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Abstract

Purpose – Image segmentation is one of the most essential tasks in image processing applications. It is a
valuable tool in many oriented applications such as health-care systems, pattern recognition, traffic control,
surveillance systems, etc. However, an accurate segmentation is a critical task since finding a correctmodel that
fits a different type of image processing application is a persistent problem. This paper develops a novel
segmentation model that aims to be a unified model using any kind of image processing application. The
proposed precise and parallel segmentation model (PPSM) combines the three benchmark distribution
thresholding techniques to estimate an optimum threshold value that leads to optimum extraction of the
segmented region: Gaussian, lognormal and gamma distributions. Moreover, a parallel boosting algorithm is
proposed to improve the performance of the developed segmentation algorithm andminimize its computational
cost. To evaluate the effectiveness of the proposed PPSM, different benchmark data sets for image
segmentation are used such as Planet Hunters 2 (PH2), the International Skin Imaging Collaboration (ISIC),
Microsoft Research in Cambridge (MSRC), the Berkley Segmentation BenchmarkData set (BSDS) and Common
Objects in COntext (COCO). The obtained results indicate the efficacy of the proposed model in achieving high
accuracy with significant processing time reduction compared to other segmentation models and using
different types and fields of benchmarking data sets.
Design/methodology/approach – The proposed PPSM combines the three benchmark distribution
thresholding techniques to estimate an optimum threshold value that leads to optimum extraction of the
segmented region: Gaussian, lognormal and gamma distributions.
Findings – On the basis of the achieved results, it can be observed that the proposed PPSM–minimum cross-
entropy thresholding (PPSM–MCET)-based segmentation model is a robust, accurate and highly consistent
method with high-performance ability.
Originality/value –Anovel hybrid segmentationmodel is constructed exploiting a combination of Gaussian,
gamma and lognormal distributions usingMCET.Moreover, and to provide an accurate and high-performance
thresholding with minimum computational cost, the proposed PPSM uses a parallel processing method to
minimize the computational effort inMCET computing. The proposedmodelmight be used as a valuable tool in
many oriented applications such as health-care systems, pattern recognition, traffic control, surveillance
systems, etc.
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1. Introduction
Image processing is one of the most challenging issues in an image analysis, used in different
fields includingmedical diagnostics, pattern recognition, etc. Image segmentation techniques
have been developed, considering different intensity distributions. A total of four broad
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segmentation methods include region- and boundary-based, thresholding and hybrid
techniques [1].

Thresholding is one of the most commonly used segmentation techniques due to its
simplicity [2]. Different algorithms, i.e. artificial bee colony (ABC), locust swarms (LS), cuckoo
search, particle swarm optimization and metaheuristics, have been successfully applied in
image thresholding [1, 3]. Though thresholding techniques provide adequate solutions, they
are not precise [3]. Metaheuristic methods involve a stochastic process, executing random
operations which lead to slow execution. Entropic thresholding, proposed by Pun [4], is,
however, widely used due to its ease of implementation. The entropic method, originally
proposed by Pullback [5], is used to minimize the cross entropy (minimum cross-entropy
thresholding [MCET]) between the original and the segmented images through selecting an
optimum threshold between two probabilistic distributions. The perfection of MCET results
is affected by predicted distribution type and the number of threshold points. One of the
drawbacks of the MCET method is that its complexity increases with the increase in the
number of thresholds points [6]. Distribution type predicted using the image histogram, i.e.
Gaussian, gamma, lognormal, etc. plays an important role in determining the optimum
threshold point. This leads to an accurate thresholding since each image histogram is made
using different distributions [7]. However, this technique is time-consuming.

In this paper, a novel hybrid segmentation model is constructed exploiting a combination
of Gaussian, gamma and lognormal distributions using MCET. To provide an accurate and
high-performance thresholding with minimum computational cost, an improved precise and
parallel segmentation model (PPSM) is proposed. The proposed model uses a parallel
processing method to minimize the computational effort in MCET computing in locating the
optimum threshold in an image histogram.

This paper deals with

(1) Developing a PPSM model using a hybrid of thresholding techniques (Gaussian,
gamma and lognormal methods) based on MCET.

(2) Modeling PPSM segmentation for optimization.

(3) Developing and implementing a parallel boosting segmentation algorithm to improve
the performance of the PPSM model.

(4) Extensive simulation using different benchmark segmentation data sets to test the
effectiveness of the proposed model, using different fields such as the International
Skin Imaging Collaboration (ISIC), Planet Hunters 2 (PH2), Common Objects in
COntext COCO, Microsoft Research in Cambridge (MSRC) and the Berkley
Segmentation Benchmark Data set (BSDS).

2. Related work
TheMCET-based thresholding method invented by Li et al. [8] has been an easymethod used
widely to find the optimum thresholding. It has been known for its robustness in finding
enhanced solutions for variety and different types of image classes. Chakraborty et al. [9]
proposed an improved particle swarm optimization (IPSO)-based thresholding method. IPSO
was an MCET-based thresholding technique to obtain optimal threshold with a high
convergence rate. Mittal et al. [10] proposed an exponential k-best gravitation search
algorithm. El-Zaart et al. [11] developed a novel segmentation model for brain cancer
detection using Gaussian distribution. The authors used Gaussian distribution if the
magnetic resonance imaging (MRI) brain cancer image histogram has symmetric and gamma
distributions for nonsymmetric histograms. El-Hajj-Chehade et al. [12] proposed fingerprint
image segmentation using gamma distribution. The hybrid cross-entropy thresholding using
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Gaussian and gamma distributions (HCET-G2), proposed by Rawas et al. [7], combined both
the Gaussian and gamma distributions for optimum thresholding of skin cancer images.

Parallel image processing has been implemented on a single compute node using several
auto-parallelization tools. Satpute et al. [13] proposed a segmentation model based on cross
modality using a graphics processing unit (GPU) acceleration platform that provided high
performance. In Ref. [14], the authors studied the power of GPU in accelerating microscopy
image segmentation. This study points out that the segmentation algorithm needs to exhibit
coarse-grained parallelism in order to benefit from GPU parallelization. Liu et al. [15]
proposed a fuzzy c-means (FCM) parallel algorithm based on the Spark-distributed
computing platform to solve the image processing and analysis problem for big data of an
agricultural image.

Most of the proposed MCET-based segmentation methods follow a single distribution
model and ignore the computational complexity that increases significantly with
thresholding levels [6]. Consequently, the contribution of this paper over the
aforementioned ones is folded in two areas: (1) constructing a robust MCET-based
segmentation technique suitable for different application and image classes using the
combination of three benchmark segmentation methods (Gaussian, gamma and lognormal)
and (2) optimize the developed segmentation model by applying parallel computing
technology to boost its performance. To the best of our knowledge, this paper is the first
research study that introduces the combination of the three benchmark distributions to
extract the optimum thresholds.

3. Image segmentation and thresholding
Image segmentation is used to separate the main image object from its background [6].
Thresholding techniques elaborate in outlining a set of thresholds based on the defined image
characteristics such as intensity, texture, position, etc. [16]. It can be categorized into two
classes: bimodal and multimodal thresholding. Bimodal segments the image into two
separate regions, whereas multimodal type divides an image into a number of separate
regions [17], which is out of the scope of this paper.

3.1 Bimodal thresholding
The bimodal technique separates the image into two classes using the image histogram local
minimum as shown in Figure 1 [16]. Let h(x) be the histogram of an image f and t* is the
optimum threshold that separates the two different regions c1 and c2, where c1 and c2 are
class 1 (mode 1) and class 2 (mode 2), respectively. Bimodal thresholding works as follows:

Figure 1.
Bimodal image

histogram

Precise and
parallel

segmentation
model



gðx; yÞ ¼
�

0; f ðx; yÞ < t*

255; f ðx; yÞ≥ t*
(1)

where gðx; yÞ represents the image intensity (pixel value).
Through applying the bimodal algorithm on h(x), we can reach t* using the following

equation:

t* ¼ bimodal Threshold ð0; 255; hÞ (2)

where t* is between the image histogram gray level [0, 255].

4. Minimum cross-entropy thresholding and probabilistic distributions
MCET that is based on Gaussian distribution is one of the widely used entropy methods [4].
However, when considering the nonsymmetric images, i.e. those that provide a nonsymmetric
histogram, Gaussian distribution will not be an effective method [18]. Accordingly,
nonsymmetric distributions to provide more proficiency in diagnosing different gray-level
images are needed, such as K, gamma and beta distributions [7].

4.1 Cross-entropy thresholding
In 1968, Kullback [18] proposed the cross-entropy method to evaluate the similarity between
two probabilistic distributions. Let f and g be two probabilistic distributions on the same set
such that f ¼ ff1; f2; . . . ; fng and g ¼ fg1; g2; . . . ; gng and such that fi and gi come from
the same location in the image space. Consequently, the information–theoretical distance
between the two distributions (f and g) is denoted as a cross entropy and calculated using the
following function:

Dðf ; gÞ ¼
Xn

i¼1

fi * log

�
fi

gi

�
(4)

Let Iðx; yÞ be an original image and Itðx; yÞ be a thresholded image such as

Itðx; yÞ ¼
�
μ1ð1; tÞ ¼ μaðtÞ; Iðx; yÞ < t

μ2ðt; Lþ 1Þ ¼ μbðtÞ; Iðx; yÞ≥ t
(5)

where t denotes the obtained threshold that divides the image into two different classes (A
and B as Figure 2 reveals), μaðtÞ and μbðtÞ are the mean value of classesA and B, respectively
(i.e. dark and bright regions), as shown in Figure 2. Therefore, the cross entropy between
Iðx; yÞ and Itðx; yÞ is defined by the following equation:

DðI ; ItÞ ¼
Xt−1
i¼0

i * hðiÞ * log

�
i

μaðtÞ
�
þ
XL
i¼t

i * hðiÞ * log
�

i

μbðtÞ
�

(6)

where h(i) is the image histogram for i5 1, 2, . . . , L, such that L5 255 being the number of
gray levels.

4.2 Minimum cross-entropy thresholding
The MCET technique developed by Li et al. [8] determines the optimal threshold t* through
minimizing the cross entropy as follows:

t* ¼ arg mintðDðI ; ItÞÞ ¼ arg mintðDðtÞÞ (7)
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Noting the distance between the original and the thresholded images DðI ; ItÞ that can be
written as DðtÞ is determined as follows:

DðtÞ ¼
XL
i¼1

i * hðiÞ * logðiÞ �
Xt−1
i¼1

i * hðiÞ * logðμaðtÞÞ �
XL

i¼t

i * hðiÞ * logðμbðtÞÞ (8)

Since
PL

i¼1i * hðiÞ * logðiÞ is constant for a given image, the objective function can be
redefined using the following equation:

nðtÞ ¼ −

Xt−1
i¼1

i * hðiÞ * logðμaðtÞÞ �
XL

i¼t

i * hðiÞ * logðμbðtÞÞ (9)

Therefore, the objective function can be rewritten as follows:

nðtÞ ¼ AðtÞ * logðμaðtÞÞ þ BðtÞ * logðμbðtÞÞ (10)

where AðtÞ ¼ −
Pt−1
i¼1

i * hðiÞ and BðtÞ ¼ −
PL
i¼t

i * hðiÞ.

4.3 Probabilistic distributions
In image segmentation, the optimum thresholding depends on predicting the best
distribution type that forms the pixels of the image segment [7].

Gaussian distribution: The normal or Gaussian probability distribution is often labeled as
a bell-shaped curve [19]. In image segmentation, if the data in the image are assumed to be
modeled by Gaussian distribution, therefore, μaðtÞ and μbðtÞ can be estimated from two
Gaussian distributions as follows [18]:

μaðtÞ ¼
Pt−1
i¼0

i * hðiÞ
Pt−1
i¼0

hðiÞ
(11)

μbðtÞ ¼
PL
i¼t

i * hðiÞ
PL
i¼t

hðiÞ
(12)

Figure 2.
Image histogram
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where μ is the distribution mean, t is the obtained threshold that divides the image into two
different regions, L is the image gray levels and h is the image histogram.

Gamma distribution is known as a general type of statistical distribution [7]. Based on El-
Zaart et al.’s derivation [20], if the data in the image are assumed to be modeled by gamma
distribution, μaðtÞ and μbðtÞ can be calculated as follows:

μaðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt−1
i¼0

hðiÞ * i2 * q2

Pt−1
i¼0

hðiÞ

vuuuuuut (13)

μbðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
i¼t

hðiÞ * i2 * q2

PL
i¼t

hðiÞ

vuuuuuut (14)

where

q ¼ μðN þ 0:5Þffiffiffiffiffiffiffiffiffi
N *

p
μðNÞ

such that N is the shape of the distribution.
Lognormal distribution: In probability theory, lognormal distribution is a statistical

distribution of the logarithmic value from an associated normal distribution. Thus, if the data
in the image are assumed to be modeled by lognormal distribution, therefore, μaðtÞ and μbðtÞ
can be calculated from two lognormal distributions as follows [21]:

μaðtÞ ¼
Pt−1
i¼0

logðiÞ * hðiÞ
Pt−1
i¼0

hðiÞ
(15)

μbðtÞ ¼
PL
i¼t

logðiÞ * hðiÞ
PL
i¼t

hðiÞ
(16)

4.4 Performance measure
The performance measurement metric is an important issue to find the best segmentation
method [22]. According to the literature, there is no standard and benchmark evaluationmetrics
used by the researcher [23]. Therefore, to evaluate the proposed PPSM objectively and since we
are developing a new entropy-based thresholding method, we followed the following metrics:

Image uniformity (IU): IU is a well-known distance metric [23]. It has been investigated as
an evaluation metric for entropy-based segmentation methods. The IU method measures
quantitatively inter and intra-region uniformity differences between the original and
segmented images. For a segmented image, the IU value ranges between [0, 1], such that 1 and
0 indicate perfect and bad segmentation outputs, respectively. For a given threshold t, the
image uniformity IU(t) is defined as follows:
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IUðtÞ ¼ 1� σ2
1ðtÞ þ σ2

2ðtÞ
C

(17)

where σ21ðtÞ and σ22ðtÞ represent the class variance of the object and its background,
respectively, such that

σ2
1ðtÞ ¼

Pt−1
i¼0

ði � μ1ðtÞÞ2 * hðiÞ
Pt−1
i¼0

hðiÞ
(18)

σ2
2ðtÞ ¼

PL
i¼t

ði � μ2ðtÞÞ2 * hðiÞ
PL
i¼t

hðiÞ
(19)

where h represents the image histogram, μ1ðtÞ and μ2ðtÞ are is the mean values of dark and
bright regions, respectively (as shown in Figure 3), calculated using Gaussian distribution as
indicated in Eqns (11–12) and L indicates the different image gray level L [0, 255]. Where C
represents half of the squared difference between the maximum and minimum original gray-
level value and is calculated as follows:

C ¼ ðgmax � gminÞ2
2

(20)

such that gmax and gmin ∈ ½0 . . .L�.
Region contrast (RC): The RC metric defines the inter-region disparity that can be

calculated using the absolute difference of the object mean values of dark and bright regions,
respectively, divided by the sum of their average mean [23], as shown in Eqn (21):

RCðtÞ ¼ jμ1ðtÞ � μ2ðtÞj
μ1ðtÞ þ μ2ðtÞ

(21)

Noting that, and similar to the IU metric, for a given value of threshold t RC(t), this metric
value ranges between [0, 1], such that 0 and 1 indicate bad and perfect segmentation
performance, respectively.

Start

Read the image

Compute image histogram

Compute the means values

of combined different

distributions using

(Equations 12-17)

Evaluate the MCET

objective function

(Equations 10) using the

different obtained means

Compute the various t*
values of combined

different distributions

Figure 3.
Workflow architecture

of the parallelized
PPSM algorithm

Precise and
parallel

segmentation
model



5. PPSM formulation
This section provides generalized modeling of the PPSM to derive an accurate segmentation
model based on finding ideal distributions forming the segmented image histogram.

5.1 Modeling the image segmentation problem
Different distributions have been used in minimizing the MCET such as Gaussian, gamma
and lognormal distributions. However, finding the best type that leads to optimum
thresholding t* drag the image segmentation problem to be a nondeterministic polynomial
(NP)-hard optimization problem.

Let I(x, y) be the original image to be segmented. Since the MCET technique to find an
optimum threshold depends on Eqn (7), the PPSM, which is an entropy-based model, has the
following as an objective function:

Minimizeðt*Þ (22)

subject to the subsequent quality constraints (QCs) that aim to maximize the accuracy of the
thresholded output throughmaximizing the IU and its RC using Eqns (17) and (21) as follows:

Maximize

�
IUðt*Þ
RCðt*Þ

�
(23)

IUðt*Þ; RCðt*Þ∈ ½0; 1�
Noting that t* could be any threshold between [0, 255].

5.2 PPSM formulation
The PPSM depends on optimizing and developing an accurate thresholding t* through
determining the best distribution type that forms the original image histogram. Therefore,
the PPSMproposes that the image I(x, y) is composed of hybrid distributions using Eqns (12)–
(17). Thus, the image histogram could be modeled using the following function:

hðxÞ ¼ Pa * distaðx; μaðtÞÞ þ Pb * distbðx; μbðtÞÞ
such that (1) distaðx; μaðtÞÞ is the first distribution and can be Gaussian/gamma/lognormal
and (2) distbðx; μbðtÞÞ is the second distribution type and can be gamma/Gaussian/lognormal.
Noting that Pa; Pb are two prior probabilities such that Pa þ Pb ¼ 1.

6. Solving the optimization problem and PPSM algorithm
In this section, a PPSM algorithm is proposed to find an optimum threshold t* that leads to an
accurate extraction of the image from its background.

6.1 PPSM algorithm
Algorithm 1 shows a high-level pseudocode of the proposed PPSMalgorithm based onMCET
using a hybrid distributions combination of Gaussian, gamma and lognormal. The algorithm
starts with reading the original image (line 1) to compute its histogram (line 2). Then, the
PPSM algorithm works iteratively on each image histogram point (i.e. [0, 255]) to attain the
optimumMCET t* (line 3–10). As shown in algorithm 1, different mean values are computed
using different distributions (lines 4–6). The obtained means used in their various
combinations (line 7) to compute nine hybrid thresholds that reduce the MCET (line 8).
The PPSM algorithm selects the optimum threshold t* based on the average of the
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performance measure metrics (lines 11–12). Finally, the algorithm returns the optimum
threshold t* that satisfies QC maximization for best segmentation performance.

The computational complexity to obtain a threshold t* is O(L2) using a homogenous
distribution environment [17]. However, obtaining the optimum threshold could be
exhaustive and time-consuming under hybrid distribution scenarios. Thus, for n-
thresholding problem, the PPSM algorithm computational complexity will be O(Lnþ1). For
that reason, this paper proposes to use the parallel processing technology, so that most of the
used computational resources could be consumed correctly and our key aim in achieving
minimum processing time could be attained.

7. Parallel processing
MCET computation is recognized as a complex task due to the exhaustive search to obtain
the best thresholds. Although recursive programming is used widely in MCET computation,
this will not be effective using simultaneous computation [24]. Therefore, dividing the larger
problem into smaller ones and applying parallel processing technology can save the available
computing resources and boost PPSM processing time.

Parallel processing technology has been used to speed up application performance through
manipulating their essential parallelism [24]. Our aim is to benefit from this technology and
improve PPSM algorithm performance using the embedded parallel central processing units
(CPUs) and GPUs. Accordingly, the proposed PPSM algorithm has been parallelized among
the available computing resources to overcome the drawback of its processing time. However,
to take the advantage of the multithreading technique using a multiprocessor computing
architecture, the application dependency constraint shall be applicable.

Independency: One of the critical requirements to design a parallel algorithm is that the
parallelized problem type shall contain independent iterations [25]. Let Segi and Segj be two

Proposed Algorithm 1 PPSM Algorithm

Input: ( , )// the original image
Output: t*
Processing:
1: Read image ( , )

2: Compute the image I histogram h(i), i=0, …., 255 

3: for j = 1 : 255 do        

1( ) and 1( ) using Equations (12-13)

2( ) and 2( ) using Equations (14-15)

3( ) and 3( ) using Equations (16-17)   

4:  Compute

5:  Compute

6:  Compute

7:  Using Equation 10, Compute 1( ) based on 1( ) and 1( )

Compute 11( ) based on 1( ) and 2( )

Compute 111( ) based on 1( ) and 3( )

Compute 2( ) based on 2( ) and 2( )

Compute 22( ) based on 2( ) and 1( )

Compute 222( ) based on 2( ) and 3( )

Compute 3( ) based on 3( ) and 3( )

Compute 33 based on 3 and 1

Compute based on and 

( ) ( ) ( )

333( ) 3( ) 2( )

8: Compute t1*, t2*, …, t9* using the different distribution combinations (line 8)

i.e. If  _ ( ) < min-value_x

min-value_x = _ ( )

t_x* = j
End if

9:     j = j + 1

10: End for

11: Compute Q(t1*), Q(t2*), …, Q(t9*) using the average sum of the performance measure
of Equation 23

12: best(t) = Maximum(Q(t1*), Q(t2*), …, Q(t9*)) // select the best output 

13: t*=t
14: End if

15: Return t*
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program segments, therefore, to execute these two segments concurrently, the following
should be satisfied.

Consider that Inputi and Outputi are the input and output variables, respectively, for Segi
and Inputj and Outputj are the input and output variables, respectively, for Segj. Therefore,
Segi and Segj segments are considered to be parallel if they satisfied the following conditions:

Inputi ∩ Outputj ¼ Ø

Inputj ∩ Outputi ¼ Ø

Outputi ∩ Ouputj ¼ Ø

7.1 The methodology to parallelize the PPSM algorithm
The parallelization process that has been applied to the PPSM algorithm described is generic
and can be applied to any application that satisfies the independency conditions. In
particular, the parallelized system is divided into the following three stages:

(1) Means distribution: calculate the different means distribution using the combination
of different Eqns (12)–(17). In this stage, the means could be divided into k parts
(k 5 different types of distributions, where k 5 3), such as each part is treated as a
separate task.

(2) MCET evaluation: on each available processor, theMCET objective function Eqn (10)
was evaluated using the combination of the resultant means.

(3) Threshold computation: evaluate the obtained different thresholds using the
combination of different distributions to obtain the optimal t* that suits to form
the final segmentation.

Using the above methodology, we can speed up the proposed PPSM algorithm up to p times
using p parallel processors in one computing machine.

Figure 3 illustrates the workflow architecture of the used methodology to parallelize the
PPSM algorithm, such that the dark gray shapes are the one that represent the tasks running
in parallel.

Algorithm 2 shows a high-level pseudocode for the parallel implementation of the PPSM
algorithm using lines 3–10.

8. Performance evaluation
This section evaluates the efficacy of the proposed PPSM using MATLAB R2019b with
3.4 GHz Intel(R) Core(TM) i7-4770 machine of 8 GB RAM. Multithreaded
implementation has been developed using a MATLAB parallel computing toolbox,
which offers the parallelization technology on a multicore computing platform. Using a
parallel processor computing node, the parpool function provided by the MATLAB
parallel toolbox assigns the threads of the proposed PPSM algorithm to the available
cores [26]. Noting that, the used Core i7 desktop processors feature four cores with eight
concurrent threads.

Algorithm 2 PPSM parallel implementation

for j = 1 : 255 do        

Parallel compute of different mean values using Equations 12-17

Parallel evaluate of MCET objective function using obtained means

Parallel compute of various thresholds (t*)
End for
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8.1 Data sets
To test the validity of the proposed PPSM–MCET-based segmentation model, five different
benchmark data sets have been used to objectively evaluate the model’s accuracy and
performance.

ISIC: The ISIC is a dermoscopic data set and an open-source public archive of skin images
[27]. It has been used as a benchmark for developing and testing the segmentation
methods used in the automated diagnostics system of melanoma diseases. The ISIC data
set contained more than 2,000 skin lesion images collected from different clinical centers
all over the world. The ISIC data set is the largest publicly available benchmark
dermoscopic data set for skin cancer detection and supported by the International Society
for Digital Imaging of the Skin (ISDIS).

PH2: The PH2 data set is onemore dermoscopic benchmark skin lesion data set developed
by the Dermatology Service of Hospital Pedro Hispano, Matosinhos, Portugal [28]. It
consists of currently 200 melanocytic lesions. These images comprise 80 common and 80
atypical nevi and 40 melanomas.

MSRC: MSRC is a static scene parsing data set provided from Microsoft Research in
Cambridge [22]. It is one of the benchmark segmentation data sets that are made up of 591
images divided into 23 object classes.

BSDS: The BSDS is a large data set of natural images developed by the Berkeley
University of California [29]. The BSDS comprises 500 natural images. It is one of the most
difficult benchmark segmentation data sets as it includes various object classes such as
posture and background variations.

COCO: COCO is the largest benchmark segmentation data set provided by Microsoft [30].
The COCO data set provides about 328k images for holistic scenes divided into 91 object
classes (Table 1).

8.2 Experimental results
In this section, numerous experiments are conducted to validate the effectiveness of the
PPSMand to validate the efficacy of themultithreading system in achieving fast and accurate
segmentation. In order to prove the importance of the proposed algorithm, three benchmarks
and classic MCET-based segmentation algorithms are used for comparison: Gaussian,
gamma and lognormal approaches. To evaluate the PPSM performance, two performance
metrics have been recorded: IU and RC metrics as discussed in Section 4.4. For parallelism
evaluation, the total processing time required to execute the multithreaded PPSM algorithm
is compared to the sequential processing.
8.2.1 Accuracy.Themerits of the proposedPPSMare validated using the output comparison in
Tables 2 and 3. Tables 2 and 3 contain a detailed comparison of various combination
distribution means used in our proposed PPSM using dermoscopic and miscellaneous data
sets, respectively. As shown in Tables 2 and 3, 99% of the tested benchmark data sets

Data set name Number of images Image category

ISIC 2,000 Dermoscopic
PH2 200 Dermoscopic
MSRC 591 Natural scene
BSDS 500 Natural scene
COCO 328K Miscellaneous

Table 1.
Summary of the used
benchmark data sets’

specifications
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confirmed that the image histogram is a combination of different distribution types.
Consequently, these results validate that the proposed PPSM is a robust model and overtakes
the other baseline segmentation methods with 99% accuracy. Noting that for the huge data
sets that contain more than 500 images, i.e. PH2 and COCO data sets, 500 images are selected
randomly for testing. One of the interesting outcomes, as shown in Tables 2 and 3, is that the
lognormal–Gaussian combination attained the best results with an average 90% compared to
other combinations and competing segmentations algorithms. Accordingly, this could provide
evidence and draw a new conclusion that image histograms mostly followed lognormal and
gamma distributions at their start and endpoints, respectively. Moreover, classical methods
that used single distributions such as Gaussian, gamma or lognormal face great difficulties to
find the best threshold values as shown in the obtained results.

The PPSM algorithm is tested over a various number of thresholds to check the
correctness and stability of the proposed segmentation model. Figure 4 shows (1) a selected

PPSM joint
distributions

MSRC BSDS COCO
# of best
segmented
images

Best
performance

(%)

# of best
segmented
images

Best
performance

(%)

# of best
segmented
images

Best
performance

(%)

Gaussian 1 0.2 0 0 1 0.2
Gamma 0 0.0 0 0 0 0.0
Lognormal 0 0.0 2 0 0 0.0
Gaussian–
gamma

1 0.2 42 8 10 2.0

Gaussian–
lognormal

2 0.4 19 4 1 0.2

Gamma–
Gaussian

2 0.4 38 8 3 0.6

Gamma–
lognormal

0 0.0 0 0 0 0.0

Lognormal–
Gaussian

450 98.7 399 80 485 97.0

Lognormal–
gamma

0 0.0 0 0 0 0.0

PPSM joint
distributions

ISIC PH2
# of best segmented

images
Best performance

(%)
# of best segmented

images
Best performance

(%)

Gaussian 0 0.0 0 0.0
Gamma 1 0.2 0 0.0
Lognormal 2 0.4 0 0.0
Gaussian–gamma 14 2.8 15 7.5
Gaussian–
lognormal

5 1.0 6 3.0

Gamma–Gaussian 22 4.4 1 0.5
Gamma–
lognormal

0 0.0 0 0.0

Lognormal–
Gaussian

456 91.2 178 89.0

Lognormal–
gamma

0 0.0 0 0.0

Table 3.
Hybrid distribution
combinations results of
PPSM model using
miscellaneous images
of MSRC, BSDS, and
COCO datasets

Table 2.
Hybrid distribution
combinations results of
PPSM model using
dermoscopic ISIC and
PH2 datasets
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number of original images from the used five different data sets, (2) the image ground truth,
(3) the PPSM result and (4) the thresholded image histogram. The segmentation output
compared with the ground truth shows promising results in finding the optimal thresholds.
This clearly demonstrates the obtained results in Tables 2 and 3 and reflects the fact that the
proposed PPSM outperforms the benchmark segmentation models by 99%.

8.2.2 Parallel processing efficiency. The primary aim of the proposed PPSM is to provide
optimum efficiency. This could be represented by the total processing time taken by the CPU
to complete the segmentation process. Using Core i7 desktop processors features four cores
with eight concurrent threads; Table 4 presents an effective comparison in the computation
time (in secs) between sequential and parallel processingmethods using the PPSM algorithm.
As shown in Table 4, the computation time performance under parallel processing is superior
to the sequential method with an average of 58%. An important notice is that the proposed
PPSM is designed for program execution on parallel cores due to the PPSM data-dependent
properties. It is also worth to be noted that our proposed approach successfully increases the
efficiency using a single core in terms of performance and multithreading. This reflects the
conventional wisdom in academics and industry through workload distribution rather than
scaling up systems.

The experimental results recorded in Table 4 validate the importance and efficiency of
the proposed parallel processing model. However, for more accuracy and to shed light on
the statistical importance of the applied results, a statistical test has been conducted
using the Wilcoxon test [31]. Accordingly, the difference in performance gain using the
PPSM parallel model and sequential one shows statistically significant results using the
Wilcoxon test that gives a p-value of 0.0079, confirming the significance of this
improvement.

The accuracy of the segmentation model is verified using the average of the performance
measure of IU and RC as discussed in Section 4. According to these metrics, higher values
indicate an accurate segmentation model. Consequently, the accuracy of the PPSM is
obviously shown using Figure 5 that includes a randomly selected average of various images

Data set name Sequential (secs) Parallel computing (secs) Speed-up saving (%)

ISIC 346.35 187.62 45.8
PH2 263.88 136.96 48.1
MSRC 283.38 98.79 65.1
BSDS 375.82 145.07 61.3
COCO 487.92 164.16 66.3
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Table 4.
Performance gain
using PPSM parallel
computing model
implementation

Figure 5.
Performance metric
measurement
comparing PPSM
accuracy with
benchmark Gaussian,
gamma and lognormal
segmentation methods
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using different data sets. This depicts that the proposed PPSM leads to optimum
thresholding with high processing performance.

On the basis of the above results, it can be observed that the proposed PPSM–MCET-
based segmentation model is a robust, accurate and highly consistent method with high-
performance ability. Moreover, predicting the multidistributions of the one-image
histogram is more appropriate for optimum thresholding and the image histogram
analysis.

9. Conclusion and future work
This paper proposed a novel PPSM for optimum thresholding of different application types
and image classes. The proposed MCET-based segmentation model was built to be a
combination of different benchmark distribution models (i.e. Gaussian, gamma and
lognormal). The PPSM was formulated and implemented to fit bimodal thresholding
techniques. The accuracy of the proposed model, which has been formulated as an
optimization function, is tested using five benchmark data sets and compared with the
other three related approaches. It has been shown that it outperforms the three widely
known MCET-based segmentation techniques that used Gaussian, gamma and lognormal
for image histogram distribution. The PPSM applied a novel and parallel boosting
algorithm to minimize the model computation time and improve its performance. The
experimental results have indicated that the PPSM algorithm preserves an accurate
segmentation output and is able to find an optimum threshold even with different types of
image classes.

The future aim is to extend the PPSM to cover the multimodal thresholding
techniques. Moreover, extending the performance metric measure to improve the quality
and accuracy of the segmented images is one of the important goals that should be
studied carefully.
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