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Abstract
Purpose – This study aims to present the concept of aircraft turbofan engine health status prediction with artificial neural network (ANN) pattern
recognition but augmented with automated features engineering (AFE).
Design/methodology/approach – The main concept of engine health status prediction was based on three case studies and a validation process.
The first two were performed on the engine health status parameters, namely, performance margin and specific fuel consumption margin. The third
one was generated and created for the engine performance and safety data, specifically created for the final test. The final validation of the neural
network pattern recognition was the validation of the proposed neural network architecture in comparison to the machine learning classification
algorithms. All studies were conducted for ANN, which was a two-layer feedforward network architecture with pattern recognition. All case studies
and tests were performed for both simple pattern recognition network and network augmented with automated feature engineering (AFE).
Findings – The greatest achievement of this elaboration is the presentation of how on the basis of the real-life engine operational data, the entire
process of engine status prediction might be conducted with the application of the neural network pattern recognition process augmented with AFE.
Practical implications – This research could be implemented into the engine maintenance strategy and planning. Engine health status prediction
based on ANN augmented with AFE is an extremely strong tool in aircraft accident and incident prevention.
Originality/value – Although turbofan engine health status prediction with ANN is not a novel approach, what is absolutely worth emphasizing is
the fact that contrary to other publications this research was based on genuine, real engine performance operational data as well as AFE
methodology, which makes the entire research very reliable. This is also the reason the prediction results reflect the effect of the real engine wear
and deterioration process.

Keywords Aircraft turbofan engine, Health status prediction, Neural network pattern recognition, Artificial neural network,
Prognostic health monitoring, Turbine engine failure analysis
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1. Introduction

Engine health status determination is one of the crucial factors
affecting aircraft flight safety. Aircraft flight operations are based
nowadays on themaintenance preventive and prognostic strategy,
which is a combination of preventive maintenance tasks and
operations as well as engine monitoring and prediction system. It
is quite common to adopt this maintenance strategy based on the
engine performance and reliability learnt from the experience. It
allows to save a lot of maintenance man-hours, aircraft downtime
and in result a great deal of money for the aircraft owner and
operator. To be able to enhance aircraft maintenance strategy it is
mandatory to have the ability of engine health status prediction.
Having such capabilities, allows to change, adopt and schedule
engine maintenance and what is even more important is the fact
that this allows to predict the moment of engine failure and
prevent this scheduling maintenance task to prevent such failure,
or remove engine from service if such failure might jeopardize

aircraft flight safety. Turbofan engine trending and diagnostics
were discussed among others by Szrama (2019),Matuszczak et al.
(2021). One of the current main lines of research is about
artificial intelligence methods applications, especially artificial
neural networks (ANNs). Engine predictive strategy supported
by ANN was presented for instance by Barad et al. (2012),
Andrianantara et al. (2021), Da Costa et al. (2019), Qiao Zijian
and Ji-Yu (2022), Wang et al. (2024), MA et al. (2022), Wang
et al. (2024), Li et al. (2021) or Szrama and Lodygowski (2023).
Engine fault detection and isolation with neural network usage
were presented by Sadough Vanini et al. (2014) or Sina Tayarani-
Bathaie et al. (2014). Transfer learning concept was implemented
by: Tang et al. (2019) or Zhong et al. (2019).
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There are some more advanced types of neural networks
already invented. The deep learning neural networks are often
used for the engine remaining useful life estimation. Szrama
and Lodygowski (2024) proposed using Convolutional neural
network and Long short-term memory-type deep learning
network to predict the remaining life of the engine.
Engine health status prediction is a key step in assessment

and prediction of the remaining useful life which was discussed
by Zhao et al. (2022), Wu et al. (2019), Sateesh Babu et al.
(2016), Li et al. (2022), Lee and Mitici (2023) or Wang et al.
(2024). Comparison and the review of the pattern recognition
and deep learning technologies and their role in engineering
research was elaborated by Serey et al. (2023).
The deep learning networks are usually applied for the long-

term dependencies in signals. Not always has to be very
complex and deep neural network created. In the article, it was
decided to create shallow neural network architecture for the
pattern recognition in the engine performance data.
Very few studies were performed with the neural network

pattern recognition system, and this was the reason it was
decided to conduct the research presented in the article. In
addition to this, none of the publications were based on the
real-life engine operational data. All the publications including
the proposed ones were used with the engine simulated data
provided by National Aeronautics and Space Administration
and called C-MAPSS Aircraft Engine Simulator Data. As it
was proved in the authors’ article mentioned above, there is a
huge difference in neural network performance while training
and testing on simulated data and real-life data.
In this article, authors proposed the novel concept of neural

network pattern recognition application augmented with
automated feature engineering (AFE) for the turbofan engine
health status prediction.

2. Neural network pattern recognition
architecture and methodology

Pattern recognition can be described as a process of finding
regularities and similarities in data using machine learning
algorithms and architectures. Novel pattern recognition system
architecture andmethodology are presented in Figure 1.
Data exploration allows to analyse engine data, engine

parameters it comprises and to determine which data is
absolutely necessary. The accuracy of recognition highly
depends on the quality of the data set. Pre-processing is
coupled with enhancement. It involves smoothing and

normalization process of the data. At the next stage, the input
data is transformed into a feature vector, a reduced
representation of a set of features. In the data extraction
features step, it is being decided, which engine-sensed
parameters are crucial for engine degradation assessment.
Then extracted features are compared to a similar pattern
stored in the database. When patterns are eventually matched
to the stored data, the classification of input data is performed.
As a part of the novel approach to the neural network
performance enhancement, it was decided to implement new
step called automated features engineering (AFE). During this
step, the designed function automatically generates 13 new
(additional) features from the original training data, and then
applies the same transformations to the test data. The following
step is the Engine Health Status Index Evaluation. In our case,
Engine Health Index results from performance margin
(PMAR) and specific fuel consumption margin (SMAR)
engine parameters (thoroughly explained by Szrama and
Lodygowski, 2023). PMAR is used to define and determine
engine degradation level and is based on the engine exhaust gas
temperature. SMAR expresses the fuel consumption rate in
relation to the engine thrust (power). Based on the analysis
performed in the mentioned article, engine health status classes
were set based on the PMAR and SMAR being: safe, middle
and unsafe. Then the complete engine data was split into
training set and testing set (usually we take two/thirds of the
complete set as training data and one/third of the testing data).
The next step was to design neural network architecture which
in this case was the shallow feedforward network with sigmoid
hidden neurons and three output neurons. The next step was to
train engine training data set using various network
architectures. Network training results were compared and
checked. Not only was the learning accuracy measured but also
what is the cost of the misprediction. The crucial misprediction
is when for the engine which has reached unsafe engine health
condition, the prediction value is safe. Another crucial step was
to evaluate the designed neural network architecture on the
separate engine testing data set. As a result, it was possible to
confirm neural network performance and accuracy.
The study was conducted for the two-layer feed-forward

network, with 10, 20 or 50 sigmoid hidden layers and three
output neurons which were trained to classify input vectors into
three different classes, being: Safe, Middle and Unsafe. They
were defined as the following:
� Safe� [1 0 0];
� Middle� [0 1 0]; and

Figure 1 Neural network pattern recognition system architecture and methodology

Turbofan engine health status prediction

Sławomir Szrama

Aircraft Engineering and Aerospace Technology

Volume 96 · Number 11 · 2024 · 19–26

20



� Unsafe� [0 0 1] vectors.

To understand how the novel methodology step affected the
neural network performance, it was decided tomeasure network
performance without AFE function and then compare the
results to the results achievedwith the newly generated features.

2.1 Automated features engine data
To improve the neural network performance, it was decided to
design new neural network pattern recognition network with
AFE algorithm. Artificial network pattern recognition
architecture with AFE for the turbofan engine data set was
presented in Figure 2.
Based on the newly designed network architectures, new

features were generated to check the network performance and
accuracy. Before passing the original engine training data to a
classifier, new additional features were generated from the
predictors in the engine data set. The returned data was used to
train the classifier. As a part of the predictors generation, the
minimum redundancy maximum relevance (MRMR) features
selection method was implemented. The MRMR algorithm
finds an optimal set of features that is mutually and maximally
dissimilar and can represent the response variable effectively.
The algorithm minimizes the redundancy of a feature set and
maximizes the relevance of a feature set to the response variable.
The algorithm quantifies the redundancy and relevance using the
mutual information of variables-pairwise mutual information of
features andmutual information of a feature and the response. As
a part of the MRMR feature selection, predictors were ranked
and then included in the requested number of top-ranked
features in newTrain engine data set. The most important
predictors selected were: Tt2 (Total Temperature at Engine
Inlet), FTIT (Fan Turbine Inlet Temperature) and Pt6 (Total
Pressure at the Engine Exhaust). Tt2 is the parameter which is
the key engine input and sensed parameter. Around this feature,
all the engine operational maps are designed, and engine
operation is controlled by a Full Authority Engine Controller
based on the Tt2. FTIT is the crucial engine operational and
safety parameter. This parameter defines the highest temperature
at the inlet of the fan turbine, which is safe for engine
construction. Pt6 is also the key parameter which is used by full
authority digital engine control to control engine pressure ratio,
which is the engine performance parameter.
As a result of AFE, it was decided to generate 13 new features

as a combination of the existing ones. The automated features
were added to the original data to enhance the neural network

performance and engine health status simulation. Some
generated features are a combination of multiple
transformations. For example, five features were generated by
converting the variable to the categorical variable with three
categories and then calculating the frequency of the categories.
As a result, the new neural network architecture was designed
with 59 input neurons, and trained, validated and tested in
accordance with scaled conjugate gradient algorithm.

3. Neural network performance metrics

One of the most important neural network performance
metrics is the cross-entropy loss function (PRF). The function
returns result that heavily penalizes outputs that are extremely
inaccurate (~yi � 1� yi), with very little penalty for fairly correct
classifications (~yi � yi). Minimizing cross-entropy allows to
converge the classificationmodel.
Cross-entropy loss function (PRF) could be calculated in

accordance with equation (1):

CrossEntropy ¼ PRF ~y; yð Þ ¼ �
XN

i¼1

yiln~yi (1)

where:
yi ¼ the following target value; and
~yi ¼ the following predicted value.

In addition to the previously mentioned performance metric,
additional metrics were proposed as a part of the comparison
between the results achieved for the simulated and real-life
engine data.
Accuracy performance metric. This performance metric is

usually used in case of classification neural networks, where it is
calculated as a ratio of the sum of True Positive and True
Negative values divided by the sum of True Positives, True
Negatives, False Positives and False Negatives. It could be
calculated in accordance with equation (2):

Accuracy ¼ TP1TN
TP1TN1FP1FN

(2)

The next performance metric is the Mean absolute percentage
error (MAPE) which is calculated between the predicted values
and the actual values. It can be defined as:

MAPE ¼ 1
N

XN

i¼1

yi � ~yi
yi

� 100% (3)

Figure 2 Artificial network pattern recognition architecture with automated features engineering for the turbofan engine data set with 50 sigmoid
hidden layers and 3 output neurons trained to classify input vectors into three different classes: safe, middle and unsafe
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Another performance metric, which is used in Recurrent
Neural Networks is the coefficient of determination R-squared.
In the context of regression, it is a statistical measure of how
well the regression line approximates the actual data. R-
squared coefficient can be calculated in accordance with
equation (4):

R2 ¼ 1� SSR
SST

¼ 1�
XN

i¼1
yi � ~yið Þ2

XN

i¼1
yi � yð Þ2

(4)

where:
N ¼ number of observations;
SSR ¼ sum squared regression is the sum of the residuals [1]

squared;
SST ¼ total sum of squares is the sum of the distance the data

is away from themean all squared;
yi ¼ the following target value;
~yi ¼ the following predicted value; and
y ¼ themean of the predicted value.

Percentage of errors%Error which the sum of themispredictions
divided by the number of elements in the data set:

%Error ¼
XN

i¼1

yi� ¼ ~yið Þ
N

� 100% (5)

Another comparison of the results might be performed by
comparing relative accuracy RA, which could be calculated as a
ratio of predictions to the actual values:

RA ¼ ~yi
yi
� 100% (6)

Precision is themetric which presents how accurate the positive
predictions are, and could be calculated as follows:

Precision ¼ TP
TP1FP

(7)

Recall is a metric that measures how often a machine learning
model correctly identifies positive instances (true positives)
from all the actual positive samples in the data set and is
calculated as follows:

Recall ¼ TP
TP1FN

(8)

The F1 score is calculated as the harmonic mean of the
precision and recall scores, as shown below. It ranges from 0%
to 100%, and the higher F1 score denotes the better-quality
classifier:

F1Score ¼ 2 � Precision � Recall
Precision1Recall

(9)

4. First case study on engine health status index

For the first case study, a new engine data set was created,
which consisted of the engine performance data. Engine
performance data was collected for the same type of aircraft
turbofan engine, which was a low by-pass high-performance
engine with mixer and afterburner. Engine data collection
selected for this study consisted of real-life engine operational
data. This amount of data has been collected for over twelve
years. A total of 70% of the full set (20,999 observations)
were randomly assigned as training data. A total of 15% of
the complete data (4,500 observations) were selected for the
validation process and the rest 15% (4,500 observations)
were dedicated to test neural networks. Test results achieved
for the 50-layer network are presented in Table 1.
In this case, the best-achieved cross-entropy was 0.0147 after

226 epochs. To analyse, what was the artificial network
performance, another analysis was performed based on the
confusion matrices. For all the processes: training, validation
and tests, the overall performance ranged from 96.7% for Class
3 to 99.2% for Class 2. It is important to notice was the fact that
only in very minor number of cases (about 3.3%) the prediction
of the most serious class being the unsafe engine health
condition was predicted as middle and none of the predictions
for Class 3 were classified as Class 1 being safe. In all the cases,
negative prediction rate was about 1.0%.
The final neural network performance analysis tool is the

Error Histogram fromwhich it was deduced that all the outputs
(engine health status predictions) were assigned to two bins.
The first one is around�0.04943 error value, whereas the other
one is around 0.0496 value. It is worth noting that both bins are
located close to the zero error line. It means that the network
response is working properly with the Error range extending
from�0.9407 to 0.9409.
The same engine data set was applied to the new neural

network with pattern recognition and AFE. This resulted in a
significant improvement of the neural network performance as
well as other performance metrics. For all the generated
numbers of the hidden layers, accuracy, precision, recall,
F1Score and R2 coefficient achieved the maximum values,
while MAPE, mean square error (MSE), %Error and RMSE
equalled zero value.

5. Second case study on Engine Health Status
Index

In this case, Engine Health Status Index was calculated based
on the SMAR, used to define engine health status and

Table 1 Original engine dataset neural network pattern recognition results for PMAR, SMAR and engine failure data for 50-layer neural network architecture

EH data PRF % error Accuracy Precision Recall F1Score RA MAPE MSE RMSE R2

PMAR 0.0147 1.0400 0.9930 0.9888 0.9912 0.9900 99.6177 0.6561 0.0104 0.1019 0.9722
SMAR 0.1896 0.2833 0.8111 0.7017 0.8321 0.7614 61.0637 26.2103 0.2938 0.5420 �0.6301
EF data 0.0005 0.0000 1.0000 1.0000 1.0000 1.0000 80.0000 0.0000 0.0000 0.0000 1.0000
Source: Author’s own creation
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condition. It is evident that specific fuel consumption rate
increases when the engine compressor compression rate
decreases. If the engine compressor compression rate decreases
in time for the same power level requirement, it means that
engine compressor efficiency has degraded. Engine data set was
prepared in the equivalent way, as it was generated for the
PMAR parameter. The results achieved by the neural network
pattern recognition process are presented in Table 1. The
achieved results for this case study are worse with at least the
order of magnitude. What might be the reason for this?
The most probable explanation is the fact that the correlation
between engine performance data pattern and the SMAR
response was not as simple as it could be presumed. Generated
by the neural network pattern did not reflect the response in the
way as it was achieved in the real life. What was the best
performance validation check achieved? The best-achieved
accuracy was not as high as it was for the PMAR parameter,
achieving 0.1896 at epoch 185.
What was the artificial network performance based on the

confusion matrices? For all the processes: training, validation
and test, the correct prediction was slightly above 70%.What is
worse there were 214 mispredictions between critical engine
health status (unsafe) andmiddle or safe class.
To analyse the neural network results for SMAR engine

data set, Error Histogram with 20 Bins plot for the 50-layer
size network and SMAR parameter was created. In this case
scenario, even though the positive prediction rate was not as
high as it was for the PMAR parameter, still the differences
between the target values and the outputs for all 20 bins
ranged from �0.8558 to 0.9449. What is worth mentioning
is the error distribution. There are outputs which were
assigned to the bins not only close to zero error line but were
distributed among other bins.

6. Third case study on engine failure data

To confirm the results achieved in the two previous case studies,
it was decided to create another engine test data set. This data set
was created based on engine failure data collected for 4 years
between 2019 and 2022. This failure data consisted of 5,280
records (observations). What were the engine failures selected
from the engine failure data? They were the most common
engine failures concerning turbofan engine data. Among them it
is worth mentioning: Augmentor/Afterburner Blowout, Engine
Stall, Engine Stagnation, Engine Surge, Engine Hot Start, No
Air Start, No Ground Start, Rear Compressor Variable Vanes.
As it was previously mentioned, engine failure data records were

mixed with the sample engine performance data and the final
engine test data set counted 17,452 records. Results of the neural
network pattern recognition for the engine failure data were
presented inTable 1.
Network performance defined by cross-entropy for this

case study was incredibly low for all the network sizes,
reaching 5E-04 value for 50-layer size. Prediction error was
also equal or remarkably close to zero value. All the
calculations confirmed the fact, that defined network is
recognizing engine status pattern with absolutely great
accuracy. For this case study, the best validation
performance, being the lowest cross-entropy was achieved
after 121 epochs being 4.6491E-08.
Having analysed the best validation performance plot for this

case study, it was noticed that for the 50-layer size, neural
network becomes overfitted, test results with the increment of
the epoch are getting worse and the test curve is moving away
from the training and validation.
From Error Histogramwith 20 bins for the additional engine

failure data, it was deduced that all the predictions were fitted
into two bins with very minor errors ranging between 2.886E-
02 and 2.886E-02 and remarkably close to the zero error line.
Comparison of the neural network pattern recognition

performance metrics with and without AFE were presented in
Figure 3.
Having analysed the neural network performance with and

without AFE, it was concluded that for some performance
metrics such as accuracy, precision, recall, F1Score, RA or R2
the improvement was about 1%, whereas for the others such as

Table 2 Results of the classification learners without AFE

Model type PRF % error Accuracy Precision Recall F1Score RA MAPE MSE RMSE R2

Tree 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 50.0000 0.0000 0.0000 0.0000 1.0000
Discriminant 0.9343 0.0412 0.9725 0.9516 0.9734 0.9624 49.4399 2.3813 0.0412 0.2030 0.8848
Naive bayes 0.7805 0.2155 0.8563 0.8171 0.7492 0.7817 91.6262 11.0190 0.2160 0.4647 0.6504
SVM 0.2485 0.9050 0.3966 0.0903 0.0629 0.0741 66.6667 47.1681 1.0842 1.0412 �0.6197
KNN 0.6883 0.1810 0.8792 0.8619 0.8342 0.8479 49.4399 11.3233 0.1857 0.4310 0.5912
Ensemble 1.0000 0.0001 0.9998 0.9997 0.9998 0.9998 50.0000 0.0054 0.0001 0.0128 0.9995
Kernel 0.8991 0.0695 0.9536 0.9360 0.9444 0.9402 49.4399 4.5709 0.0756 0.2750 0.8005

Source: Author’s own creation

Figure 3 ANN pattern recognition performance metrics comparison
with and without the AFE
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%Error, MAPE, MSE and RMSE, the improvement was
reaching 100%.

7. Neural network and classification learner
comparison

As a final validation of the neural network pattern recognition,
it was decided to compare the results of the network to the
machine learning classification algorithms being: decision tree
for multiclass classification, discriminant analysis classifier,
multiclass Naive Bayes model, multiclass models for support
vector machines or other classifiers, k-nearest neighbour
classifier, ensemble of learners for classification, binary
Gaussian kernel classifier using random feature expansion.
These algorithms were used to train on the original features

as well as on the new automated features and the results are
presented in Table 2.
As a following step, the same machine learning algorithms

with the same settings were applied to the engine data set
enhanced with the generated new predictors. Having analysed
the results, it might be deduced that in the case of the decision
tree for multiclass classification, multiclass Naive Bayes model
as well as ensemble of learners for classification, the results
achieved for the engine data set with AFE were better. The
greatest improvement achieved was for the Naïve Bayes
algorithm, which ranged from 14.5% to 35%.

8. Summary and conclusion

The main goal of this article was to present the concept of
aircraft turbofan engine health status prediction, taking
advantage of real-life engine flight data. The novel concept of
neural network pattern recognition application augmented with
AFE for the turbofan engine health status prediction was
presented. The additional goal was to check how such neural
network works on real-life engine data and how the neural
network recognizes patterns in real-life engine data.
The main achievement of this elaboration was the

presentation of the complete methodology for the engine status
prediction with neural network pattern recognition but
augmented by AFE. Presented engine health status prediction
was based on two ideas. The first one was based on the engine
performance and safety parameters such as performance
margin (PMAR) and specific fuel consumption margin
(SMAR). This idea confirmed the thesis, that the pattern
recognition network is working properly for both engine
parameters. Especially satisfactory results were achieved for the
PMAR engine health status parameter. For the SMAR
parameter, even though prediction errors were not remarkably
high, the error distribution was extremely wide, and there were
214 mispredictions. To improve the neural network
performance, it would require SMAR engine health status
index correction. It should reflect more real engine condition
status. Unfortunately, the real engine status was incorrectly
assigned to the wrong class, wrong pattern recognition and in
results improper predictions. The second case study idea was
based on the supervised engine failure data. All the failure data
was confirmed as the actual engine problem. The results of the
neural network pattern recognition were more than satisfying.
For all the processes: training, validation and test predictions
rate was 99.9%. It means that almost all the engine failures

were properly predicted and every engine health status being:
safe and unsafe (no middle class existed) was correctly
classified. Even the predicted responses were close to zero error
line with a very minor deviation reaching 0.02886. One of the
important conclusions from the conducted study was the fact
that it is not always a promising idea to increase the number of
hidden layers (the size of the neural network), as it might result
in the artificial network overfitting. Another important
conclusion is the fact that neural network performance strongly
depends on the input data and the size of the input data. If the
input data is properly prepared and supervised, the results
(engine health status predictions) were predicted correctly in
almost 100% of cases.
Having analysed the results of the neural network pattern

recognition augmented with AFE one important conclusion
might be deduced. There is no doubt that AFE is a powerful
tool to enhance either neural networks or machine learning
algorithm augmented with AFE. For the proposed neural
network pattern recognition architecture, the average
improvement achieved for all the given performance metrics
was about 46%.
The question might be raised, what the advantage of the

proposed neural network pattern recognition with AFE is, in
comparison to the machine learning algorithms, if the
performance results in some cases are to some extent quite
similar. The answer is that the greatest advantage of the
proposed application is the fact that neural networks work
excellently in every possible case while some of the machine
learning algorithms might fail to converge. The reason for this
is that neural networks work with diverse types of predictors.
They work with both numerical data, vectors and categorical
data, while ML algorithms (discriminant and KNN types) in
some case might fail. The same problem might happen when
the automated feature generation results in excessively big or
infinite numerical data. Also, in this case scenario ML
algorithms either fail to converge or result in very “weak” (with
low performance) prediction models. The greatest issue in NN
pattern recognition might be the newly generated engine data,
which sometimes might reach infinite values. In this case
scenario, even the NN will not be able to converge, and the
results will not be correct. So why not to implement AFE for
any type of neural network or machine learning algorithm.
During the multiple and complex training, validations and tests
it turned out that specific features were sometimes randomly
generated. Five of the features generated from the
mathematical conversions resulted in exceptionally large or
even infinite variables. This, in turn, resulted in very weak
classificationmodels and neural network performance results.
Based on the research results it might be concluded that

Neural Network Pattern Recognition is a strong tool which can
help to solve engine health status detection and classification
problems. One of the most valuable applications of pattern
recognition is that such networks can analyse engine data
observations and correlate multiple patterns across enormous
amounts of data. Thanks to this, such AI models can make
perfectly accurate engine health status predictions. The
questionmight be raised if there are any disadvantages of neural
network pattern recognition applications. One of the issues is
the fact that such a model requires a great deal of engine data,
which sometimes might not be available. In addition to this,
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heavy and based on the vast amount of data, training is required
to train networks for pattern analysis. Another particularly
critical issue is related to the data quality. Training data for
machine learning algorithms should come from reliable
sources. It should be free from bias and noise that hamper
inherent pattern identification and decision-making capabilities
of the neural network. That is the reason, AFE should be
followed with the data analysis and noise removal. The
following research works could be focused on the new neural
network architectures with AFE and variable value sensitivity.
Presented methodology could be implemented into the

aircraft (engine) maintenance management computer system,
which could allow to automate engine health status analysis and
improve engine maintenance management. Such methodology
could help propulsion maintenance management in engine big
data analysis and avoid any situations when the engine health
status degraded below an acceptable level, especially for large
engine fleets. Engine health status prediction based on the
ANN augmented with AFE is an extremely strong tool in
aircraft accident and incident prevention.

Note

1 Residual value¼ actual y value� predicted y value
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