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Abstract
Purpose – The typical approach of modeling the aerodynamics of an aircraft is to develop a complete database through testing or computational
fluid dynamics (CFD). The database will be huge if it has a reasonable resolution and requires an unacceptable CFD effort during the conceptional
design. Therefore, this paper aims to reduce the computing effort required via establishing a general aerodynamic model that needs minor
parameters.
Design/methodology/approach – The model structure was a preconfigured polynomial model, and the parameters were estimated with a
recursive method to further reduce the calculation effort. To uniformly disperse the sample points through each step, a unique recursive sampling
method based on a Voronoi diagram was presented. In addition, a multivariate orthogonal function approach was used.
Findings – A case study of a flying wing aircraft demonstrated that generating a model with acceptable precision (0.01 absolute error or 5% relative
error) costs only 1/54 of the cost of creating a database. A series of six degrees of freedom flight simulations shows that the model’s prediction was
accurate.
Originality/value – This method proposed a new way to simplify the model and recursive sampling. It is a low-cost way of obtaining high-fidelity
models during primary design, allowing for more precise flight dynamics analysis.
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1. Introduction

Designers typically propose several layouts of aircraft during
the conceptual design stage before settling on one as the
final plan. The layout selection matrix is a frequent layout
comparison tool (Gudmundsson, 2013). This method
scores design aspect of each layout, and then uses weighted
summation to choose the layout with the highest total score.
The matrix also incorporates aircraft dynamics; the
designers’ extensive experience is used to analyze the
benefits and drawbacks of these aspects from design aspects.
However, aircraft design is continuously evolving nowadays,
and a huge number of aircrafts with novel layouts have been
introduced. Even the most expert designers cannot
quantitatively determine the dynamic characteristics of a
layout without prior knowledge. The inaccuracy in the
estimation of performance, stability and control will
eventually affect the selection decision. As a result, even in
conceptual design, ensuring accuracy as much as feasible is
always good.
Using the classical six degrees of freedom (6-DOF)

dynamic model of an aircraft plus an aerodynamic module
to supply aerodynamic coefficients is a practical way to build
a dynamic model in the early design stage. To accurately
describe the aerodynamic of an aircraft, we usually build a

database. Each explainable variable, such as angle of attack
(AOA), angle of sideslip (AOS), deflection of aerodynamic
control surfaces, altitude and speed, has one dimension in
the database. The size of this database grows exponentially
as the number of coupling explainable variables increases. In
certain circumstances, it will reach the tens of thousands of
entries.
This database can be created in a variety of ways. Wind

tunnel or flight experiments can surely produce highly
credible data and had been widely used (Morelli and
DeLoach, 2003; Ozger, 2007; Morelli, 2012; Grauer and
Morelli, 2014; Abramov et al., 2019), but because only one
layout will be chosen, conducting wind tunnel or flight
testing for all the layouts is too expensive and time
consuming for conceptual design. Computational
aerodynamics, such as panel technique and the vortex lattice
method, is the most often used method. These approaches
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are quick and, in most situations, provide reasonably
accurate results. However, aircraft layouts are continually
evolving, with many new layouts having separated flows.
Most computational aerodynamics methods are no longer
capable of handling these complex flows and therefore are
no longer dependable. Computational fluid dynamics
(CFD), a more advanced calculation method, can provide a
more precise estimate of aerodynamic for complex flows.
But, because the computation is relatively slow, using CFD
to create aerodynamic databases is also expensive, even if it
saves time compared to wind tunnel experiments. If a
technique can be developed to speed up the process of
obtaining aerodynamic data via CFD, then the aircraft
layout selection will have a more accurate reference.
Aerodynamic modeling has been prevalently used in

aircraft design, e.g. USAF Datcom is a kind of empirical
based model. Nowadays approximate models, surrogation
models and reduced order models have been widely used to
reduce the workload (Jegarkandi Mohsen et al., 2009;
Ghoreyshi et al., 2012). In general, the number of model
parameters is one or two orders of magnitude lower than the
number of database entries, and in the case of extreme
coupling, there are even fewer. Among these models, the
ones that do not consider flow physics are referred as data-
driven models (Kou and Zhang, 2021). Three methods are
commonly used to determine a data-driven model: system
identification, data fusion and feature extraction. System
identification is one of the cornerstones of control theory
and has been widely used in aerospace (Plaetschke and
Weiss, 1988; Hamel and Jategaonkar, 1996; Tischler and
Remple, 2012; Jategaonkar, 2015; Morelli and Klein,
2016).The definition of data fusion varies in different
science communities, Although different scientific
communities have varied definitions for data fusion, it is
commonly defined as the process of merging data and
information from multiple sources. Data fusion aims to
balance the cost and accuracy of data with multifidelity to
refine or estimate the data (Murphy et al., 2016; Kou and
Zhang, 2021; Shi et al., 2021). Feature extraction
establishes models based on flow modes, and it is commonly
used to solve unsteady flow problems. Proper orthogonal
decomposition (Lumley, 1967) and dynamic mode
decomposition (Schmid, 2010) are the most commonly
used feature extraction modeling methods. The majority of
classical system identification approaches, which include the
output error method, the filter error method and the
equation error method (Jategaonkar, 2015), can likewise be
applied to aerodynamic modeling. Some other modeling
method based on input and outputs, like Volterra series and
Kriging, also have been extensively applied to modeling
many nonlinear systems (Han et al., 2010; Cheng et al.,
2017).
With the rise of machine learning, other methodologies

have emerged as well. Many classical modeling techniques
can be classified as machine learning, as they are data-
driven models that generalize beyond the training data
(Brunton et al., 2020). There are three types of learning
algorithms: supervised, semisupervised and unsupervised
learning. Neural networks are probably among the most
well-known supervised learning methods. It has universal

approximate capability that is able to fit any smooth
function exactly, under certain conditions (Kubat, 1999).
Long short-term memory, a variant of recurrent neural
network, has proved its superiority in time series forecasting
problems by overcoming stability problem (Pascanu et al.,
2013). Classification methods are perhaps the earliest
methods for supervised learning, and the most prevalent
methods are support vector machines and random forests.
Semisupervised learning includes generative adversarial
networks, which had already shown some success in
enhancing the resolution of flow fields (Xie et al., 2018),
and reinforcement learning, which had been widely used in
replicating unstable flow dynamics (Gazzola et al., 2014;
Gazzola et al., 2016; Guéniat et al., 2016; Loucks and van
Beek, 2017). As for unsupervised learning, it is just another
name for feature extraction modeling (Brunton et al.,
2020).
Obtaining information, determining the model and

estimating parameters and validating the model are the three
steps in a classical system identification workflow. The
problem of generating an aerodynamic database could be
changed into the task of determining aerodynamic model
parameters if a preconfigured model is used to predict the
aircraft’s aerodynamics. However, several issues must be
resolved before the modeling method can be used in the
conceptional design. The model must be precise enough to
predict complex behavior induced by separated flow but not
overly complex to avoid overfitting. The parameter
estimation must be recursive to conserve valuable
computing resources, which requires a recursive sampling
method to evenly disperse the samples at each step. The
research proposed a structure preconfigured polynomial
model and a unique recursive sampling strategy based on the
Voronoi diagram to overcome the challenges mentioned
above. This method can greatly reduce calculation time,
making it feasible to evaluate the performance, stability and
control characteristics of each alternative configuration
quantitatively during the conceptual design stage.
Furthermore, this technique provides a low-cost approach
to estimate new aircraft performance and handling
characteristics, making the use of CFD in the development
of novel layout aircraft a feasible task. This is especially
beneficial for most researchers and small aviation
manufacturing companies with limited high-performance
computing capabilities, which will surely promote
innovation.

2. Methods involved in modeling

2.1 Overview
Because the model is deterministic if the flow is steady and
all the explainable variables and aerodynamic coefficients (i.
e. inputs and outputs) are always available, the requirements
of system identification are naturally satisfied (Zadeh,
1962). Sampling, model structure identification, parameter
estimation and error analysis are all steps in creating a full
aerodynamic model. The structure of the aerodynamic
model is not overly sophisticated for most aircraft, and it
can be substituted with a preconfigured generic model
framework. As a result, the focus of this article is on
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presenting this preconfigured aerodynamic model
framework as well as the associated parameter identification
approach, which includes sampling and parameter
estimation.
The following requirements must be met by this model

framework:
� The model should have a limited number of

parameters. Estimating more model parameters
necessitates more input data, which will inevitably
increase CFD effort, which is in direct opposition to
our goal.

� The model must be complex enough to represent complex
flows such as stalls and separated flow on certain areas of
the aircraft.

� It is preferable for the model to have a precise physical
meaning to obtain understanding from the parameter
estimation results, which will speed up the design
process. Meanwhile, the model can be simply created so
that simplification can be based on features like
symmetry.

The parameter identification approach must also meet the
following requirements:
� The aerodynamic estimating accuracy must be calculable so

that we can verify that the result produced is accurate within
the range we are interested in. More crucially, once the
model gets the accuracy we require, we can terminate the
estimation process.

� The procedure should be recursive, and the process
should be terminated as soon as the required precision is
achieved, saving the most time possible.

� Because the aerodynamic of the aircraft are unknown,
if the sample point distribution was nonuniform,
information will be lost in the sparse sample point
area, resulting in a decrease in the model’s prediction
accuracy. Furthermore, if the estimating approach is
recursive, the sampling must be “recursively uniform.”
If a sample set is almost uniform before adding the
next sampling point, it will remain about uniform
after adding the following sampling point. To achieve
these criteria, a whole new sampling procedure is
required.

2.2 Aerodynamic coefficients involved
The aerodynamic force coefficients and coordinate system are
defined identically to their classic definitions in wind tunnel
tests:

CD

CY

CL

2
4

3
5 ¼ 1

qS

�cosa cosb sinb sina cosb
�cosa sinb cosb �sina sinb

sina 0 �cosa

2
4

3
5 X

Y
Z

2
4

3
5

(1)

The aerodynamic moment coefficients and coordinate system
are defined identically to their classic definitions in flight
dynamics:

Cl
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Cn

2
4

3
5 ¼ 1

qS

1=b
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2
4

3
5 L

M
N

2
4

3
5 (2)

where the forces X, Y and Z and the moments L,M, andN are
in the body frame.

2.3 Establishment and simplification of the general
model
As previously mentioned, the model itself must be simple
enough to reduce calculation time, which is our goal. At the
same time, the model should provide us with some insights,
allowing us to simplify the model depending on certain
features. As a result, despite its popularity in recent years,
machine learning is not exactly appropriate here. First is that
most universal artificial intelligence models require a large
amount of data to train (Brunton et al., 2020), especially in
deep learning (Taira et al., 2020), resulting in an
unacceptably high CFD effort. For example, have the CL of
an airfoil accurately predicted takes approximately 400
results to train a convolutional neural network (Zhang et al.,
2018). Second argument is that for researchers, an artificial
intelligence model is more of a “black box.” It can produce
good results, but we do not know much about its internals,
which makes it difficult to simplify. The last disadvantage is
that many machine learning architectures still do not readily
incorporate physical constraints in the form of symmetries
(Brunton et al., 2020).
Physics based models, for example, surrogate models, may

has advantages in many scenes. However, with the rapid
development of new layout aircraft, many layouts may have
different flow physics in some special working conditions. It is
challenging to establish physical-based models compatible with
all possible working conditions. It is preferable to use a
polynomial model. As a data-driven model, the polynomial
model does not contain lots of physical information, which
improves the generality of themodel. Its form is simple, making
it easy to design to represent aircraft aerodynamic properties.
For example, an antisymmetric moment coefficient such as Cl

orCn can be simply represented by an odd function. As a result,
a polynomial model was adopted.
Each explanatory variable’s order should be sufficient to

replicate the aerodynamic yet keeping the number of regressors
as low as possible. Fewer regressors reduce workload while also
preventing overfitting.
The model could be simplified because most aircraft are

laterally symmetrical. CD, CL and CM are symmetric about
lateral explainable variables, whereas CY, Cl and CN are
antisymmetric, i.e.:

Cs xð Þ ¼ Cs �xð Þ
Ca xð Þ ¼ �Ca �xð Þ

�
(3)

where Cs = CD, CL, CM, Ca = CY, Cl, CN and x = b , d a, d r.
Moreover, the aerodynamics of lateral symmetrical aircraft is
symmetrical about the combination of two lateral explainable
variables, as shown in Figure 1. The flight state is symmetrical
about the product of the AOS and the aileron deflection. Because
in the polynomial model the symmetry is equivalent to even
function, we can further determine the symmetry of the higher-
order terms from the sum of the order of the AOS and the aileron
deflection. If the sum is odd, this term will be antisymmetric. In
symmetrical coefficients such as CD, CL and CM, the
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antisymmetrical terms are set to zero and vice versa. Theoretically,
this reduces the number of parameters by half.

2.4 Recursivemaximum likelihood estimationmethod
Because it is difficult to predict how many samples will be
needed before the estimation, the sample size often exceeds the
necessary if they were prepared ahead of time. The burden can

be further decreased if the regression approach uses a recursive
strategy.
The form of a classic linear regressionmodel is:

y ¼ xTW1 « r (4)

where y is the aerodynamic coefficient, x is the m� 1 column
vector of regressors, W is the column vector of model
parameters and « r is the regression residual with a normal
distribution N (0, s2) according to the central limit theorem.
The logarithmic likelihood function is:

lnL ¼ � n
2
ln 2pð Þ � n

2
lns2 � e

0
rer

2s2 (5)

where er is the n� 1 vector of « r. lnL was maximized when W
was as follows:

cW ¼ XTXð Þ�1
XTy (6)

where y is the n� 1 value vector of aerodynamic coefficients for
n sample points, X is the n�m matrix of regressors and we
assume that XTX is invertible. If a sample point was added to

the regressor matrix, Xn1 1 ¼ Xn

xT
n1 1

� �
, and the value vector,

yn1 1 ¼ yn
yn1 1

� �
, then the estimation ofW became:

Figure 1 Symmetry of the combination of the AOS and the aileron
deflection

Figure 2 2-D example of recursive sampling using a Voronoi diagram
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cW n1 1 ¼ XT
n Xn 1xn1 1xT

n1 1

� ��1
XT

n yn 1xT
n1 1yn1 1

� �
(7)

We had already known that:

A1uvTð Þ�1 ¼ A�1 � A�1u 11vTA�1uð Þ�1
vTA�1 (8)

Therefore, we had:

cW n1 1 ¼ XT
nXn
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n Xn

� ��1
xn1 1

n

11xT
n1 1 XT

nXn
� ��1

xn1 1

h i�1

xT
n1 1 XT

n Xn
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o
XT

n yn 1xT
n1 1yn1 1

� �
(9)

Define the matrix Gn = (XTX)�1 and the real number
k ¼ 11xTn1 1Gnxn1 1:

cW n1 1 ¼ cW n 1Gnxn1 1k�1 yn1 1 � xT
n1 1

cW n

� �
(10)

This was the parameter estimation of the recursive maximum
likelihoodmethod.

2.5 Orthogonalization procedure of estimation
The matrix is typically badly conditioned when we use
explanatory factors as regressors directly. Therefore, an
orthogonalization strategy is usually used to solve the problem
(Morelli, 1993, 1995). Orthogonalization also made proving
the recursive procedure’s convergence and unbiasedness in
estimations easier.
The regressors’ column vector was made up of orthogonal

functions produced by theGram–Schmidt process:

p0 ¼ 1; pk1 1 ¼ xk1 1 �
Xk

i¼1

xk1 1; pið Þ
pi; pið Þ pi (11)

where the xk was the kth variable. The orthogonal vector was
defined as:

Pi ¼ pi;0; pi;1; � � � ; pi;m�1½ �T (12)

where pi,j represented the jth orthogonal function with the
explainable variables at sample point i.
Then, thematrixXTX became:

XTX ¼Xn
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3
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(13)

BecausePwas an orthogonal function system:

Figure 3 Control surface layout of the aircraft in the case study

Table 1 Computed states

AOA AOS Aileron Elevator Rudder

21 �8 �30 �20 �40
1 �4 �25 �10 �30
2 0 �20 0 �20
3 4 �10 10 �10
4 8 0 20 0
5 – 10 25 10
7 – 20 30 20
10 – 25 – 30
15 – 30 – 40

Table 2 Verification of grid independence

Mesh density Number of elements Cd (at a = 5°, b = 0°) CL (at a = 5°, b = 0°) CM (at a = 5°, b = 0°)

Coarse 6� 106 0.0139 0.2365 �0.2621
Medium 1.1� 107 0.0142 0.2377 �0.2615
Fine 2.3� 107 0.0142 0.2377 �0.2615

Figure 4 Surface mesh of the aircraft
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XTX ¼ diag
Xn

i¼1
Pi;0;Pi;0ð Þ;

Xn

i¼1
Pi;1;Pi;1ð Þ; � � � ;

n
Xn

i¼1
Pi;m�1;Pi;m�1ð Þ

o
(14)

Therefore, we had:

Gn ¼ diag
1Xn

i¼1
Pi;0;Pi;0ð Þ

;
1Xn

i¼1
Pi;1;Pi;1ð Þ

; � � � ; 1Xn

i¼1
Pi;m�1;Pi;m�1ð Þ

8<
:

9=
;

(15)

The parameter estimation was:

cW n1 1 ¼ cW n 1GnPn1 1k�1 yn1 1 � PT
n1 1

cW n

� �
(16)

2.6 Proof of unbiasedness and convergence
Now, it is easy to prove that ŷ is an unbiased prediction of y and
that the prediction converges to y as the number of sample
points increases. The estimate error was:

Figure 5 Flow chart of the automatic computing procedure
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by � yj ¼ xT cW �W
� �

1 «

j ¼ xT XTXð Þ�1
XTy�W

h i
1 «

j ¼ xT XTXð Þ�1
XT XW1 eð Þ �W

h i
1 «

j ¼ xTGnXT e1 «

(17)

where e and « are remainders consisting of regression residuals
and measurement noises because of the inaccuracy of CFD,

which also obeys normal distributions N (0, s2) according to
the central limit theorem, and thus E by � yð Þ ¼ 0; i.e. the
prediction of ywas unbiased.
The variance of prediction error for a series of linear

unrelated points was:

Figure 7 Predicted values and prediction errors

Figure 8 6-DOF flight simulation framework

Figure 6 Prediction error of the model

Figure 9 Control system for trimming
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D by � yð Þ ¼ D xTGnXTe1 «
� �

(18)

Note that the first term on the right side of the above equation
has a form resembling Raid i; additionally, we know that e and «
are independent but obey the same distribution, and thus:

D by � yð Þ ¼ xTGnXTs2 1s2 (19)

If a sample point was added, matrixG became:

Gn1 1 ¼ diag
1Xn

i¼1
Pi;0;Pi;0ð Þ1 Pn1 1;0;Pn1 1;0ð Þ

; � � � ; 1Xn

i¼1
Pi;m�1;Pi;m�1ð Þ1 Pn1 1;m�1;Pn1 1;m�1ð Þ

8<
:

9=
; (20)

Because Pi,j is orthogonal, (Pi,j, Pi,j) > 0, and the matrix G is
positive definite, we know that for arbitrary x:

xTGn1 1x < xTGnx (21)

That is:

D byn1 1 � yð Þ < D byn � yð Þ (22)

This equation means that the variance of the prediction error
decreases as the sample size increases. In addition, it is easy to

see that kGk2, the 2-norm of G approaches zero as the sample
size n increases. Thus, the prediction variance error converges
to s2. Because the regression residual and CFD inaccuracy are
unrelated,s2 equals to the sum of their variances.

2.7 Recursive samplingmethod using Voronoi diagram
If we do not know enough about the aircraft’s aerodynamics, the
ideal sampling technique is to evenly disperse the sample points
to get a more accurate model. Although orthogonal experimental
design techniques are extensively used, the majority of them

Figure 10 Trimming control and AOAwith AOS = 0°
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adopt batch processing. Because recursive regression necessitates
uniformly distributed samples when each new sample is
generated, a new technique must be devised. The center of the
largest empty sphere (LES) is considered as the best sampling
location in this scenario.
The LES problem is defined as follows: find the largest

radius hypersphere (within a specific border) that does not
overlap with any points in a specific set. Based on LES, the
sampling process was completed into two parts. The Latin
hypercube technique was used first to obtain the minimum
number of samples required for the modeling procedure. The
next stage was to solve the LES problem recursively to find the
new sample point.
The enumeration approach solves the LES problem, but it

has an O(n4) time complexity, which means it will take a long
time if a lot of samples are required. The Voronoi diagram has
been shown to be a superior tool.
A Voronoi diagram partitions a space into convex hulls

(Voronoi cells) and satisfies the following:
� For a given set of points, each Voronoi cell contains

exactly one point belonging to the set, and any point in
the cell is closer to this point than any other point from
the set.

� Points on the hyperplanes between the Voronoi cells are
equidistant between the points in each cell.

The Voronoi points, edges and faces are defined as the vertices,
edges and faces of the Voronoi cells, respectively. The center of
the LES must be a Voronoi point. Solving the LES problem
with a Voronoi diagram has a time complexity of onlyO(nlogn)
(Toussaint, 1983).
The additional point would tend to lie on the border because

there were no points outside the boundary. To prevent this
problem, the maximum convex hull was extracted and
mirrored with all the borders. Figure 2 was an example of a
two-dimensional sampling, and higher-dimensional sampling is
similar. To save processing time, any points in the
hyperrectangle with edges double the border edge length were
removed after themirror procedure.

3. Case study: a flying wing

3.1 Problem definition
A flying wing working at sea level with a span of b = 1.372 m
and an aspect ratio = 1.673 was studied. The aircraft has three
types of control surfaces: elevator, aileron and split drag rudder
(SDR), as shown in Figure 3. The mean aerodynamic chord of

Figure 11 Trimming control and AOAwith AOS = 5°
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the aircraft was 0.82m and the airspeed was 70m/s; thus, the
Reynolds number was approximately 3.9�106. The classic
wind tunnel axis system was used to deal with the aerodynamic
forces and the body axis system was used to deal with the
aerodynamicmoments.
Assuming that the aircraft is flying at sea level, there are five

explanatory variables involved: the AOA, the AOS and three
control surface deflections. The ranges of interest of the
variables in this work are shown in Table 1. Because we also
assume the control surfaces influence each other, i.e. fully
coupled, the aerodynamic database has 25,515 records.

3.2 Computational fluid dynamicsmethod and
validation
The CFD process adopted the finite volume method and the
hexahedral grid. The surface mesh of aircraft is shown in
Figure 4. The velocity inlet (U1 = 70 m/s) was set on the
front wall of the box calculation domain, whereas the outflow
was set on the back wall. All other walls were set to symmetry
to prevent boundary layers from forming. All the boundaries
were 30b distant from the aircraft. The steady
uncompressible reynolds-averaged Navier-Stokes equations
and the Spalart-Allmaras turbulence model were used. The
result of grid independence test is shown in Table 2. The

mesh with approximately 11 million cells produced a
satisfactory result.

3.3 Determination of the aircraft model structure
The symmetric terms (AOA, d e) are expanded to at least
fourth orders to simulate stalling. The AOS terms were
expanded to third orders to simulate the slightly nonlinear
behavior, whereas the other terms (d a, d r) were expanded to
the fifth order to correctly predict some complex phenomena
such as nonlinear behavior of SDR or aileron stalling. The
explanatory variables were multiplied up to the fifth order in all
possible combinations. As mentioned in Section 2.3, the
aileron deflection, the SDR deflection and the AOS have
the combined symmetry with each other and can be simplified.
The final regressors are shown inTable 3.

3.4 Automatic computing
The automatic computing progress was built up with sampling
procedure and estimating procedure.
In the sampling procedure, a matrix of states was generated.

The sampling procedure was carried out within the bounds
defined in Table 1. To meet the regression procedure’s
minimum criterion, a set of 134 points was first constructed
using the Latin hyper cube approach. By iteratively solving the

Figure 12 Response of the elevator doublet
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LES issue with a Voronoi diagram, the following 466 points
were created. The distances between the Voronoi points and
the second-nearest sample points were compared if there were
duplicate solutions. This technique would be repeated until no
duplicate solutions remained. A total of 600 points were
prepared in the end.
The estimating procedure load the state matrix and calculate

the result via CFD approach and estimate the model
parameters. Yet, a remaining problem was that the values
computed via CFD were not always trustworthy. A screening
procedure must be carried out to deal with this problem. So,
the complete procedure was like the following:
1 Load the first (134 1 30) sample points and calculate

corresponding CFD results. The first 134th samples
compose the data set, whereas the last 30th samples make
up the verification set.

2 Use the data set to estimate model parameters, then
determine the model’s predict error and standard
variation sd.

3 CFD results that were 3sd off from the model prediction
were considered outliers and were eliminated from the
data set.

4 Repeat steps 2–4 until there are no more outliers.
5 Calculate the verification set’s predict error and standard

error.

6 The calculating process is finished if the standard
variation of the verification set sv is smaller than the
absolute error threshold (tea) or relative error threshold
(ter). Otherwise, add the first member of the verify set to
the data set and load a new sample into the verification
set, repeat steps 2–7.

According to the Drag Prediction Workshop through years
(Hemsch, 2004; Derlaga and Morrison, 2017), the accuracy of
CFD prediction on drag is constantly improving. Drag
prediction accuracy is less than 35 counts even at the early
results. Our goal is to use CFD in the conceptual design stage.
Aerodynamics may change as modifications are introduced in
later design stages, such as adding protrusions onto the aircraft
surface. Hence, the accuracy requirement of 35 counts was
sufficient for this case. The absolute error threshold we selected
for all the aerodynamic coefficients was tea = 0.0035, whereas
the relative error was ter = 5%.The complete workflow is shown
in Figure 5.

3.5 Results
The automatic computing process stops after calculating 470
points, indicating that the model reduced the workload to
approximately 1/55 compared to establishing a full database.

Figure 13 Time history of the longitudinal coefficients
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3.5.1 Verification of aerodynamic prediction
A collection of 100 sample points was produced with CFD
and compared to the model prediction to verify the model’s
prediction accuracy. All samples used in this analysis are
linearly unrelated to the samples used to calculate the
parameters. Figure 6 depicts the predicted error.
The horizontal dashed line represented ter (5%) and three
times the value of tea (0.0105). The majority of the absolute
errors were less than 0.0105 and those that were not were all
less than the 5% relative error level. Outliers were defined as
values greater than 3s .
Figure 7 depicted the aerodynamics at a = 6°, d a = d e = 0°

on AOS vs d r plane. The model’s prediction, displayed as the
surface in the figure, fits the calculation result well for most of
the coefficients. The Cl, which represented the sympathetic
derivative, or Cld r, on the other hand, had a low degree of
precision. One cause for this was that the coefficient is small
and the data for estimation itself had a considerable inaccuracy.
This could be demonstrated by comparing theCd andCl values.
The increase in Cd was not the primary effect of rudder, but it
had a larger influence, therefore the prediction was more
accurate. The other reason was the estimating process
calculates all the parameters of one coefficient at the same time.
Although the total error was acceptable, the estimation did not

consider the error of a single derivative. As a result, the
estimation of sympathetic derivatives was rather imprecise.
Nonetheless, the predict error of Cl was less than 33%, which is
acceptable.

3.5.2 Verification of flight simulation
However, it is widely known that the consistency of the
simulation response cannot be guaranteed solely by
the closeness of the aerodynamic derivatives. We used the
aerodynamic model and the database to run a series of 6-
DOF simulations on the same aircraft to further confirm
the model’s validity. The simulation was created using
Simulink and includes four main modules, similar to those
found in traditional simulations: control system,
aerodynamics, 6-DOF dynamics and atmosphere, as shown
in Figure 8. The rigid body dynamics module adopted
quaternion, and the numerical integration method was
ode45. The controller of each case, including all of the
feedback gains, is completely the same. The results of a
series of simulations, including steady-state trimming,
doublet and chirp responses and coordinated turning,
demonstrated that this model and the database would
provide identical outcomes.

Figure 14 Response of aileron doublet
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3.5.2.1 Steady-state flight. The importance of steady-state
flight cannot be overstated. It stands for trim capability in the
realm of aircraft design, which is important to aircraft
excellence. It serves as an initial condition for the simulation
of all other situations in the realm of flight simulation.
Calculating the elevator deflection angle, throttle position
and trim AOA of an airplane at various speeds is one
technique to evaluate its trim ability. As shown in Figure 9, a
basic proportion integration differentiation (PID) controller
was constructed to gather trim information at various speeds.
The trimming result without sideslip is shown in

Figure 10. When the speed was low, the model produces
more elevator deflection and vice versa. That means the
predicted trim capability was lower than the database’s
capability; yet, throughout the speed range, the elevator
deflection was always less than 0.01 radians. The difference
in throttle position was small at low speeds, but it grew with
speed and stops growing at roughly 3% when the speed hits
70m/s. The trim AOA difference has been kept small until
the speed exceeds 80m/s, reaching a maximum of 0.12° at
90m/s.
Themodel performed even better in the trimming case with a

sideslip b = 5°, as shown in Figure 11. The model’s accuracy

was completely demonstrated by the fact that all five variances
were very small throughout the speed range.

3.5.2.2 Doublet response Doublets are a type of stimulation
widely used in automatic control field. Theoretically, doublets
include all the frequency components.
Figures 12 and 13 demonstrated the open-loop response and

the time history of longitude coefficients. The time history of
coefficients showed just a minor change and AOA’s response
was nearly identical. The differences in speed and height
response seemed to be significant, mainly because of the phase
difference of Phugoid model at the end of stimulation. Despite
this, the differences were only 2m or 0.1m/s, which was a little
variance.
The open-loop response and the time history of lateral

coefficients corresponding to aileron doublet are shown in
Figures 14 and 15. There was only a minor difference in the
responses. The time histories of Cl were essentially identical,
although Cc and Cn differed little. Because aileron primarily
creates rolling moment while side force and yawing moment
caused by aileron were relatively small, a small absolute error
causes a large relative error.
The Theil inequality coefficient (TIC) is a popular model

prediction accuracy criterion. TIC is defined as follows:

Figure 15 Time history of lateral coefficients
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TIC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nt �n0

Xnt

i¼1
½ ydata � yð ÞTW ydata � yð Þ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nt �n0

Xnt

i¼1
yTWyð Þ

r
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nt �n0

Xnt

i¼1
yTdataWydata
� �r

(23)

where nt is the number of time-domain data points, n0 is the
number of measured output channels, ydata is the system
output, y was the model output and W is the diagonal
matrix of weight factors that is used to balance outputs with
various dimensions (Tischler and Remple, 2012). A TIC of
less than 0.3 is considered acceptable (Jategaonkar et al.,
2004). The measured output was defined as follows:
because we assumed the aerodynamics model was fully
coupled and the flight simulation used a nonlinear 6-DOF
dynamics model

y ¼ a v q u b p r f

 �T (24)

Except for weight factor of the airspeed was 0.0573 as
suggested, all nonzero elements in the matrix W were one. The
elevator doublet reaction had a TIC of 0.184 whereas the
aileron doublet response had a TIC of 0.0548, both of which
met the requirement.

3.5.2.3 Chirp response. Chirp signals are another sort of
stimulation that are commonly used. The chirp stimulation
used here lasted 10 s and ranged from 0.1 to 10Hz. The open-
loop responses were presented in Figures 16 and 17, with TICs
of 0.0974 and 0.0776 for each case, respectively.

3.5.2.4 Coordinate turning. Coordinate turning uses all the
control channels of the aircraft, so it is an ideal maneuver to
verify if the model precisely predicts the combined control
response. The turning was carried out at 100m height and a
consist speed of 70m/s. The control was performed by a PID
controller and consisted of a trimmer, a bank angle retainer and
a sideslip eliminator. A switch was used to start the turning, as
shown in Figure 18.
Figure 19 depicted the controls required to perform a series

of coordinate turnings of varying radius. The difference in
elevator was just approximately 0.01 rad, whereas the
difference in throttle was less than 0.1%. Because the deflection
was small, the aileron differential appeared to be a little larger.
The difference in rudder was around 17%. One reason was that
the sympathetic derivative, or Cnd a, was small and was difficult
to be solved precisely. As a result, the samples used for
parameter estimation were highly noisy, resulting in a
substantial inaccuracy in model parameters. As a result, the
minor aileron variance resulted in a larger variation in Cn.

Figure 16 Response of elevator chirp
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Because of the inefficiency of SDR, additional rudder
deflection was necessary to eliminate the aileron error, resulting
in a relatively large rudder difference. The flight paths were
almost coincidence with only a little difference in height, as
shown in Figure 20. The overall predict ability of the model is
satisfactory.

4. Conclusions

This work proposed a complete method for constructing an
aerodynamic model of an aircraft using the CFD approach.
The method aimed on saving CFD effort and used a

recursive sampling and parameter estimation method to
solve a structure-preconfigured polynomial model.
To support the recursive regression approach, a novel
sampling process was devised, which included recursive
sampling by solving the LES problem via the Voronoi
diagram. The feasibility of the recursive estimation method
was proven by proving the prediction error of the model
decreases with an increasing number of sample points. The
model can be simplified because of the lateral symmetry of
the aircraft.
To validate the modeling methods, a case study of a flying

wing was conducted. Each coefficient in the example
contains five explanatory variables and 133 parameters.
Compared with creating a database, the modeling method
took only 470 samples, or 1/54 of the calculating effort. For
all the aerodynamic coefficients, the prediction accuracy
reached an absolute error of 0.0105 (or relative error of 5%).
The model correctly predicted the dynamic and control of
the aircraft in the 6-DOF simulations, which included
steady-state flight, response to the doublets and coordinate
turning. This model has a higher prediction accuracy for the
dominant influence of the control surface than it does for the
nondominant effect.

Figure 17 Response of aileron chirp

Figure 18 Control system of coordinate turning
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Figure 19 Control required for making coordinate turnings

Figure 20 Flight path comparison of turning with a radius of 1,200m
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