼ μd :
n1 þ n2 � p� 1

pðn1 þ n2 � 2Þ T
2 < CSF2

p;n1þn2−p−1
1� αð Þ

	 

;

where CSF2
p;n1þn2−p−1

1−αð Þ represents the 1 � α quantile of CSF2
p;n1þn2−p−1

ð0;0; δ2;ΩÞ
The following plots present the pdf of noncentral closed skew F-distribution (see Figure 2).

4. Simulation study
Simulations are conducted for evaluating the performance of the proposed confidence regions
for μd under independent multivariate SN settings using the coverage relative frequency
rates. Comparisons of proposed confidence regions with those in classical independent
multivariate normal distributions are given.
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4.1 Coverage frequencies
To evaluate the proposed confidence regions for difference of location parameters under
multivariate SN setting, Monte Carlo simulation studies (each with a number of simulation
runsM5 10,000) are conducted for combinations of various values of sample sizes (n1, n2)5

(20,25), (40, 50) and (80,100), (ρ1, ρ2) 5 ({0.1, 0.5, 0.8}, {0.1, 0.5, 0.8}), D1 ¼ 1 3
2 − 5

� �
and D2 ¼ − 2 2

3 0

� �
.

Table 1 shows that our method provides reliable inference about the difference of location
parameters with nominal confidence level (95%). To further illustrate the effectiveness of the
proposed method, we confidence intervals of the coverage probability presented in the
following plot.

From Figure 3, we can see clearly that the pivotal quantity-based closed skew F-
distribution produce more robust confidence region than that based on F-distribution. The
coverage relative frequencies, based on the SN model, are close to the nominal confidence
level 95% consistently for the combination of different sample sizes, scale parameter and

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

n1; n2ð Þ Σ ¼ 1 ρ
ρ 1

� �
D1 ¼ 1 3

2 − 5

� �
D2 ¼ − 2 2

3 0

� �
F-distribution CSF-distribution F-distribution CSF-distribution

20; 25ð Þ ρ 5 0.2 0.9268 0.9495 0.9224 0.9524
ρ 5 0.5 0.9274 0.9511 0.9135 0.9502
ρ 5 0.8 0.9206 0.9504 0.9227 0.9520

40; 45ð Þ ρ 5 0.2 0.9025 0.9479 0.9008 0.9534
ρ 5 0.5 0.9118 0.9451 0.9095 0.9509
ρ 5 0.8 0.9036 0.9521 0.9016 0.9524

80; 100ð Þ ρ 5 0.2 0.8932 0.9527 0.9080 0.9479
ρ 5 0.5 0.8917 0.9463 0.8702 0.9470
ρ 5 0.8 0.9035 0.9483 0.8933 0.9448

200; 250ð Þ ρ 5 0.2 0.8824 0.9503 0.8883 0.9461
ρ 5 0.5 0.88920 0.9533 0.8956 0.9559
ρ 5 0.8 0.8998 0.9492 0.8852 0.9546

Figure 2.
The pdfs of noncentral

closed skew

F2;n

�
5; ð5; 11ÞT ;
5 11
11 25

� �
;

1 0:5
0:5 1

� ��
distributions with

n 5 5, 10, 20 and 50
(black, green, red

and blue)

Table 1.
Coverage relative

frequencies of
confidence regions at

confidence level
α 5 95% for difference
of location parameters

μd with various
combinations of sample

sizes, ρ1, ρ2 and D1,
D2 using Hotelling’s T2

as the pivotal quantity
when Σ1 and Σ2 are
equal but unknown
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Figure 3.
The confidence
intervals of coverage
relative frequencies at
confidence level
α 5 0.95, red ones
based on SNmodel and
blue ones based on
normal model with
sample size (n1, n2) 5
(20, 25), (40, 50), (80,
100) and (200, 250)
(from left to right in
each figure), ρ5 0.2, 0.5
and 0.8 (in each row),
and D1 and D2 (from
left to right),
respectively
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skewness parameters. But the coverage relative frequencies, based on the normal model, are
lower than the nominal confidence level.

5. Real data example
In this section, we illustrate the effectiveness and applicability of the proposed methods by
applying them to Australian Institute of Sport (AIS) data (Cook and Weisberg, 2009). We
explore the difference of body mass index (BMI) and lean body mass (LMB) between males
and females athletes in AIS data.

The point estimates of the parameters for AIS data are reported in Table 2.
In Figure 4, the scatter plots and contour plots of fitted bivariate SN distributions are

presented. Based on our previous work (Azzalini and Valle, 1996), this data set prefers
multivariate SNmodel. So we adopt multivariate SNmodel as well to explore the difference of
location parameters. Using point estimates listed in Table 2 and applying Theorem 2.1, the
differences of sample mean has closed SN distribution, �X d ∼CSN2;2ðμ;Σ;D;ΔÞ with
estimated parameters

bμ ¼ ð1:29; 18:13Þ0; bΣ ¼ 0:13 0:41
0:41 2:09

� �
bD ¼ 3:20 �4:83

�29:80 16:82

� �
; bΔ ¼ 28:90 101:01

101:01 473:42

� �
:

Then, we apply Theorem 3.2 to construct the confidence region of difference of location
parameters μd. In Figure 5, the confidence regions for the difference of location parameters are
given below at 95% confidence level.

Males Females

bμ0 24:47; 79:55ð Þ 23:18; 61:42ð ÞbΣ 4:81 18:95
18:95 114:00

� �
8:32 21:30
21:30 89:96

� �
bλ0 −0:20; − 0:80ð Þ 0:88; − 2:63ð Þ

Table 2.
Point estimates of SN

parameters for the
males and females AIS

data, respectively

Figure 4.
The scatter plots and
contour plots for the

AIS data of males and
females
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6. Conclusion
In this work, the difference for location parameters between two independent samples under
multivariate SN setting is studied. The construction of confidence region procedure is
developed. From the results of simulation studies, the confidence region based on SN model
has better performance than normalmodel in term of relative coverage frequencies to capture
the true value when the data are generated from skewed distribution.
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