
An architecture as a code
framework to manage

documentation of IT projects
Christophe Gaie

Direction Interminist�erielle du Num�erique, ETALAB, Paris, France

Bertrand Florat
Architecte Solutions, Nantes, France, and

Steven Morvan
Universit�e d’Angers, Nantes, France

Abstract

Purpose – In the present article, the authors tackle the problem of IT documentation, which plays an
important role in information technology (IT) project management.
Design/methodology/approach – They provide a simple tool based on five complementary views, which
should be detailed by the project team using a classic source code management platform.
Findings – The proposed tool is open source and may be reused by any IT team in various project contexts
and heterogeneous development methods.
Originality/value – This research provides an operational framework, which facilitates IT project
management and documentation. The framework is open source and may be easily downloaded by any other
IT team.

Keywords IT project management, Software documentation, Architecture design

Paper type Research paper

1. Introduction: the emergence of project management dedicated to IT projects
Since the beginning of construction and architecture, planning tasks and workforce exists.
Historically, concrete organizations were set up to build monuments for the purpose of the
Egyptian civilization (pyramids) or Greek cities (Acropole, Parthenon). A dedicated
organization was necessarily employed to build roads all around the Roman Empire as
well as waterworks, bridges or facilities.

Project management was also vastly improved and adopted during theWorldWar II (1939–
1945) as belligerent partieswidely involved their industry to support thewar effort. For instance,
many automobile manufacturers switched their production to tank assembly, and similar
adjustments were performed to ensuremanufacturing of tires, guns, rifles, masks, etc. This shift
was highly facilitated by application of the management techniques previously conceived [1].

Then, project management followed the development of information technology and
acquired valuable conceptualization. This results from the development of methods and
certifications such as Project Management Body of Knowledge (PMBOK) (Footnote 1)
proposed by the Project Management Institute. The first partial versions of PMBOK were
published in the early 1980s, and PMBOK became a standard validated by the Institute of
Electrical and Electronics Engineers, Inc. in 1999 [2].

Code-based
documentation
for IT projects

©Christophe Gaie, Bertrand Florat and StevenMorvan. Published inApplied Computing and Informatics.
Published by Emerald Publishing Limited. This article is published under the Creative Commons
Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of
this article (for both commercial and non-commercial purposes), subject to full attribution to the original
publication and authors. The full terms of this licence may be seen at http://creativecommons.org/licences/
by/4.0/legalcode

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2634-1964.htm

Received 18 December 2020
Revised 1 February 2021

26 February 2021
Accepted 11 March 2021

Applied Computing and
Informatics

Emerald Publishing Limited
e-ISSN: 2210-8327
p-ISSN: 2634-1964

DOI 10.1108/ACI-12-2020-0159

http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/ACI-12-2020-0159


Information technology (IT) project managers may also benefit from existing methods to
fulfill business goals. For instance, Linington details in [3] aReferenceModel forOpenDistributed
Processing to specify large-scale IT systems. This model was standardized by both the
International Organization for Standardization and the International Telecommunication Union.
It relies on five viewpoints, which gather business objectives (the enterprise requirements and the
information semantics) and IT projectmanagement (the system computations and interfaces, the
engineering perspective and the technology declination). Whereas this framework offers a
significant conceptual background, it may be usefully completed with operational proposals.

Another well-known project management process usually employed to manage IT
projects is PRINCE2 (Footnote 2). The method was published in 2009 by the Office of
Government Commerce [4] and results from the continuous improvement of the PROMPT
method (Project Reporting, Organization and Management Planning Technique), which was
published in 1975. A useful summary of project management history between the 1950s and
1990s [5] was also proposed.

Finally, agilemethods emerged at the end of the 20th century andwidely expanded during
the early 21st century. The introduction of agile methods aimed to improve IT project success
rates as waterfall methods often lead to IT project failures. Indeed, the analysis of IT project
success rates in [6] outlines that 42% of agile projects are successful versus 14% of projects
conducted with the waterfall method. Agile projects are also proved to be safer: only 9% of
them are a total failure when 29% of waterfall are.

This results from the significant contribution of the Agile Manifesto [7], which provided a
revolution in the development methods. This new working method impacts deeply
management within projects as resources are shared on multiple objectives, interactions
are often horizontal and based on expertise and projects rely on short iterations of high
intensity (known as “sprints”). Many project management methods facilitate the agility, such
as SCRUM or eXtreme Programming (XP), as detailed in [8, 9]. Whereas agile methods
increase the success rates of IT projects, it remains some situations where waterfall methods
may be attractive. This may happen when the organization or teams are not immediately
adjusted to the agile process, when stakeholders are not sufficiently involved in the project
conception, or when the project is really simple and bounded.

Each of the detailed methods contribute to improve the success of projects in terms of goals,
budget and delay. However, according to a 2017 report from the Project Management Institute
(PMI) [10], there are still 14 percent of IT projects that fail. Moreover, improving IT project
management methods should also contribute to reduce the rate of project which did not meet
their goals (31%), exceeded their initial budgets (43%) or were achieved too late (49%).

2. Literature review of existing tools and frameworks to the construction and
documentation of IT projects
First, the literature addresses the different frameworks and tools to build IT projects. Thus, a
useful model was proposed to analyze IT project management, especially in the context of
agile development [11]. The authors prove that a better communication facilitates the success
of the project. Theymodel projects by introducing project states that correspond to the ability
to solve problems rapidly. They also prove the importance of tracking the number of new
bugs and the variation of nonfixed bugs to estimate the current project state. The model was
tested on seven open-source projects selected on SourceForge and enabled to evaluate project
management efficiency. Whereas the proposal is useful to understand the importance of
communication within projects, it does not provide concrete tools to implement it.

Another valuable model was based on the decision style to analyze the performance of
project management [12]. The model enables to verify the results of project planning of eight
companies, based on an initial project planmadewithMicrosoft Project. The authors show that

ACI



there is a statistical difference among decision styles, with more efficiency for directive and
analytical methods compared to conceptual and behavioral ones. This proposal provides
valuable learnings about the decision styles, but it does not offer tools to employ them.

Another approach consisted in proposing seven key advices to improve the efficiency of
project management [13]. These tools may be employed for large or small projects whether
they apply for public or private sector of any country. The key messages are to define the
project use cases, employ practical project management methods, ensure that project
managers master the processes, continuously involve application users, etc. These advices
are useful but do not provide concrete deliverables to optimize management of IT projects.

Analyzing the usage of advanced planning tools for riskmanagement in projects was also
considered [14]. These tools are mostly proprietary risk analysis Microsoft Excel add-ins
(@Risk, Riskþ, Crystal Ball simulation tool, Predict, etc.). Based on studying 202 projects, the
authors prove that advanced planning methods play a greater role in high-risk projects than
in low-risk ones. Indeed, advanced planning tools require expertise which extends
unnecessarily the planning of low-risk projects. On the contrary, the usage of these tools
facilitates the success of high-risk projects: schedule overrun, cost overrun, technical
performance and customer satisfaction. These findings demonstrate the importance of tools
to manage projects but do not provide any solution.

A large set of project management software tools with various characteristics were
compared in [15]. The authors define 17 criteria and analyze every selected tool on them. Some
notable evaluation dimensions are task scheduling, resource management, risk assessment
or license.Whereas the topic is relevant and the qualitative analysis may help newmanagers,
the table is not sufficiently complete (too many functionalities require further experiments).
Thus, the experts cannot access comprehensive analysis with immediate enforceability.

A worthwhile method to take into account IT development constraints is to implement
natural language processing (NLP) frameworks such as [16, 17] or [18]. The later publication
details a novel framework dedicated to the automatic extraction and verification of
operational constraints. Whereas this approach provides a huge simplification in the
development of verification assertions, it reveals complex to implement for complex
architectures, which rely on the association of various machines and technologies.

Next, the literature tackles the issue of IT project documentation. In this perspective, there is
research which analyzes the usage of a wiki group to manage projects of first-year students [19].
The experiment showed outstanding results as it enhanced the capability of instructors to guide
working groups as well as the sharing of knowledge or the project documentation. The authors
propose to use specific wiki applications adapted to project management such as detailed in [20].

Another approach [21] aims to combine classic wiki tools with semantic repositories in order
to build “semantic wikis”. This approach relies on the open-source project Trac and requires to
set annotations on projects, people or documents. This approach contributes to structure data
to manage projects and fosters their success. The authors illustrate their proposal with the
example of their project entitled Semex (Semantic extension). The proposal simplifies project
visualization and browsing, which enhances communication and exchanges between different
actors of the project (whatever their role functional, applicative, operational, etc.).

A useful review of multiple research papers (between 2004 and 2006) concerning IT project
management was proposed [22], under the lens of principles described in the PMBOKmethod.
The authors classify papers according to knowledge areas (communication management, cost
management, resource management, etc.) and specific key success factors. The authors also
establish 15 valuable recommendations to manage IT projects such as introducing agile
methods, ensure effective reporting to enhance audits as well as improve stakeholder vision,
etc. Although these proposals are relevant, the authors do not deliver new operational features.

Furthermore, documentation plays an important role to implement software architecture
for agile projects [23]. Indeed, the paper addresses both theoretical and practical research, and

Code-based
documentation
for IT projects



the authors propose to structure the documentation by using two artifacts to ensure an
effective documentation of complex systems for agile IT projects. Their proposal consists of
detailing the content of a vision document and a software architecture document. Whereas
this proposal is worthwhile, it is not detailed for a concrete example which limits its
reusability.

In addition, the importance of software documentation in any IT project was outlined in
the literature [24]. In this research, the authors detail the different documentation problem,
which may be encountered such as incompleteness, obsolete content, lack of quality or
preciseness, etc. The research performed reveals the importance to establish documentation
processes specific to each IT projects rather than a process for the whole organization. This
advocates to build a documentation framework, which adjusts to each project specificity such
as proposed in the current paper.

[20] Another strategy consists in providing documentation dedicated to product
configuration system (PCS) such as [25]. The proposal relies on a comprehensive review of
the literature, on the identification of 17 requirements and on documentation automatically by
the information of the PCS. This avoids knowledge duplication and reduces drastically the time
granted to documentation for better operational efficiency. The authors implemented concretely
their framework and proved its functioning for five projects in a single specialized company.
They also identify the fulfilled recommendations according to the initial objectives. This
research is really instructive, but it does not provide access to the framework sources, which
prevents from the community to verify the results as well as potentially reuse the framework.

Finally, there is a high interest toward introducing a framework to enable semantic
documentation in order to extract information automatically, which is usually dedicated to
human readers [26]. Indeed, the proposal combines ontologies and documents by adding
semantic annotations to documents, which makes the document content interpretable by
computers. This reduces significantly the burden of IT team mates to collect, analyze and
classify information according to its evaluated importance. The proposed framework was
experimented and validated for various IT projects (service provider databases, web services,
electronic forms, wiki pages,. . .). Again, the framework is not published, which prevents
other IT teams to implement it in their projects.

As the literature provides many existing tools and frameworks to the construction and
documentation of IT projects, it does not offer a comprehensive framework with operational
models for an immediate usage. This justifies the proposal explained in the current paper.

3. A new open-source tool to build projects
In this section, the authors propose a new tool to build projects, which may be addressed as
the “product architecture document template”. This tool is totally open-source and may be
obtained at the following URL https://github.com/bflorat/architecture-document-template. It
aims to combine five different perspectives of project construction, which will be detailed in
the current section. As this tool has already been used in concrete projects, the authors will
also provide in Section 5 some examples of how to use it in real-life conditions.

It is important to notice that the proposed template deals with products but not the whole
enterprise information system. Thus, the authors underline the importance to follow
constraints and guidelines set by enterprise architects in the upstream of projects.

3.1 Guidelines which initiated the framework conception
First of all, the authors outline the following guidelines, which lead to the proposal described
in the remainder of this paper. These guidelines are summarized in Figure 1 (main objective,
concrete declination and impact on the team):

ACI

https://github.com/bflorat/architecture-document-template


Indeed, the framework was built to offer the following improvements to project
management and especially the architecture process:

(1) Efficiency aims to answer to the traditional problem of documentation heaviness or
dissemination within projects. The framework proposed offers an efficient trade-off
between gathering documentation on a unique location while dividing it by usage.
Thus, every worker on the project may access easily to the right information with a
simple click.

(2) Simplicity seeks to solve the problem of maintaining an up-to-date documentation
within projects. Indeed, as documentation often relies on a wide and comprehensive
document, team mates may be afraid of introducing discrepancies in its content. The
current framework decomposes documentation in autonomous parts, which may be
easily adjusted using AsciiDoc (Footnote 3) by experts of the domain without
modifying the remainder of the content.

(3) Completeness intends to avoid the situation where the architecture was built without
taking into account some important aspects. Thus, the framework provides a
comprehensive checklist of multiple and various dimensions of an IT project
conception.

(4) Reification (Footnote 4) aims at helping architects to fully understand the expected
content for each section of the architecture document. Thus, the framework provides
detailed explanations (so called “tips”) and one or more up-to-date and realistic
example from real-world and recent projects. This methodology is inspired from the
behavioral-driven development (BDD) principle that promotes specifications by the
examples. Concepts and examples are equally important and reinforce mutually. As a
matter of fact, concepts provide rules, context and logic to examples while examples
provide illustration to concept.

3.2 Guidelines which initiated the framework conception
First, the authors describe the different role which may be assumed in a classic project:

(1) Product manager corresponds to the person in charge of defining the product road
map. The project manager ensures that the product matches with the customers’
requirements as well as the organization objectives;

(2) Product owner: he or she ensures the achievement of goals defined by the product
manager. To this aim, the product owner coordinates the action of multiple IT
workers and prioritizes the development backlog;

Figure 1.
Main improvements

provided by the
framework

Code-based
documentation
for IT projects



(3) UX designers designate the workers in charge of gathering user requirements and
prioritizing them. UX designers are also in charge of conceiving workflows as well as
user interfaces;

(4) Architects are the IT workers who define the architecture of the project in terms of
modules, flows and protocols, equipment, security, etc. These workers play a key role
in the project construction and maintenance, as mediators between every worker
involved in the project;

(5) Developers are in charge of converting user requirements into technical specifications,
developing themwithin the project, documenting it, ensuring unitary tests, etc. There
are multiple profiles of developers depending on the workers’ abilities: front-end
developers, back-end developers and even full-stack developers;

(6) Testers and integrators designate the IT workers in charge of integrating the project
within the whole technical context of the organization. These workers should verify
the interactions with other projects as well as the performance and robustness of the
project itself;

(7) Operations are in charge of deploying projects in productions and ensuring their
continuous running. They set up hardware configurations and ensure technical
compliance in terms of security, monitoring or availability of the application.

It is important to notice that each organization adjusts the role of workers depending on its
size, history and culture. Thus, the description aims to offer guidelines rather than setting
definite frontiers.

Next in this paper, the authors propose the five following views to build the project
documentation. Each view is associated with the principal actors involved in its creation,
update and usage, all along the project lifecycle:

(1) Applicative view aims to describe the project general context, use cases, modules and
interactions between modules. This view depicts the architecture chosen and its
consequences in terms of software modules breakdowns, exchanges, etc. Finally, this
view contains the planning as well as the financial aspects of the project, which
explains its central position.

(2) Development view is dedicated in defining the operational decisions that drive the
software development. This view also aims to decide the working methods and
conventions that will be followed by developers all along the project;

(3) Sizing view aims to detail hypotheses and constraints that determine the
commitments in terms of load, data storage volume, number of concurrent users,
performance, etc. This analysis is a mandatory requisite to define the infrastructure
view that has to fulfill these requirements;

(4) Security view provides an analysis of security threats and measures concerning each
project’s item. Indeed, the security tackles the organization area, as well as the
software architecture or the developer methods. The authors underline the fact that
protection level depends on the weakest link of an IT application;

(5) Infrastructure view describes the final infrastructure of the project in terms of servers,
middleware, databases, running processes, etc. It details the operation features like high
availability and processes such as backups. This viewdepends on previous choices and
constraints as well as specific decisions taking into account hardware specificities and
operational constraints such as hosting, backup storage, exploitation procedures, etc.

ACI



4. Detailed information about the five views
4.1 The constraints/requirements/solution pattern
An excellent way to expose an architecture is to structure the information using the
constraints/requirements/solution pattern.

(1) Constraints are basically the things we have to deal with. It includes project
constraints (planning, budget) and extrinsic constraints, the enterprise architecture
rules like the programming language imposed by the enterprise, security zones or
hosting location. This also involves the requirement to ensure personal privacy as
guaranteed by the General Data Protection Regulation (see https://gdpr-info.eu/for
more details).

(2) Requirements are both functional (what the final product must deliver) but also (and
more emphasized in the architecture document) nonfunctional so called NFRs
(nonfunctional requirements). NFRs are manifold (see ISO/IEC 25066 for an
exhaustive list) and embrace very different issues from response time to
accessibility. Each view of the framework deals with a subset of existing NFRs.
For instance, the sizing view lists response time or scalability requirements when
security view deals with integrity, auditability or confidentiality requirements. The
requirements are limited by the constraints. For instance, performance requirements
may be capped by the enterprise datacenter or budget constraints.

(3) Solution corresponds to the architectural solution, which provides (with diagrams,
text and tables) the final choice that should follow both constraints and requirements.

4.2 Architecture decisions
A good architecture document must be light to convey its message as clearly as possible.
Doubts, studies, proofs of concepts or choices between different solutions must be expunged.
However, these decisions are of great value for future readers who may want to understand
the reasons of certain choices. For that purpose, all the important decisions should be annexed
to the architecture document as an ADR (architecture decision record). Each architecture
decision should contain the history of decisions, a context detailing the considered solutions,
the final decision and its consequences.

4.3 Focus on the applicative view
To improve the readability of the paper, the authors decided to focus on the description of the
applicative view as it occupies a central place in the model as illustrated in Figure 2.

The objective of the framework is to detail the elements indicated in the pattern and
introduce some context in order to design an applicative architecture solution. The figure
below illustrates some classic questions, which should be tackled and documented:

Themodel published on github tackles other items that may be accessed at https://github.
com/bflorat/architecture-document-template/.

5. Two applications of the proposed framework in IT projects
In this section, the authors illustrate how to document IT projects using the proposed
framework in the context of public services. Whereas there is no detail on how to employ the
framework in the private sector, the model was also employed to build the internal system of
an independent consulting firm. The authors advocate that the specificitiesmainly rely on the
software complexity. Thus, the documentation load may be estimated at 2–3% of the total
project workload.

Code-based
documentation
for IT projects

https://gdpr-info.eu/
https://github.com/bflorat/modele-da/
https://github.com/bflorat/modele-da/


5.1 A first example using the framework for an infrastructure project
This example is a concrete application of the framework, which highlights its versatility and
completeness.

5.1.1 Context: cartographic service internalization. A governmental organization offers a
cartographic service (comparable to Google Maps) to its users. The service has been installed
and was hosted and managed by an external service provider. By the end of the contract, the
governmental organization decided to reinternalize this activity, i.e. provide the same service
on internally hosted servers.

As a classical situation, delays were short, documentation was scarce (“it is based on an
open source project, you can find everything on Internet”) and the organization transitional.
One of the authors was missioned to define the infrastructure and software architectures and
set up a proof of concept, before a dedicated teamwould deploy and run the expected service.
Furthermore, the stakeholders had limited IT operational knowledge.

Furthermore, the stakeholders had limited IT operational knowledge. Thus, the proposed
framework enhances project documentation at each step of the application lifecycle.

Thus, project documentation was crucial in this context.
5.1.2 Detailing the five views. After getting and instantiating the product architecture

document template on the internal collaborative platform, the author used it as a guideline to
provide comprehensive information to the future project team.

As most of the service is based on publicly available open-source components, the relative
weight of each view differs from a “classic” project:

(1) Applicative view (general context and modules) was used to describe the software
components (web servers, renderers, files storage, databases, import and supervision
tools) and their interactions.

(2) Development view (operational decisions driving the software development) was
limited because most of the software is externally developed. Nevertheless, the
deployment scripts were described in this view.

(3) Sizing view (hypotheses and constraints) was a quite difficult topic because none of
these where available. To get around this important lack, publicly available
benchmarks were included, and several hypotheses about users and usages were
described, with according sizing abacuses;

(4) Security view was an interesting topic to describe. Software was publicly available
and maintained. Data are mainly public but may have diplomatic impacts in case of

Figure 2.
Detailing the
applicative
architecture conception

ACI



alteration or defacing. Thus, security enforcements were described here and mainly
used in the infrastructure view.

(5) Infrastructure view (final project infrastructure) had to take in account the absence of
the sizing view, while anticipating scalability. At first, several scenarios were
proposed in the product architecture document, with pros and cons. The selected
scenario was then described, and the other scenarios were mentioned in the annexes
to record choices reasons and alternatives.

5.1.3 Recipients’ perception and acknowledgment. The product architecture document has
been positively received by its different recipients for the following reasons:

(1) It is a collaborative and living document that anyone can comment and amend, even
with very little knowledge of software engineering tools or office suites. History of
modifications provided by the Git platform allows to trace the document evolution.

(2) It is a nonproprietary format, and it does not need any specific software, only a web
browser. Pictures and schematics are rendered inline (using UML format and
PlantUML rendered). So, everyone has access to the document.

(3) The content is affordable for any type of reader and yet complete. The benefits are as
follows:

� Stakeholders and tech people share the objectives and meaning of the project.

� Technical information is directly related to functional aspects and users’
expectancies

� Maintenance is easier, as writers do not have to update and send several reader-
oriented versions.

� Transparency of the content and its reasons is evident.

(4) Security and traceability are better than most proprietary platforms.

(5) It is easy to refer the document content and the produced code that is hosted on the
same platform.

5.2 A second example using the framework for IT projects with microservices
This second real-world experience illustrates the framework gains for a large and complex
development project.

5.2.1 Context: a multi-faced project. This large governmental project has several goals:
rewrite about ten legacy applications, add new end-user services in relation with partners,
improve agents’ productivity and dematerialize some official documents delivered to the
public.

The associated architecture is challenging: scattered legacy modules and databases;
multi-step data and software migrations and numerous data exchanges (files or application
programming interface (API)) with government partners. The overall architectural style is
microservice.Wemade this choice for its known benefits (availability, reliability, consistency,
scalability, evolutitvity and cost). But this design implies tens of modules (batches, API and
graphical user interface (GUI)).

Another important aspect of this project is the fact that the project management is agile
(SCRUM-flavored). We have to deal with moving functional requirements and large
complexity. This project management choice proved its value, but its corollary is a very agile
architecture as well. The architecture can change several times a week. Only full-text based

Code-based
documentation
for IT projects



and “Architecture As Code” principles can deal with such pace, by using adapted tools (like
PlantUML or AsciiDoc). The architecture can then emerge in group brainstorming sessions.

5.2.2 The five views in this context.
This section details the usage of the proposed framework:

(1) Applicative view details the general constraints (budget, planning and exiting legacy),
the NFRs (limit the investment on legacymodules for instance) and the solution: static
and dynamic diagrams of the modules and stream matrix between them. Applicative
architecture description follows C4 model and describes the general applicative
architecture using system landscape diagrams for an overall functional view of the
project and then zoom into detailed applicative architecture using container
diagrams. The system landscape only shows groups of related modules when
container diagrams contain exhaustively the modules at work. The applicative view
is illustrated in Figure 3.

(2) Development view provides the software constraints (like enforced programming
language and testing strategy), the NFRs (ergonomics, accessibility; reliability. . .),
and the solution details the choice made to deal with constraints and NFRs (like the
way to handle errors to deal with reliability for instance).

(3) Sizing view comes this a list of performance-oriented constraints (like the local area
network (LAN) throughput); the performance NFRs expressed by the stakeholders
(such as the required time to make a search at the 95th percentile) and the solution
provide technical choices like optimizations and the final production infrastructure
sizing (number of servers, memory, disk and CPU sizing).

(4) Infrastructure view is mainly read by integrators, operation staff and infrastructure
architects. This view constraints detail the whole datacenter limitations (such as
programmed maintenance shutdowns). The NFRs give operation-related
requirements like availability or backups. The solution details all the procedures
and technology supporting these NFRs (like backup procedures or high availability
components). The infrastructure view is illustrated in Figure 4.

(5) Security view is cross-concerns. Constraints are various and are derived from legal
aspects like GDPR (Footnote 5) through identity provider infrastructure. NFRs
mainly revolve around auditability, confidentiality and integrity matters. The

Figure 3.
Example of applicative
scheme

ACI



solution comes with implementation choices (habitation model, common attacks
counter-measures. . .).

5.2.3 Recipients’ perception and acknowledgment. We had very positive feedbacks,
especially about the views separation. It is a huge time saver to have to read only the part we
need (something like 20 or 30 pages instead of 120). The operations appreciate the
architecture document because the infrastructure view is both comprehensive and quicker
to read.

The functional designers can refer to the applicative view without dealing with technical
subjects (very repulsive for most of them).

The developers not only appreciate getting detailed and clear diagrams in applicative
views but also detailed decision in the development view. They keep constraint and
requirement parts in mind when coding. Finally, we found that the architecture document
must both be read individually but reviewed regularly in group as well to make sure its
content is understood, up-to-date and correct.

6. Conclusions
In the present article, the authors proposed a new open-source framework that aims to
facilitate and improve IT project documentation. To the authors’ knowledge, there is no
similar tool offered to IT team leaders in order to build their project and prepare their run after
the initial construction.

The paper details five classic projects views and articulates them in order to facilitate their
understanding and reuse by IT teams. They underline the importance of coordinating the

Figure 4.
Example of

infrastructure scheme

Code-based
documentation
for IT projects



intervention of multiple profiles on these views. Finally, they propose concrete examples of
usage of this framework to illustrate its functioning and efficiency.

Further work should consist in discussing the proposal with other architects or team
leaders to experiment the framework in different contexts and improve it by the experience.

Notes

1. PMBOK: Project Management Body of Knowledge.

2. PRINCE: PRojects IN Controlled Environments.

3. AsciiDoc: this is a text based document generation described in https://asciidoc.org/

4. Reification: principle which consists in illustrating an abstraction by a concrete example (definition
retained in the current paper).

5. The General Data Protection Regulation is a regulation in European Union law on data protection
and privacy in the European Union and the European Economic Area (Source wikipedia).

References

1. de Moura HP., Skibniewski MJ. The evolution of project management thinking. Proceedings of the
research conference by international research network on organizing by project (IRNOP),
Montreal, Canada; 2011.

2. PMBOK. IEEE guide - adoption of PMI standard, A guide to the project management Body of
knowledge. IEEE Std. 1999: 1-198. 1490-1998, 22 March 1999. doi: 10.1109/IEEESTD.1999.89431.

3. Linington PF. RM-ODP: the architecture, In Raymond K, Armstrong L. editors, IFIP TC6
international conference on open distributed processing. Brisbane: Chapman and Hall; 1995: 15-33.

4. Murray A, Bennett N, Bentley C. Managing successful projects with PRINCE2. 2009 edition
manual. London: TSO (The Stationary Office). 2009.

5. Stretton A. A short history of modern project management. PM World Today. 2007; 9(10): 3-17.

6. Johnson J. The standish group international, Inc. CHAOS REPORT 2020: beyond infinity. 2020.

7. Beck KM, Beedle M, Bennekum AV, Cockburn A, Cunningham W, Fowler M, Grenning J,
Highsmith J, Hunt A, Jeffries R, Kern J, Marick B, Martin RC, Mellor S, Schwaber K, Sutherland J,
Thomas D. Manifesto for agile software development. (2001) the agile Manifesto. Agile Alliance.
2013. Available from: http://agilemanifesto.org/.

8. Takeuchi H, Nonaka I. The new new product development game. Harv Bus Rev. 1986; 64: 137-146.

9. Beck K. Extreme programming explained: embrace change. Addison-Wesley Longman
Publishing. 1999.

10. Project Management Institute. Pulse of the profession: success rates rise. Newtown Square, PA:
Project Management Institute; 2017.

11. Hanakawa N, Okura K. A project management support tool using communication for agile
software development. 11th Asia-Pacific Software Engineering Conference, Busan, South Korea;
2004; 316-23. doi: 10.1109/APSEC.2004.8.

12. Fox TL, Spence JW. The effect of decision style on the use of a project management tool: an
empirical laboratory study. SIGMIS Database. 2005; 36(2): 28-42. doi: 10.1145/1066149.106615.
(Spring 2005).

13. Longman A, Mullins J. Project management: key tool for implementing strategy. J. Bus Strat.
2004; 25(5): 54-60. doi: 10.1108/02756660410558942.

14. Zwikael O, Sadeh A. Planning effort as an effective risk management tool. J Oper Manag; 2007; 25:
755-67. doi: 10.1016/j.jom.2006.12.001.

ACI

https://asciidoc.org/
https://doi.org/10.1109/IEEESTD.1999.89431
http://agilemanifesto.org/
https://doi.org/10.1109/APSEC.2004.8
https://doi.org/10.1145/1066149.106615
https://doi.org/10.1108/02756660410558942
https://doi.org/10.1016/j.jom.2006.12.001


15. Cicibas H, Unal O, Demir KA. A comparison of project management software tools (PMST).
Proceedings of the 2010 International Conference on Software Engineering Research and Practice;
2010: 560-65.

16. Chowdhury GG. Natural language processing. Ann Rev Info Sci Tech. 2003; 37: 51-89. doi: 10.
1002/aris.1440370103.

17. Harris CB, Harris IG. Generating formal hardware verification properties from Natural Language
documentation. Proceedings of the 2015 IEEE 9th International Conference on Semantic
Computing (IEEE ICSC 2015), Anaheim, CA; 2015: 49-56. doi: 10.1109/ICOSC.2015.7050777.

18. Waseem Anwar M, Imran A, Azam F, Haider Butt W, Rashid M. A Natural Language processing
(NLP) framework for embedded systems to automatically extract verification aspects from textual
design requirements. In Proceedings of the 2020 12th International Conference on Computer and
Automation Engineering (ICCAE 2020); New York, NY, USA: Association for Computing
Machinery; 2020: 7-12. doi: 10.1145/3384613.3384619.

19. Molyneaux T, Brumley J. The use of wikis as a management tool to facilitate group project work.
Proc. AAEE Conference. 2007: 1-8.

20. Trac. 2007. Edgewall software, web site. Available from: http://trac.edgewall.org/ in Aug 2007.
Contact Information Flintvagen 6-216, Umea, NA 90740.

21. Tala�s J, Gregar T, Pitner T. Semantic wiki in environmental project management. H�reb�ı�cek J.,
Schimak G., Denzer R., editors. ISESS 2011. IFIP AICT. Heidelberg: Springer; 2011; 359: 437-444.

22. Sanchez-Morcilio R, Quiles F. Trends in information technology project management. Iss Inform
Sys. 2016; 17.

23. Maric M, Matkovic P, Tumbas P, Pavlicevic V. Documenting agile architecture: practices and
recommendations. In: Wrycza S. editor Information systems: development, research, applications,
education. SIGSAND/PLAIS 2016. Lecture notes in business information processing, Cham:
Springer. 2016; 264. doi: 10.1007/978-3-319-46642-2_4.

24. Satish C, Anand M. Software documentation management issues and practices: a survey. Indian J
Sci Tech; 9(20). doi: 10.17485/ijst/2016/v9i20/86869.

25. Shafiee S, Hvam L, Haug A, Dam M. and Kristj�ansd�ottir K.. The documentation of product
configuration systems: a framework and an IT solution. Adv Eng Informatics. 2017; 32: 163-75.

26. Bastos E, Barcellos M, Falbo R. Using semantic documentation to support software project
management. J Data Semantics. 2018; 7. doi: 10.1007/s13740-018-0089-z.

Corresponding author
Christophe Gaie can be contacted at: christophe.gaie@gmail.com

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Code-based
documentation
for IT projects

https://doi.org/10.1002/aris.1440370103
https://doi.org/10.1002/aris.1440370103
https://doi.org/10.1109/ICOSC.2015.7050777
https://doi.org/10.1145/3384613.3384619
http://trac.edgewall.org/%20in
https://doi.org/10.1007/978-3-319-46642-2_4
https://doi.org/10.17485/ijst/2016/v9i20/86869
https://doi.org/10.1007/s13740-018-0089-z
mailto:christophe.gaie@gmail.com

	An architecture as a code framework to manage documentation of IT projects
	Introduction: the emergence of project management dedicated to IT projects
	Literature review of existing tools and frameworks to the construction and documentation of IT projects
	A new open-source tool to build projects
	Guidelines which initiated the framework conception
	Guidelines which initiated the framework conception

	Detailed information about the five views
	The constraints/requirements/solution pattern
	Architecture decisions
	Focus on the applicative view

	Two applications of the proposed framework in IT projects
	A first example using the framework for an infrastructure project
	Context: cartographic service internalization
	Detailing the five views
	Recipients’ perception and acknowledgment

	A second example using the framework for IT projects with microservices
	Context: a multi-faced project
	The five views in this context
	Recipients’ perception and acknowledgment


	Conclusions
	Notes
	References


