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Abstract

Purpose – Among the proposed radio access strategies for improving system execution in 5G networks, the
non-orthogonal multiple access (NOMA) scheme is the prominent one.
Design/methodology/approach –Among the most fundamental NOMAmethods, power-domain NOMA is
the one where at the transmitter, superposition coding is used, and at the receiver, successive interference
cancellation (SIC) is used. The importance of power allocation (PA) in achieving appreciable SIC and high
system throughput cannot be overstated.
Findings –This research focuses on an outage probability analysis of NOMAdownlink system under various
channel conditions like Rayleigh, Rician and Nakagami-m fading channel. The system design’s objectives,
techniques and constraints for NOMA-based 5G networks’ PA strategies are comprehensively studied.
Practical implications –From the results of this study, it is found that the outage probability performance of
downlink ordered NOMA under Rayleigh, Rician and Nakagami-m fading channel was good.
Originality/value – Outage probability analysis of downlink ordered NOMA under various channel
conditions like Rayleigh, Rician and Nakagami-m fading channels were employed. Though the performance of
Nakagami-m fading channel is lesser compared to Rayleigh channel, the performance for user 1 and user 2
are good.
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1. Introduction
The non-orthogonal multiple access (NOMA) scheme is intended as an upcoming radio access
mechanism for 5G networks with high bit-rate and capacity. Researchers are interested in
finding an alternate system to the existing orthogonal multiple access (OMA) because to the
ever-increasing demand for capacity by consumers. Under poor channel conditions, the OMA
technique’s bandwidth resource allocation provided a low spectral efficiency. The NOMA
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system, on the other hand, regardless of channel condition, tends to allocate bandwidth to
users. NOMA has the ability to provide large capacity, while also improving spectral
efficiency. However, implementing the NOMA method in 5G networks poses numerous
hurdles for a variety of reasons. The most common concerns are the complexity of user
pairings aswell as the needs for channel state information (CSI). Furthermore, the difficulty of
employing successive interference cancellation (SIC) procedures is a crucial factor to consider
(Lei, Yuan, Ho, & Sun, 2016; Zhu et al., 2017).

The types such as power-domain, code-domain, pattern division, spatial division,
interleave and bit division are the most common NOMA solutions in 5G (Ali et al., 2017;
Islam et al., 2017) (Figure 1). The resource allocation (RA) and power allocation (PA)
systems will be examined in depth to overcome different challenges connected to
throughput maximization in NOMA-based 5G networks (Hojeij, Nour, Farah, & Douillard,
2017; Xing, Liu, Nallanathan, Ding, & Poor, 2018; Makki, Chitti, Behravan, & Alouini,
2020). Bit error rate performance of downlink NOMA under various channels for different
modulation techniques and coding rates are analyzed (Sadia, Zeeshan, & Sheikh, 2018). To
increase power and energy efficiency, MIMO-NOMA (Multiple-Input Multiple-Output -
NonOrthogonalMultiple Access) is employed where deep learning-based power allocation
method is proposed (Huang et al., 2020).

These novel used cases are drivingmassive increases in mobile traffic, which has resulted
in radio spectrum scarcity becoming important pressing concerns that 5G and beyond must
address. This research emphasizes on power-domain NOMA which employs PA algorithms
and analyze downlink ordered NOMA under various channel conditions. Section 5 contains
the work’s concluding notes.

2. NOMA
(1) Power-domain NOMA and (2) code-domain NOMA are the two broad classification of
NOMA. In power-domain NOMA, each user is differentiated by their allocated power and all
the users share at the same time, the frequency and code resource. The user having the
highest channel gain is assigned with lower power and the user with low channel gain is
assigned with higher Power. In NOMA, each user experiences interference and can be
eliminated by a technique called SIC (Higuchi & Benjebbour, 2015). In code domain NOMA,
different channel codes, interleavers and code books were used to separate the users.

Figure 1.
NOMA schemes
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2.1 Power-domain downlink NOMA
A basic NOMA systemmade up of just one base station (BS) and two users with one antenna
each. Assume that x1 and x2 are the signals sent to users 1 and 2, independently, by the BS.
The BS transmits the superposition coded signal as:

y ¼
ffiffiffiffiffi
P1

p
h1x1 þ

ffiffiffiffiffi
P2

p
h2x2 (1)

where h1 and h2 are the channel coefficients of user 1 and user 2 and Pi, i5 1,2 is the transmit
power for user I and user 2, and xi, i5 1,2 is a unit powermessage signal, i.e.Ejxij25 1, withE
(expectation operator). Users 1 and 2’s total transmit power can thus be expressed as
P5 P1þ P2. In practice, P is assigned to a certain system configuration and is divided into P1
and P2 based on the PA scheme employed (Figure 2).

yi ¼ hisþ ni (2)

where s is the superimposed signal obtained at Base station by linearly combining the signals
x1 and x2. Here, hi is the channel gain between the BS and user I and ni is represented by
Gaussian noise with interferences at the receiver and the power spectral density of ni isNf,i. In
a multi-cell setup, inter-cell interference included in ni. In equation (2), s is given by:

s ¼
XM
i¼1

αiPxi (3)

At the receivers, SIC is used to segregate the signals of various users. The ideal SIC decoding
order is specified by jhij2/Nf, i and is in descending order of the users’ channel strengths. Each
user can greatly reduce interference based on the signals sent by users whose decoding
instructions arrive after their ownwith this order. As a result, user 1, also known as the strong
user, is able to cancel interference fromuser 2, also known as theweak user (Ali, Tabassum,&
Hossain, 2016; Higuchi & Benjebbour, 2015; Akash, Chaurasiya, Rai, & Jagannatham, 2020).

NOMA is further classified in fixed NOMA and ordered NOMA. In fixed NOMA, the
decoding order is fixed. But in case of ordered NOMA, the weaker user is decoded first, who
has channel gain

eβ1 ¼ eh1��� ���2 ¼ min jh1j2 ; jh2j2
n o

¼ minfβ1; β2g (4)

Figure 2.
Power domain
downlink ordered
NOMA system model

AGJSR
41,4

480



Hence, received signal for ordered NOMA at user 1 is:

yi ¼ ehisþ ni (5)

A probability that certain data rate will not be supported due to poor channel conditions is
called outage probability. Outage probability of ordered NOMA user 1 is given by:

Pout1 ¼ 1� e
−

R1

δ2
3
Pðp1−p2R1Þ

� �
(6)

where Efβ1g ¼ δ21 ; Efβ2g ¼ δ22 and
1
δ23

¼ 1
δ21
þ 1

δ22
. R1 is the data rate of user 1.

Outage probability of ordered NOMA user 2 is given by.

Pout2 ¼ 1� e
−

f

δ2
2

� �
� e

−
f

δ2
1

� �
þ e

−
f

δ2
3

� �
(7)

where f ¼ max
n

R2

ðp1− p2R1ÞP;
R2

P2P

o
.

3. Power allocation in NOMA
The power domainmultiplexes its users and so PA is critical in NOMA (Islam, Zeng, &Dobre,
2017b; Thakre & Pokle, 2022). It has a direct influence on system performance, including
interference control, rate distribution and user admission. A bad PA can result not only in an
unequal rate of allocation among consumers but also in SIC failure in system outage. In
NOMA, the purpose of PA is to obtain through (1) more admitted users, (2) higher sum rate
with (3) energy efficiency, while using the least amount of electricity. Equal power cannot be
allocated to users, as SIC becomes complicated (Khan et al., 2020).

The optimal value of P2 is

P2 ¼ Pβ1 � R1

Pβ1ð1þ R1Þ (8)

R1 is the data rate of user 1.

4. Performance analysis of downlink ordered NOMA under various channel
conditions
Two user NOMA downlink performance is considered. Outage probability of downlink
ordered NOMA under various channel models like Rayleigh, Rician and Nakagami-m
channels were analyzed usingMATLAB. Here the PA of user 1 and 2 is taken as P15 0.9 and
P2 5 0.1, respectively. Figure 3 displays the likelihood of an outage probability of ordered
NOMA of user 1 and 2 under Rayleigh fading scenario. In Rayleigh fading, the receiver
cannot receive direct signal from transmitter. Probability density function of Rayleigh fading
is given by.

PRayleighðrÞ ¼
2r
Ω e

−r2

Ω
Where r≥ 0 (9)

Outage probability performance of user 2 (weak) is good compared to user 1 at high SNR
values.

In 5G scenario, more number of users are there within small cell area. Hence, line of sight
(LOS) transmission is also possible. Rayleigh fading channel lacked the effect of LOS
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propagation. Rician channel model can be employedwhen there is an LOS (Akash et al., 2020).
For evaluation of system performance, Rician fading channel model are less convenient due
to the occurrence of Bessel function in the Rician probability density function.

Outage probability of ordered NOMA of user 1 and 2 under Rician Channel is shown in
Figure 4.
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Figure 3.
Pout vs SNR in ordered
NOMA under Rayleigh
fading channel

Figure 4.
Pout vs SNR in ordered
NOMA under Rician
channel
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PRicianðrÞ ¼ 2
ðkþ 1Þr

Ω
e−½kþðkþ1Þr2=Ω� XI0

"
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

Ω

r
r

#
Where r≥ 0 (10)

where I0 is the Bessel function.

As Nakagami-m fading channel model is used in case of small-scale fading scenario, the
same performance of NOMA is employed in Nakagami-m channel model without any channel
coding techniques. The major advantages of Nakagami fading are that the empirical data
matches with the model and the sum of multiple independent and identically distributed
Rayleigh fading signals. It also describes the amplitude of received signal after maximum
ratio diversity combining.

The probability density function of Nakagami-m channel is:

PNakagami−mðrÞ ¼
2mm r2m−1

ΩmΓðmÞ e−mr2

Ω
where r > 0 (11)

Outage probability of orderedNOMAof user 1 and 2 is shown in Figure 5. From the figure it is
found that the performance of Nakagami-m channel fading techniques is almost as good as
Rayleigh fading. Performance of user 1 is good compared to user 2 in the signal to noise ratio
range from 0 to 20 dB.

5. Conclusion
To increase the throughput of NOMA-based 5G networks, the study offers a throughput
performance in PA techniques. The number of multiplexed users on the same subcarrier may
be one strategy to improve network performance. High spectrum efficiency, enormous
connection and low latency are all advantages of employing NOMA as a radio access

0 5 10 15 20
SNR (dB)

10 –1

100

Pr
ob

ab
ilit

y 
of

 O
ut

ag
e

Pout vs SNR for ordered NOMA under Nakagami-m fading channel

Outage User 1 (Sim.)
Outage User 2 (Sim.)

Figure 5.
Pout vs SNR in ordered

NOMA under
Nakagami – m fading

channel

NOMA under
various
channel

conditions

483



innovation for 5G and later. NOMA provides better user fairness and hence improves cell-edge
user experiences with proper power distribution. Mainly the power allocation and downlink
NOMA is good for outage probability. Outage probability of ordered NOMA of user 1 and 2
were interpreted under different channel conditions. From the analysis and the comparison of
different channel fading techniques like Rayleigh, Rician and Nakagami-m, it was found that
the outage probability performance of downlink NOMA was good for both user 1 and 2. As a
future work, Channel coding techniques can be implemented to improve the performance.
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