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Abstract

Purpose – Automatic anatomical therapeutic chemical (ATC) classification is progressing at a rapid pace
because of its potential in drug development. Predicting an unknown compound’s therapeutic and chemical
characteristics in terms of how it affects multiple organs and physiological systems makes automatic ATC
classification a vital yet challenging multilabel problem. The aim of this paper is to experimentally derive an
ensemble of different feature descriptors and classifiers for ATC classification that outperforms the state-of-
the-art.
Design/methodology/approach – The proposed method is an ensemble generated by the fusion of neural
networks (i.e. a tabular model and long short-term memory networks (LSTM)) and multilabel classifiers based
on multiple linear regression (hMuLab). All classifiers are trained on three sets of descriptors. Features
extracted from the trained LSTMs are also fed into hMuLab. Evaluations of ensembles are compared on a
benchmark data set of 3883 ATC-coded pharmaceuticals taken from KEGG, a publicly available drug
databank.
Findings – Experiments demonstrate the power of the authors’ best ensemble, EnsATC, which is shown to
outperform the best methods reported in the literature, including the state-of-the-art developed by the fast.ai
research group. The MATLAB source code of the authors’ system is freely available to the public at https://
github.com/LorisNanni/Neural-networks-for-anatomical-therapeutic-chemical-ATC-classification.
Originality/value – This study demonstrates the power of extracting LSTM features and combining them
with ATC descriptors in ensembles for ATC classification.

KeywordsMachine learning, Multilabel classifier, Bidirectional long short-term memory, ATC classification,

Learned features
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1. Introduction
From start to market, the price for engineering new drugs, which can take decades before
final approval, is now estimated to be 2.8 billion USD [1]. Of all drugs currently under
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development, approximately 86% will fail to be better than placebo [2] or will prove to cause
more harm than good [3]. In order to weed out new drugs with a low probability of being
efficacious and safe, researchers have investigated methods for automatically classifying
compounds according to their anatomical therapeutic chemical (ATC) classes.

TheATC classification system [4], proposed by theWorldHealth Organization, is awidely
accepted drug classification scheme that categorizes drugs into multiple classes according to
their therapeutic, pharmacological and chemical attributes. A given compound can be
classified into one or more classes at five levels in terms of the drug’s effects on different
organs or physiological systems. Most relevant to the automatic ATC classification problem
is the first ATC level, which determines the general anatomical groups, as codedwith 14 semi-
mnemonic letters that a particular compound targets. These alphabetic codes range from A
(alimentary tract andmetabolism) toV, a category that includes various groups. Levels 2 and
3 are pharmacological subgroups, and levels 4 and 5 contain chemical subgroups. A
compound is assigned to as many ATC codes as relevant within each of these five levels.

Despite the serviceability of the ATC classification system for assessing the clinical value
of a compound, most pharmaceuticals have yet to be assigned ATC codes. Accurate coding
involves expensive, labor-intensive experimental procedures. Hence, the pressing need for
machine learning (ML) to be applied to this problem. Automatic prediction of the ATC classes
of a new compound can also provide researchers with deeper insights into its therapeutic
indications and side effects, thus accelerating basic research and drug development [5].

In this work, we tackle ATC classification of drugs into first-level classes by
experimentally deriving ensembles. EnsATC, the name of our highest performing
ensemble, is a data-driven method based on the fusion of different feature descriptors and
classifiers, with the best result obtained by combining a bidirectional long short-term
memory network (BiLSTM) [6] with a multilabel classifier and a tabular model. EnsATC,
along with other candidate ensembles, was evaluated on a popular ATC benchmark
developed by Chen et al. [7] using the jackknife test. The results obtained by EnsATC
strongly outperform the current state of the art.

2. Literature review
Early ML systems tended to simplify the complexity of the ATC classification problem by
reducing the level 1 multi-class problem to a single class problem. Dunkel et al. [5], for
example, took advantage of a compound’s unique structure to identify its class, while Wu
et al. [8] based their approach on extracting relationships among level 1 subgroups.

In the past 10 years, however, researchers have proposed methods for determining multi-
class first-level assignments of drugs by taking a multilabel classification approach. Chen
et al. [7] was one of the first to address the multilabel complexity of ATC classification by
examining a drug’s chemical–chemical interactions, thereby producing a baseline result for
the multilabel approach. The authors also established the de facto benchmark data set for
ATC classification. Later, in [9, 10], Cheng et al. designed ML systems to handle class
overlapping by fusing different descriptors: structural similarity, fingerprint similarity, and
chemical–chemical interaction. Nanni and Brahnam [11] transformed Cheng et al.’s 1D
vectors into images (matrices) and extracted texture descriptors from them, which were then
trained on ensembles of multilabel classifiers.

As far as deep learning approaches go, convolutional neural networks (CNNs) were
trained on 2D descriptors in [12, 13]. In Lumini and Nanni [13], a set of features were extracted
from deep learners for training two successful multilabel classifiers, an approach that was
extended in Nanni, Brahnam and Lumini [14], where ensembles of CNNswere constructed by
adjusting batch sizes and learning rates, with different methods applied to handle multilabel
inputs. Recently, Wang et al. [15] proposed a classifier called ATC-NLSP that was trained on
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similarity-based features such as chemical–chemical interaction and the structural and
fingerprint similarities of a compound, which were compared to other compounds belonging
to the different ATC categories. Recent state-of-the-art approaches include the work of Zhou
et al. [16], who proposed a network embedding method to encode drugs and RAndom k-
labELsets to build a classifier named iATC-NRAKEL. Additionally, Zhao et al. [17] developed
a multilabel classifier called CGATCPred that used CNN for feature extraction. The authors
constructed the correlation graph of ATC classes after which a graph convolutional network
(GCN) was applied on the graph for label embedding abstraction.

3. Methods
The approach taken in this study is to produce experimentally ensembles that combine
multilabel classifiers based on multiple linear regression (hMuLab) [18] and LSTM
classification. LSTM is employed both as a classifier and as a feature extractor. Features
taken from LSTM are trained on hMuLab and on a tabular model. LSTM features fed into
hMuLab classifiers generate an ensemble called eLh (see section 3.3).

As illustrated in Figure 1, all four classifiers, LSTM, eLh, a tabular model, and hMuLab,
are trained on X, a set of three different descriptors (DDI, FRAKEL, and NRAKEL), each
detailed in section 4.1. The results of different combinations of the above approaches are then
evaluated on the Chen et al. benchmark [7] described in section 4.1.

LSTM feature extraction and classification are detailed in section 3.1; hMuLab stacking
(from original features) and LSTM stacking are presented in sections 3.2-3.3, respectively.
The tabular model explored here is the high-performing FastAI tabular model (Tab) [19],
which is discussed in section 3.4; the FastAI tabular model was selected because it has thus
far obtained the best classification result on the Chen et al. benchmark [7].

3.1 LSTM multilabel classifier and feature extractor
LSTM is a recurrent neural network thatmakes a decision forwhat to remember at every time
step. As illustrated in Figure 2, this network contains three gates: (1) input gate I, (2) output
gate O, and (3) forget gate f , each of which consists of one layer with the sigmoid ðσÞ
activation function. LSTM also contains a specialized single layer network candidate C,
which has a activation function. In addition, there are four state vectors: (1) memory state C
with (2) its previous memory state Ct−1 and (3) hidden stateH with (4) its previous stateHt−1.
The variable X in Figure 2 represents the current input at time step t.

Figure 1.
Schematic of proposed

ATC classification
approach
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The process for updating LSTM at time t is as follows. Given Xt and Ht−1 and letting
U ; W ; b be the learnable weights of the network (each independent of t), the candidate layer

Ct is

Ct ¼ ðUcXt þWcHt�1 þ bÞc: (1)

The next memory cell is

Ct ¼ ft *Ct−1 þ It *Ct; (2)

where * is element-wise multiplication.
The gates are defined as

ft ¼ σðUfXt þWfHt−1 þ bf Þ; (3)

It ¼ σðUiXt þWiHt−1 þ biÞ; (4)

Ot ¼ σðUoXt þWoHt−1 þ boÞ: (5)

The output is Ht ¼ Ot * σðCtÞ of Ot and the sigmoid of Ct.
Regarding input, all sequences for this task are of the same length, so sorting input by

length is not required. The output of LSTM can be the entire sequenceHt (this permits several
layers to be stacked in a single network) or the last term of this sequence.

An LSTM that has two stacked layers trained on the same set of samples is called a
bidirectional LSTM (BiLSTM). The second LSTM connects to the end of the first sequence and
runs in reverse. BiLSTM is best used to train data not related to time. Accordingly, this study
uses the BiLSTM, as implemented in the MATLAB LSTM toolbox. Parameters were set to the
following values: numHiddenUnits ¼ 100, numClasses ¼ 14, and miniBatchSize ¼ 27.

LSTM is not ordinarily considered a multilabel classifier but can perform multilabel
classification if the training strategy outlined in [14] is implemented, which involves
replicating a samplem times for each of itsm labels. To assign a test pattern tomore than one
class, a rule is applied in the final softmax layer where a given pattern is assigned to each of
the classes whose score is larger than a given threshold.

LSTM can function not only as a classifier but also as a feature extractor. As noted in the
discussion of Figure 1, in this study, LSTM functions in both capacities. Feature extraction

Figure. 2.
Long short-term
memory (LSTM)
classifier
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with LSTM is accomplished by representing each pattern using the activations from the last
layer, a process that produces a feature vector with a dimension equal to the number of
classes. The length of the feature vector is, therefore, numClasses 5 14.

3.2 Classification by hMuLab
The algorithm hMuLab, proposed in [18], is a multilabel classifier that integrates a feature
score and a neighbor score. The feature score decides if a sample belongs to a particular class
using the global information contained in the whole training set. In contrast, the neighbor
score decides a sample’s class labels based on the class assignment of its neighbors. The
feature score f1ðx; gjÞ for a given pattern xwith respect to an anatomical group gj is calculated
to evaluate whether the pattern belongs to the group gj using a regression model. The
neighbor score f2ðx; gjÞ calculates the significance of the class membership of K neighbors of
a pattern belonging to a given group gj: the neighbor score increases if more neighbors of x
have the label gj: Thus, is 1 if all neighbors of xbelong to gj, 0 otherwise. The final score of x
is a weighted sum of the two factors:

f ðx; gjÞ ¼ αf1
�
x; gj

�þ ð1� αÞf2
�
x; gj

�
:∈ (6)

In our experiments, we use the default values where the weight factor α is set to 0.5, and the
number of neighbors is K 5 15.

3.3 Classification by Lh: a stacking method based on LSTM and hMuLab
Lh is the namewe give to a stackingmethodwhere descriptors extracted from LSTMbecome
the input to an hMuLab classifier, as illustrated in Figure 3 (left). Feature perturbation and
extraction can be performed multiple times by randomly sorting the original features used to
train the LSTM. The fusion of 10 Lh classifiers trained using the random rearrangements of
the input features is labeled eLh, as illustrated in Figure 3 (right).

3.4 Classification by FastAI tabular model
FastAI tabular model [19] is a powerful deep learning technique for tabular/structured data
based on the creation of some embedding layers for categorical variables. This deep learner

Figure. 3.
Lh (left) is a stacking of

LSTM and hMuLab;
eLh (right) is an

ensemble of 10 Lh
classifiers based on

feature shuffling
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uses embedding layers to represent categorical variables by a numerical vector whose values
are learned during training. Embeddings allow for relationships between categories to be
captured, and they can also serve as inputs to other models.

A graphic representation of a FastAI tabularmodel is presented in Figure 4, where one can
observe that the categorical variables are transformed into N-dimensional features by
categorical embeddings followed by a dropout layer to prevent overfitting. Numerical
variables are simply normalized. Then all the variables are concatenated and passed as input
into the following layers, which, in our experiments, are two hidden layers and one output
layer. We also use a binary encoding to represent binary variables, and the resulting variable
is treated as categorical.

4. Experimental results
4.1 The data set and descriptors
For the sake of comparison with state-of-the-art approaches, our method is trained and
evaluated on the data set in [7] (supporting information S1). This data set is a collection of
3883ATC-coded pharmaceuticals taken fromKEGG [20], a publicly available drug databank;

Figure 4.
Schematic of the
FastAI tabular model
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the drug subset was obtained by selecting labeled samples with no missing values and
contradictory records [7]. As noted in the introduction, samples can belong to more than one
of the 14 level 1 ATC classes. In the Chen data set, 3295 drugs belong to one class, 370 to two
classes, 110 to three classes, 37 to four classes, 27 to five classes and 44 belong to six classes.
The average number of labels per sample is 1.27.

The following three sets of descriptors represent the drugs in this data set:

(1) DDI represents each drug by concatenating three types of features [9]: the maximum
interaction score with the drugs, the maximum structural similarity score, and the
molecular fingerprint similarity score, with each expression based on its correlation
with the 14 level 1 classes. Thus, the resulting descriptor is size 14335 42 (available
in the supplementary material in Nanni and Brahnam [11]).

(2) FRAKEL represents each drug by its ECFP fingerprint [16], which is a 1024-
dimensional binary vector (located at http://cie.shmtu.edu.cn/iatc/index). The
descriptor is obtained by feeding the drug into RDKit (http://www.rdkit. org/), a
free ML toolkit for chemistry informatics. From this 1024-dimensional binary vector,
a 64-dimensional categorical descriptor is obtained, representing each group in 16 bits
as an integer. This version of FRAKEL has been used with the FastAI tabular model.

(3) NRAKEL represents a drug by a 700-dimensional descriptor obtained from the
Mashup algorithm [21], which generates output from seven drug networks (five
based on chemical–chemical interaction and two on drug similarities).

4.2 Testing protocol
The jackknife testing protocol [7] is used here to generate both the training and testing sets.
At each iteration of this protocol, one sample is placed in the testing set and the remainder in
the training set. Iteration continues until each pattern has taken a turn in the testing set. The
jackknife protocol was selected for facilitating comparison with other approaches as
stipulated in [22]. All the experiments have been performed using MATLAB and Python.

4.3 Performance indicators
ATC classification is evaluated using the standard performance indicators defined in [22] and
repeated below:

Aiming ¼ 1

N

XN
k¼1

 
kLk\L *

k k
kL *

k k

!
; (7)
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XN
k¼1
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where M is the number of classes, N is the number of samples, Lk is the true label, L
*
k is the

predicted label, and Δð$; $Þ returns 1 if the two sets have the same elements, 0 otherwise.

4.4 Experiments
The first experiment (see Table 1) compares the multilabel classifiers described in section 3.
Also compared are three other standard classifiers, each trained on the three sets of features
(DDI, FRAKEL, and NRAKEL). As already mentioned, LSTM is not a native multilabel
classifier. For multilabel decisions, thresholding was used, as described in section 3.1, to
adapt LSTM to the ATC classification problem.

The methods reported in Table 1 are the following:

(1) RR, a ridge regression ensemble using theMATLAB/OCTAVE library formulti-class
classification in the MLC Toolbox [23];

(2) LIFT, multilabel learning with Label specIfic FeaTures) [24];

(3) Group preserving label embedding (GR) [25];

(4) LSTM;

(5) Tab (FastAI tabular model) [19];

(6) hMuLab [18].

(7) Lh, the stacking method described in section 3.3

(8) eLh, the ensemble of 10 Lh classifiers described in section 3.3.

In addition, the fusion by average rule of some of the above-mentioned methods is reported in
Table 1. Each ensemble is specified via the concatenation symbolþ (thus, LSTMþ hMuLab is
the fusion of LSTMand hMuLab).When theweight of an approach is higher than the other it is
preceded by a weighing factor (thus, 33Tab means that Tab is weighted by 3 before fusion).

In the cell labeled Tab-FRAKEL, the reported value was obtained by transforming the
original 1024 bit feature vector into 64 int16 features, since the original descriptor gained very
low performance (0.3165). To avoid overfitting, default parameters were used for the
classifiers.

Examining the results in Table 1, Tab is the best standalone approach, producing an
outstanding 0.7422 absolute true rate using NRAKEL descriptors. Of note as well is LSTM,
which produced good results on all three descriptors. A strong performance improvement for
hMuLab is obtained by using LSTM descriptors (method Lh).

Absolute true DDI NRAKEL FRAKEL

RR 0.5127 0.6062 0.5006
LIFT 0.6111 0.5282 0.3579
GR 0.4991 0.6093 0.4963
LSTM 0.6626 0.6585 0.6330
Tab 0.6441 0.7422 0.6760
hMuLab 0.5710 0.6791 0.5977
Lh 0.6902 0.7092 0.6709
eLh 0.6995 0.7177 0.6853
LSTM þ hMuLab 0.6647 0.7371 0.6716
eLh þ LSTM þ hMuLab 0.6915 0.7358 0.6894
eLh þ LSTM þ hMuLab þ Tab 0.6928 0.7538 0.7072
eLh þ LSTM þ hMuLab þ 3 3 Tab 0.6952 0.7575 0.7095

Table 1.
Absolute true rates
achieved by the
classifiers trained on
the three descriptors
DDI, NRAKEL, and
FRAKEL
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As far as the fusion methods are concerned, eLh outperforms the standalone Lh, but it is from
the fusion of different approaches that we gain the best improvements: the best ensemble is
eLh þ LSTM þ hMuLab þ 3 3 Tab, which is the fusion of methods with the greatest
diversity, compared to the others. This ensemble produces the highest performance in this
classification problem, outperforming all the standalone approaches for each of the three
descriptors.

In the second experiment (see Table 2), fusion at the feature level is tested. The starting
descriptor is the concatenation of two or three sets of features for the Tab approach, while for
the other classifiers, the combination is the average rule applied to each of them (e.g. LSTM
trained on DDI combined by average rule with LSTM trained on NRAKEL).

When a cell in Table 2 spans more than one column, that indicates that the related
classifier is trained using more features, and, for each feature, a different classifier is trained
with results fused using the average rule.

Moreover, we have run the following test, for each fold we run a grid search using an
internal 2-fold in the training data set, the following hyper parameters have been tested,
choosing the best ones in each iteration:

numHiddenUnits ¼ f50; 100; 150g; miniBatchSize ¼ f10 20 30g; α ¼ f0:4 0:5 0:6g;
K ¼ f10; 15; 20g:

We named the new approach (eLh þ LSTM þ hMuLab þ 3 3 Tab)_hyperp in Table 2.
The results reported in Table 2 show the usefulness of the ensembles: all the approaches

that contain Tab outperform the Fast.AI research group, which up to now had achieved the
highest classification score.

5. Discussion
This study proposed an effective ensemble approach to classify novel chemicals/drugs
according to first-level ATC classification. The best ensemble proposed in this work is the
fusion of the four classifiers EnsATC, which is eLh þ LSTM þ hMuLabþ33Tab (where
33Tab indicates aweight equal to the sum of the other three). The performance of EnsATC in
terms of absolute true (the most used performance indicator for this problem) is notable
compared to other approaches in the literature.

To demonstrate the performance enhancement of EnsATC, we report in Table 3 the
results of several state-of-the-art classifiers in terms of the following five performance

Absolute true DDI NRAKEL FRAKEL

LSTM 0.6823 0.6330
hMuLab 0.6991 0.5977
Lh 0.7201 0.6709
eLh 0.7430 0.6853
Tab 0.7667 0.6760
Tab 0.7734
eLh þ LSTM þ hMuLab 0.7577 –
eLh þ LSTM þ hMuLab 0.7762
eLh þ LSTM þ hMuLab þ Tab 0.7901
eLh þ LSTM þ hMuLab þ 2 3 Tab 0.7919
eLh þ LSTM þ hMuLab þ 3 3 Tab 0.8009
(eLh þ LSTM þ hMuLab þ 3 3 Tab)_hyperp 0.8091

Table 2.
Combinations of

descriptors (absolute
true rates) achieved by

the ensembles using
combinations of

features
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indicators: aiming, coverage, accuracy, absolute true, and absolute false. Examining Table 3,
it is clear that our ensemble strongly outperforms the other approaches: EnsATC gains the
highest Absolute true and the highest classification accuracy. Note the performance
differences reported here compared to those reported in the original papers on NRAKEL [26]
and FRAKEL [16]. The main reason for these differences is that the classifiers are not
optimized here becausewe are training on a single data set. Our concern is to avoid any risk of
overfitting; thus, we run the approaches using default values.

6. Conclusion
Since ATC classification is a difficult multilabel problem, the goal of this study was to
improve performance by generating ensembles trained on three different feature vectors. The
original input vectors were fed into a BiLSTM, which functioned (with modification) not only
as a multilabel classifier but also as a feature extractor, with features taken from the
output layer.

Two other classifiers aside from LSTM were evaluated: one based on multiple linear
regression; and another, a deep learning technique for tabular/structured data based on the
creation of some embedding layers for categorical variables. To boost the performance of
these classifiers, they were trained on the feature sets with results fused by average rule.
Comparisons of the best ensembles were made with the standalone classifiers and other
notable systems. Results showed that EnsACT, the top-performing ensemble constructed by
the method proposed here, obtained superior results for ATC classification using five
performance indicators.

Future work will explore the performance of different LSTM and CNN topologies
combined with many activation functions. The fusion of other deep learning topologies for
extracting features will also be the focus of a future investigation.
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