To read this content please select one of the options below:

Influence of micro-nano surface texture on the hydrophobicity and corrosion resistance of a Ti6Al4V alloy surface

Bochun Xu (School of Advanced Engineering, University of Science and Technology Beijing, Beijing, China)
Nan Zou (School of Advanced Engineering, University of Science and Technology Beijing, Beijing, China)
Yunhao Jia (School of Advanced Engineering, University of Science and Technology Beijing, Beijing, China)
Chao Feng (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, China)
Jiajia Bu (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, China)
Yu Yan (Shunde Graduate School of University of Science and Technology Beijing, University of Science and Technology Beijing, Beijing, China)
Zhipeng Xing (Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China)

Anti-Corrosion Methods and Materials

ISSN: 0003-5599

Article publication date: 7 August 2021

Issue publication date: 17 September 2021

254

Abstract

Purpose

The purpose of this paper is to study the effect of micro-nano surface texture on the corrosion resistance of a titanium alloy and investigate the correlation between corrosion resistance and hydrophobicity.

Design/methodology/approach

The surface of the Ti6Al4V alloy was modified by laser processing and anodizing to fabricate micro-pits, nanotubes and micro-nano surface textures. Afterward, the surface morphology, hydrophobicity and polarization curve of the samples were analyzed by cold field scanning electron microscopy, contact angle measurement instruments and a multi-channel electrochemical workstation.

Findings

The micro-nano surface texture can enhance the hydrophobicity of the Ti6Al4V surface, which may lead to better drag reduction to ease the friction of implants in vivo. Nevertheless, no correlation existed between surface hydrophobicity and corrosion resistance; the corrosion resistance of samples with nanotubes and high-density samples with micro-nano surface texture was extremely enhanced, indicating the similar corrosion resistance of the two.

Research limitations/implications

The mechanism of micro-dimples on the corrosion resistance of the micro-nano surface texture was not studied.

Practical implications

The density of micro-pits needs to be optimized to guarantee excellent corrosion resistance in the design of the micro-nano surface texture; otherwise, it will not fulfill the requirement of surface modification.

Originality/value

The influence of the micro-nano surface texture on the corrosion resistance, as well as the relationship between hydrophobicity and corrosion resistance of the titanium alloy surface, were systematically investigated for the first time. These conclusions offer new knowledge.

Keywords

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 51971035 and No. U1964204). This work was also supported by Scientific and Technological Innovation Foundation of Foshan under grant No. BK20AE006.

Citation

Xu, B., Zou, N., Jia, Y., Feng, C., Bu, J., Yan, Y. and Xing, Z. (2021), "Influence of micro-nano surface texture on the hydrophobicity and corrosion resistance of a Ti6Al4V alloy surface", Anti-Corrosion Methods and Materials, Vol. 68 No. 5, pp. 373-379. https://doi.org/10.1108/ACMM-05-2021-2488

Publisher

:

Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited

Related articles