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Abstract

Purpose –This paper presents the Edge LoadManagement and Optimization through Pseudoflow Prediction
(ELMOPP) algorithm, which aims to solve problems detailed in previous algorithms; throughmachine learning
with nested long short-termmemory (NLSTM)modules and graph theory, the algorithm attempts to predict the
near future using past data and traffic patterns to inform its real-time decisions and better mitigate traffic by
predicting future traffic flow based on past flow and using those predictions to both maximize present traffic
flow and decrease future traffic congestion.
Design/methodology/approach – ELMOPP was tested against the ITLC and OAF traffic management
algorithms using a simulation modeled after the one presented in the ITLC paper, a single-intersection
simulation.
Findings – The collected data supports the conclusion that ELMOPP statistically significantly
outperforms both algorithms in throughput rate, a measure of how many vehicles are able to exit inroads
every second.
Originality/value – Furthermore, while ITLC and OAF require the use of GPS transponders and GPS, speed
sensors and radio, respectively, ELMOPP only uses traffic light camera footage, something that is almost
always readily available in contrast to GPS and speed sensors.
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1. Introduction
1.1 Background
Traffic lights used specifically for road systems have been around since the 19th century
with the installation of a gas-lit traffic light in London. This traffic light was a single light
that controlled horse-drawn carriage traffic and was prone to explosions. This was soon
followed by the first electric light, installed in Ohio in 1914; this was also a stand-alone
traffic light. The first network of traffic lights was implemented in Salt Lake City, Utah in
1917 as a collection of six traffic lights controlled through a manual switch. The purpose of
traffic lights was to control traffic to prevent jams and decrease the risk of accidents. This is
a heavy task to conduct manually because it requires that humans decide the optimal or
even just an adequate configuration of traffic light timings to minimize traffic congestion,
which becomes increasingly more difficult to manage as the number of traffic lights
increases [1].

As a result, the synchronization of traffic lights has largely been relegated to computer
systems that take in real-time data and attempt to optimally coordinate traffic lights to reduce
traffic congestion.
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1.2 Related works
One of the most commonly used systems for this task is the Sydney Coordinated Adaptive
Traffic System (SCATS), which is a combination of myriad technologies to produce real-time
metrics used in tracking and managing traffic created around 1970 and used around the
world. These include specialized controllers and in-road sensors. Due to the sheer volume of
data and equipment necessary to set up and run SCATS, it is extremely costly and requires
significant physical modifications to existing road systems to function at full capacity [2].

Another early traffic systemcreated for use in theUnitedKingdom is theSplit Cycle andOffset
Optimisation Technique (SCOOT) [3]. SCOOT makes small adjustments to traffic signal timings
to increase the flowof traffic by reconciling different traffic paths– rather thandrastically altering
the flow of traffic, SCOOTmakes small changes in an attempt to increase traffic flow in the long
term. Rather than using signal plans, SCOOT collects data in real time using detectors installed
into roads and calculates the link profile units (a combination of flow and vehicle occupancy) at
each detector. SCOOT tracks the link profile units over time to produce a cyclic flowprofile, which
it uses to coordinate traffic across regions of the SCOOT traffic network.

A more recent traffic management system uses the oldest arrival-first algorithm (OAF) in
conjunction with vehicular ad-hoc networks (VANETs) [4]. It requires that all vehicles be
equipped with some form of GPS to identify vehicle location at all times, speed sensors and
wireless radio. The combined use of these three devices for every vehicle forms the VANET.
Groups of vehicles approaching intersections are divided into platoons and are sorted by job
urgency – hence the name ”oldest arrival-first.”TheOAF algorithm uses vehicle-specific data
to schedule intersection traffic and minimize traffic delays.

Another algorithm that requires significantly less resources with promising results was
detailed in An Intelligent Traffic Light Scheduling Algorithm Through VANETs [5] – the
Intelligent Traffic Light Controlling algorithm (ITLC). ITLC uses the same equipment as the
OAF with VANETs paper as they both use VANETs as the backbone. One key difference
between ITLC and OAF, however, is that ITLC focuses on decreasing vehicle wait times
rather than clearing jobs by age.

Over the history of traffic algorithms, it may be seen that algorithms attempt to use fewer
resources and less-costly methods of data collection while also retaining the ability to keep
traffic flowing. SCATS and SCOOT, both created near the end of the 20th century, have been
in use for decades, but the physical modifications to road systems pose a few problems that
may have been acceptable in previous decades, but are not at present. Although SCATS has
shown convincing results for its efficacy, it is often too costly and time-consuming for many
locales to install and use.

Recent algorithms, such as the OAF and ITLC algorithms, have improved upon previous
algorithms by collecting data in a less-costly and more-efficient way – the advent of wireless
networks and the Internet has allowed GPS systems to become nearly ubiquitous, which the
two algorithms use to track vehicle metrics in real time.

Similarly, current algorithms have focused on usingmachine and deep learning for vehicle
traffic, such as through classifying the severity of motorcycle crashes [6] and analyzing
traffic between network nodes [7]. While much research and attention have been focused on
optimizing real-time traffic under the assumption that optimizing real-time traffic over a
period of time provides for the most efficient possible flow of traffic, that assumption is not
necessarily sound. Just as in a game of chess, one may intentionally lose a piece in the present
in order to implement a tactic that yields significant gains in future moves, it is reasonable to
consider traffic optimization as a task most efficiently conducted when searching for a global
optimum over a period of time rather than a local optimum in the present. In other words, the
experimenter assumes that optimizing traffic by considering both past, present and future
traffic could yield more efficient traffic flow than simply optimizing traffic using only
real-time data.
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2. Methodology
2.1 Problem statement/task definition
The algorithm this paper presents, Edge Load Management and Optimization through
Pseudo-flow Prediction (ELMOPP), aims to solve the problems detailed in previous
algorithms and systems – through machine learning with nested long short-term memory
modules (NLSTM), the algorithm attempts to predict the near future using past data and
traffic patterns to inform its real-time decisions and better mitigate traffic. The algorithm is
also easily scalable to larger road systems.

Furthermore, the algorithm only requires use of nearly ubiquitous traffic cameras to
obtain all of the information it needs as not only are traffic cameras common on traffic lights,
but if there were no traffic camera on a traffic light, it would cost very little to install one.
Although it was not possible in the past to classify the number of vehicles from traffic
cameras, the advent of deep learning and image recognition has made efficient and accurate
data collection not only feasible but also a reality. In fact, a method of counting vehicles made
specifically for developing countries, but implementable anywhere, was detailed in the paper
A video-based real-time adaptive vehicle-counting system for urban roads [8]. The paper used
cameras positioned to give them vantage points comparable to traffic cameras with similar
quality as well and reported an accuracy above 99% in nearly all tested scenarios, including
different weather patterns. Note that the specific system used to collect data does not matter
as long as the accuracy is high – the previous paper was simply cited as an example. As a
result, the algorithm and associated system cost very little to install and implement, far less
than most other traffic management systems, which require access to far more equipment
and computing power.

The naı€ve algorithm seeks to improve traffic flow by treating intersections as a set of
possible traffic light configurations and choosing the best short-term goal at each intersection
in conjunction with all of the vertex’s neighbors, which it then applies to every vertex in the
road network. In this way, it reaches a local–global optimumbecause each vertex’s decision is
based on the states of its neighborhood, which allows the algorithm to approximate a global
optimum. The hypothesis this paper sought to test was “if the ELMOPP algorithm is tested in
silico against the ITLC and OAF traffic management algorithms, ELMOPP will exhibit a
statistically significantly higher throughput rate than either algorithm.”

2.2 Algorithm
A road system may be modeled as the induced directed graph G ¼ ðV ; EÞ of the road
network whereV is the vertex set of the digraph representing all intersections of the systems
while E is the directed edge set containing all directed roads connecting each intersection.

Note that the dashed edges connected to each vertex represent roads that are only
connected to one intersection/vertex; as a result, these directed edges are termed “pseudo-
diedges” as they do not fit the traditional definition of a directed edge but they are roads
nonetheless. Pseudo-diedges are not included as part of the induced digraph of a road system
and are drawn as a formality: they are not directly considered in calculations and are only
indirectly considered through inflow predictions of directed edges to which these pseudo-
diedges form a path. Also note that the “edges” referenced prior to this point were considered
edges that mapped to a single road. From this point onward, edges will be considered in both
the context of roads and lanes within those roads. In this way, an edge may contain multiple
edges termed subedges that map to road lanes.

The adjacencymatrix of the induced digraph contains all vertex–vertex connections. This
paper follows the row-tail, column-head adjacency matrix convention, where each row
represents vertices marking the start of a diedge and each column represents vertices
marking the head of a diedge. For example, the adjacencymatrixAα of the graph in Figure 1 is
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Aα ¼

2
664
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

3
775

while the vertex set Vα is fa; b; c; dg and the directed edge set Eα is fða; bÞ; ðb; aÞ; ða; dÞ;
ðd; aÞ; ðb; cÞ; ðc; bÞ; ðc; dÞ; ðd; cÞg. However, because each road has four possible
directions it can take (forward, left þ U-turn, and right), every edge is represented as a
three-vector containing the partitioning of each road into its lanes so that every component of
the three-vector is a subedge, where the first component represents the number of vehicles in
the left lane(s), the second component represents the number of vehicles in the middle lane(s)
and the third component represents the number of vehicles in the right lane(s). This turns the
adjacency matrix of the induced digraph into an adjacency tensor of order 3. Therefore, a
possible adjacency tensor of Gα could be

Aα ¼

2
664
½ 0 0 0 � ½ 0 1 1 � ½ 0 0 0 � ½ 1 1 1 �
½ 0 0 1 � ½ 0 0 0 � ½ 1 1 1 � ½ 0 0 0 �
½ 0 0 0 � ½ 1 1 1 � ½ 0 0 0 � ½ 1 1 1 �
½ 1 1 1 � ½ 0 0 0 � ½ 1 1 1 � ½ 0 0 0 �

3
775

Let Ci3j3k be the capacity tensor that maps a maximum vehicle capacity to every edge in the
adjacency tensor and a variable quantity tensor Qi3j3k that contains the number of vehicles
on every road lane at time t. It follows that the loadL ofG equals the Hadamard quotient of the
quantity and the capacity (Footnote 1).

L ¼ Q/C (1)

As an example, the quantity, capacity and load tensors for Gα could be

Qα ¼

2
664
½ 0 0 0 � ½ 0 2 3 � ½ 0 0 0 � ½ 0 6 4 �
½ 0 0 3 � ½ 0 0 0 � ½ 2 0 1 � ½ 0 0 0 �
½ 0 0 0 � ½ 2 1 3 � ½ 0 0 0 � ½ 4 5 4 �
½ 7 7 7 � ½ 0 0 0 � ½ 3 2 0 � ½ 0 0 0 �

3
775

Cα ¼

2
664
½ 0 0 0 � ½ 0 4 4 � ½ 0 0 0 � ½ 3 9 6 �
½ 0 0 7 � ½ 0 0 0 � ½ 3 2 4 � ½ 0 0 0 �
½ 0 0 0 � ½ 3 5 3 � ½ 0 0 0 � ½ 7 8 9 �
½ 9 8 7 � ½ 0 0 0 � ½ 4 5 5 � ½ 0 0 0 �

3
775

d c

ba

Figure 1.
A sample induced
digraph Gα of a road
system
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Lα ¼

2
664

½ 0 0 0 � ½ 0 1=2 3=4 � ½ 0 0 0 � ½ 0 2=3 2=3 �
½ 0 0 3=7 � ½ 0 0 0 � ½ 2=3 0 1=4 � ½ 0 0 0 �
½ 0 0 0 � ½ 2=3 1=5 1 � ½ 0 0 0 � ½ 4=7 5=8 4=9 �

½ 7=9 7=8 1 � ½ 0 0 0 � ½ 3=4 2=5 0 � ½ 0 0 0 �

3
775

When a traffic light is active, it is often the case that another traffic light at the same
intersection could also be active. For example, at a four-way intersection, the left lane green
light may be active for two antiparallel inroads. More specifically, the only two possible
nonintersecting configurations for a pair of antiparallel inroads to an intersection are both left
lanes active and both middle and right lanes active. This may be seen in US road system
traffic light coordination. A traffic light configuration is defined to be a set of subedges
directed toward a common vertex so that none of the subedges’ traffic streams intersect. The
activation of a traffic light configuration is defined to be the activation of each traffic light
corresponding to its associated subedge in a configuration. There are eight such
configurations for a four-way intersection: two for two antiparallel inroads, two for the
other pair of antiparallel inroads and four for each inroad. The configuration set for a vertex v
is symbolized CðvÞ and contains all valid configurations for a vertex while a specific
configuration on v is symbolized Cv, where Cvn ∈CðvÞ (Footnote 2).

2.2.1 Naı€ve algorithm. Define the urgency of subedge en as a function of the load of the
subedge and the time T since the last activation of a subedge so that the urgency of subedge
en, UðenÞ, is defined to be

UðenÞ ¼ LðenÞ
e1 –

TðenÞ
tmax

¼ LðenÞe
TðenÞ
tmax

–1 (2)

and the urgency of orientation Cvn, UðCvnÞ, is defined to be

UðCvnÞ ¼
X
em∈Cvn

UðemÞ (3)

where LðenÞ is the load of subedge en,TðenÞ is the time passed since en was last activated and
tmax is the maximum legal activation time for a traffic light. The urgency of an edge
configuration is defined as the sum of the urgencies of all elements of the edge’s configuration
set. Equation (3) simply sums together the urgencies of every subedge in a configuration.
Equation (2) is an exponential function meant to prioritize edges that have not been activated
for longer periods of time as well as edges that have high loads. The formula is similar to the
logistic equation, save that it is exponential due to the removal of the unit addition in the
denominator of the first fraction in (2). Theminimumvalue an edge’s urgencymay take is LðenÞ

e
,

while there is no maximum. However, the urgency of an edge when the time since the last
activation equals tmax is LðenÞ, or just the load of an edge itself.

The algorithm simply chooses the configuration with the highest urgency for vertex v,Cvþ
Cvþ ¼ max

Cv∈CðvÞ
UðCvÞ (4)

This configuration is held until

max
Cv∈CðvÞnCvþ

UðCvÞ≥UðCvþÞ (5)

for

t ∈ ðtmin; tmaxÞ (6)

otherwise,

t ¼ argmin
p∈ftmin;tmaxg

jp� tj (7)
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where tmin is the minimum legal activation time for a traffic light. This is so that the
configuration is activated until the urgency directly before the configuration was activated
equals the urgency of another configuration directly before it was activated, while keeping in
mind minimum and maximum green light length rules. The algorithm is conducted in real
time, so there is no need for a model of unload speed; rather, real-time data is used and the
rules aforementioned are used when monitoring load. In fact, because the algorithm is
conducted in real time, the modeling of outflow may be safely ignored in its entirety as no
modeling is required when real-time data is available. As a result, it suffices to only consider
edge and subedge inflow in the algorithm.

2.2.2 Cumulative algorithm.The previously detailed algorithm is a naı€ve algorithm similar
to those of various systems used to coordinate traffic lights in that these algorithms fail to
consider future traffic and how to best prevent traffic density from increasing through future
predictions. As may be obvious, the intersection road-induced graph fails to consider the
number of vehicles at places such as department stores or office buildings because

(1) taking those places into account would result in an overly complex graph and “road”
system and

(2) violating the conservation of graph flow allows for generalized predictions to bemade
by relegating the entrances and exits of vehicles into and from buildings to negative
and positive edge flow.

Therefore, rather than calling the movement of vehicles between edges flow, which it
inherently is not due to the lack of conservation of graph flow, flow shall hereon be considered
to be pseudo-flow, a construct defined to be equivalent to flow in all respects save for obeying
the conservation of flow. It is then possible to create a vector each of whose elements
corresponds to the flow of a certain edge over time. Furthermore, the closer in time the future
flow of an edge is to the current time of an edge, the greater the effect the future flowwill play
in the configuration decision at an intersection. Furthermore, the effect of future edge flows
may be modeled using a bounded sine function whose maximum occurs at the current time
andminimum at themaximum configuration activation time. The cumulative urgencyUc of a
given path may be expressed as the convolution integral transform between current and
future urgencies and a negatively sloped line whose area from the origin to the x-intercept
equals 1, effectively modeling a triangle with legs on the x- and y-axes and base tmax. With a
bit of elementary geometry, it is seen that the height of the triangle must be

bh ¼ htmax ¼ 2 (8)

h ¼ 2

tmax

(9)

Therefore, the equation of the line is

y ¼ h� h

b
x ¼ 2

�
1

tmax

� x

t2max

�
(10)

The cumulative urgency convolution then becomes

UcðenÞ ¼ ðΔ*UÞðtÞ ¼ 2

Z tmax

0

UtðenÞ
�

1

tmax

� x

t2max

�
dt (11)

where

U0ðenÞ ¼ UðenÞ (12)
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and

UtðenÞ ¼ LðentÞe1–
TðenÞ
tmax (13)

where ent is the subedge en at time t.
Future flow is predicted using a recurrent neural network (RNN) due to the fact that the

current inflow of a directed edge both is roughly periodic in nature and is a product of previous
inflows. For example, it is to be expected that certain roadswill see above-average inflows during
rush hour. Similarly, inflows cannot stay high for long periods of time if the inflows of other
roads have been lowbecause the low inflows of other roadsmeans that the roadwith high inflow
is getting saturated and is approaching capacity. The RNN used is to decrease computation
times, simplify calculations and take into account the inherently discrete nature of traffic light
timing, a single triply nested long short-termmemory (NLSTM) unit [9]. Nested LSTMs present
a solution to this problem by replacing the long-term memory unit of an LSTM with another
LSTM, thus increasing the long-termmemory span of the nested LSTM. The reason behind the
use of a triply nested LSTM rather than a conventional LSTM [10] is that the time steps used in
themodel occur on the order ofminutes, but patterns in traffic inflow often occur on the order of
days, months or even years. One oft-noted problem with vanilla LSTMs is that although they
are competent at recognizing patterns occurring over hundreds of time steps, their long-term
memory fails to remember patterns spanning thousands or more time steps [11, 12]. Because
there are around 365 � 24 � 60 � 60 ¼ 32; 850; 000 minutes or time steps in a year, which is
close to log500 32; 850; 000≈ 2:7784≈ 3magnitudes greater than a single LSTM can handle, it
is necessary to have at least three levels of LSTMs to properly account for patterns spanning
long ranges of time. Due to the discreteness of both the RNN and the configuration activations,
the cumulative urgency integral must be transformed into a discrete convolution summation

UcðenÞ ¼ ðΔ*UÞ½t� ¼ 2
Xtmax

t¼0

�
UtðenÞ

�
1

tmax

� x

t2max

��
(14)

The cumulative urgency is substituted for the naı€ve urgency when relegating intersection
configuration so that Cvþ becomes

Cvþ ¼ max
Cv∈CðvÞ

UcðCvÞ (15)

2.2.3 Complete algorithm. The complete algorithm is as follows, where each run-through of
the while loop represents a single time step.
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The prediction portion of the algorithm is governed by the NLSTM, which has trained on
past traffic inflow data; the assumption is made that the more traffic data has been trained
upon, the more comprehensive the patterns the NLSTM learns are. At any moment, the
NLSTM is able to predict future inflows by outputting predictions when given current or
predicted future inflows. It is through this method that the NLSTM is able to predict inflows
tens of time steps into the future.

3. Evaluation
A simulation will be conducted to test the detailed algorithm. This simulation will be of the
same form as the simulation detailed in the ITLC paper [5] so as to facilitate direct comparison
between the ITLC, OAF and ELMOPP algorithms. The simulation used in the ITLC paper
was a single 4-leg traffic intersection simulation with a simulation area of 1,000 square
meters. The simulation was also conducted over 2,000 s with anywhere from 200 to
1,000 vehicles and a 1.5-s start-up time (time loss due to starting vehicle) per vehicle. Likewise,
the simulation used in this paper to evaluate the ELMOPP algorithmwas a single 4-leg traffic
intersection simulation that took place over 2,000 s, with each second a single time step, as
well as a 1.5-s start-up time for each vehicle with 200–1,000 vehicles. The simulation graphGS

representing the 4-leg traffic intersection used in the simulation is the induced digraph of the
simple 4-star (see Figure 2).

Note that because the simulation detailed in previous research [5] only considers traffic
inbound to vertex a, the algorithm will not account for outgoing traffic originating from a;
in other words, the loads of all outgoing edges from a are artificially set to a constant 0.
Following previous work, this simulation considers the length of each time step to be a
second; however, unlike the simulation, this simulation does not randomly generate per-
second inflows because road inflow in real life is not random but chaotic. Mathematically,
chaotic and random flows are similar in that they both appear random, but chaos is
deterministic and true randomness is nondeterministic. In that respect, while chaotic flow is
used in this simulation, chaos is similar in nature to the randomness used in the ITLC paper.
The simulation time of the provided simulation is 2,000 seconds/time steps while the total

a

b

c

d

e

Figure 2.
The induced digraph
GS of the simple 4-star,
used to simulate the
algorithm
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number of vehicles is 200–1,000, with a set of 30 trials conducted. Therefore, a periodic inflow
function will be enacted to better simulate real-world traffic inflow. This inflow function is a
four-dimensional autonomous hyperchaotic system modeled off the Lorenz attractor as
described in the hyperchaotic system paper [13]. That system of differential equations (see
appendix) exhibits chaotic behavior, which models the real world.

To conform to the simulation used, the hyperchaotic system will be normalized by
dividing the values generated at each time step by the integral of the system over the interval
[0, 2,000], then will be scaled by a random integer over the interval [200, 1,000]. This results in
chaotic inflow with, following previous work, a total number of incoming vehicles between
200 and 1,000. The capacity of each road was not given in the original paper’s simulation
description; therefore, the capacity of every inroad to a is set to be a constant 1,000. Note that
the value of the capacity itself may be arbitrarily positive because all that matters is that the
capacities themselves are equal across all edges, as only capacity ratios are considered as can
be seen from the urgency formula. The simulation previously described also contains other
information, such as the area over which the simulation is conducted, variables that are
extraneous to this simulation as ELMOPP does not require these variables.

The LSTM used in the simulation will not be a triply nested LSTM, but will instead be a
vanilla LSTM (one may consider this to be a singly nested LSTM) because the hyperchaotic
system will be timewise scaled down to produce patterns over time intervals ranging from
minutes to hours due simply to the length of the simulation detailed in the ITLC paper [5]
(around 33 min over 2,000 single-second time steps). In other words, the LSTM used in the
simulation will be a vanilla LSTM simply because the timescale of the simulation is
magnitudes shorter than the timescale of real-world traffic patterns; therefore, a triply nested
LSTM is not needed as the timescale it handles dwarfs the timescale of the simulation and is
more computation-intensive than the better-suited LSTM (better-suited only for the
simulation). As a result, the RNN used will not need to be able to handle large timescales.
More details on the simulation are provided in the appendix.

The results from the simulation were collected and compared against the results from the
ITLC andOAF simulations [5], as shown in the following plot. The data collectedwere plotted
against the results of the ITLC and OAF algorithms.
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Throughput vs. travelling vehicle count of all three algorithms
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ITLC
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Furthermore, an independent samples t-test was conducted for each pair of algorithms.
The mean of the ELMOPP algorithm is 2.09133 and the standard deviation 0.158824. The
mean of the ITLC algorithm is 1.83414 with a standard deviation of 0.080730. Finally, the
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mean of the OAF algorithm is 1.12108 with a pooled standard deviation of 0.063498. Thirty
trials were conducted for each data point provided for every algorithm. Three independent
samples t-tests were conducted for every pair of algorithms. It was assumed that the data
distributions and the variances for each algorithm were different when conducting the tests,
supported by the calculated standard deviations. The null hypothesis was that the means of
the distributions were equal while the alternate hypothesis was that the greater mean was
actually greater than the lesser mean. Therefore, the t-test was one-sided. Finally, the degrees
of freedomwere set to 298 for each test as there were 150 data points for each data set and the
level of significance was set to 0.05. The results of the t-tests are shown further.

At the 95% confidence level, it is seen that the alternate hypothesis is supported for each
pair of algorithms. This, coupled with the algorithm’s means in order from greatest to least
as ELMOPP, ITLC and OAF, supports the hypothesis that ELMOPP exhibits a higher
throughput than both ITLC and OAF. Surprisingly, the calculated t-value for the ITLC
v. OAF test is the greatest of all calculated t-values. This is because, even though the
difference of means for this test is smaller than the difference of means for the ELMOPP v.
OAF, the variance for the ITLC data set is also smaller than the variance for the ELMOPP
data set.

4. Applications and further research
Applications of the novel ELMOPP algorithm are varied in scope. As a traffic management
algorithm built to keep traffic flow in road systems as high as possible, ELMOPP could be
used on practically any road system. ELMOPP would be especially useful in places that do
not have access to GPS systems or aren’t able to pay for extreme renovations to road systems
as would be required by systems such as SCATS or SCOOT. This includes places such as
cities with low funds or towns with minimal extra resources. In fact, ELMOPP could be
applied to any road system that needs a traffic management system quickly as it is
straightforward to implement and requires practically no physical modifications to existing
road systems. The observed increase in throughput shown by ELMOPP in comparison with
ITLC and OAF is beneficial for another reason: environmental impact. Increased traffic
congestion has been shown to correlate with lower ambient air quality and has even been
linked to trends in increasingmortality. Hazards associatedwith traffic congestion have been
shown to be related to travel time and rush hour length, among others [14]. As ELMOPP
seems to show a higher throughput than ITLC and OAF, it is safe to say that travel time will
be reduced as more vehicles at any given moment are traveling to their destination for
ELMOPP than for either of the other two algorithms. Furthermore, ELMOPPwas specifically
created to predict and mitigate future traffic, something that has immediately obvious
implications for rush hour traffic. This further supports the application of ELMOPP to
decreasing environmental impact and positively impacting people’s health.

Further research on the subject of traffic management algorithms would likely involve
different methods of approaching and describing the problem. ITLC used algebra and basic
combinatorics to create what was a very loose description of road systems; ELMOPP used
graph theory and linear algebra to describe and optimize traffic. There are other, potentially
more scalable, methods of describing traffic flow. Further research by the researcher would

Test Calculated t-value Table t-value Significance

t-test: ELMOPP v. ITLC 17.6799 1.6500 Significant
t-test: OAF v. ELMOPP 69.4727 1.6500 Significant
t-test: ITLC v. OAF 85.0275 1.6500 Significant
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likely be focused on the avenues of other methods of predicting traffic flow, such as through
vanilla artificial neural networks (ANNs) or graph convolutional networks (GCNs). One specific
venue for further research could be real-world testing by implementingELMOPP for a physical
road system and comparing its performance to other traffic management algorithms. Another,
more comprehensive, method of further research might involve developing a suite of network
tests to cover a range of situations such as alternating heavy and light traffic flow, various
intersection types, traffic management algorithms applied to simulated road networks rather
than individual intersections and counting roads with varying speed limits.

5. Conclusion
This paper outlined a novel traffic management algorithm named ELMOPP that employed
graph theory and nested LSTMs. The ELMOPP algorithm assumes that current traffic flow
is correlated with past traffic flow and that traffic cameras are able to collect data that can be
used to determine incoming traffic parameters. In contrast to real-time traffic optimization,
the ELMOPP algorithm attempts to optimize traffic across time by searching for the most
efficient traffic flow using machine-learned traffic patterns to predict future traffic
(Footnote 3). The ability of this algorithm to consider traffic predictions in its management
decisions renders it significantly more effective than the ITLC and OAF algorithms while
using fewer metrics. The present study is restricted only to simulations to address traffic
management performance; physical, real-world testing will demand further research.

Notes

1. The load of an edge is artificially set to 0 when the capacity of an edge is 0 as it is not possible for any
vehicles to travel on that edge. In setting the edge load to 0when the capacity is 0, the urgency of that
edge becomes 0, preventing so-called “dead” edges from having any effect on configuration urgency.

2. Note that, although four-road intersections are most often mentioned in this paper, intersections of
any possible number occur in the real world. Four-road intersections are used as examples here
simply because they are common, it is easy for audiences to understand the ELMOPP algorithm
through easily relatable examples, and because the simulation used to test the algorithm uses a
four-road intersection in keeping with the ITLC paper [5]. However, the idea of a configuration is
valid for all types of intersections. All that must be done is to define the configuration set as the set of
all possible configurations.

3. Supplementary material related to this paper, including this paper’s appendix, may be found within
the following GitHub repository: https://github.com/meeeeee/ELMOPP-ACI
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Appendix

Hyperchaotic System Inflow Simulations
The hyperchaotic system governing inflow dynamics for the simulation was

ðx; y; z; wÞ :¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

dx

dt
¼ aðy� xÞ � ew;

dy

dt
¼ xz� hy;

dz

dt
¼ b� xy� cz;

dw

dt
¼ ky� dw

(16)

where “a, b, c, d, e, h are positive parameters of system” [13] and with the specific attractor a5 5, b5 20,
c5 1, d5 0.1, e5 20.6, h5 1 and k5 0.1. As stated by the paper, the largest Lyapunov exponent of the
attractor above is 0.24. As a result, the Lyapunov time of the system is 1=0:24 ≈ 4:167. Because each
system time step is 0.01, the Lyapunov time expressed in time steps is 4:167=0:01 ≈ 417, which amounts
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to 417=60 ≈ 6:95min, far greater than any reasonablemaximum traffic light activation time. As a result,
the cumulative urgency formula is not expected to significantly diverge from the true chaotic
distribution as the Lyapunov time is far greater than any expected result.

The system was solved by using the Runge–Kutta family’s Euler method with a step size of 0.01
over ½0; 2000� by treating the system as the derivative of a vector-valued function.

Euler’s method allows for discrete approximations of differential equations. It states that for
function y and its derivative y0,

hnþ1 ¼ hn þ h
0 ðtnÞΔn (17)

This may be extended to vector-valued functions, such as the previously described hyperchaotic system
[13], where

h ¼

2
664
x

y

z

w

3
775; h

0 ¼

2
664
aðy� xÞ � ew

xz� hy

b� xy� cz

ky� dw

3
775 (18)

and Δn ¼ 0:01.
The system was normalized by dividing the system by the L1 norm of its integral over [0, 2,000],

then scaling it up by a factor of 800. This effectively modeled chaotic vehicle inflow so that the total
inflow over the 2,000 timestepswas 800 vehicles. The integral of the solutionwas calculated by summing
all of the data points calculated through Euler.

Because the step size was 0.01 and the stiffness ratio (ignoring the eigenvalue of 0) was
−7:56=0:23 ≈ − 32:8695, which is not significantly less than –1, it is safe to say that the system is
nonstiff for the estimation technique used.

LSTM Prediction Model
The LSTM prediction model trained on 10,000 data points. The data was generated by choosing a
random real vector v∈R4 so that v is a vector randomly sampled from the four-dimensional hypercube
whose boundaries are defined by the fourfold Cartesian product ff0; 1g3f0; 1g3f0; 1g3f0; 1gg. The
LSTM’s training data was split 80–20 as traditionally split when training and testing data for machine
learningmodels. The first 8,000 data points were used only trainingwhile the last 2,000 points were used
for simulation. Every data point in the last 2,000 points was trained pointwise on the LSTM as a single-
sample batch.

The LSTM itself consisted of 16 units (determined empirically through tests over different ranges of
units to be the optimal number of units to facilitate low errors while preventing overfitting for the
specific attractor used) andwas trained over 100 epochs with a batch size of ten samples using theAdam
optimizer with a mean squared error loss function.

Traffic Intersection Simulation
Few details were given on the ns2 map used in the ITLC paper [5]; as a result, some assumptions were
made about the simulation. The turning speed was set at a constant 10 m per second, chosen from the
thorough analysis done in MODELING SPEED PROFILES OF TURNING VEHICLES AT
SIGNALIZED INTERSECTIONS [15]. Furthermore, the outflow rate (q) was calculated using a
numerical Greenshield model [16] to be

q ¼ kvf

�
1� k

kj

�
(19)

where k is the density, vf is the free-flow speed and kj is the jam density. The capacity of each street was
set to 1,000 vehicles. Each inroad was initialized to a load of 200 vehicles with the total vehicle inflow
over the 2,000-s testing interval being 800, with a resulting 4,000 vehicles total and an average of
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1,000 vehicles per inroad, only accomplished if all 4,000 vehicles flow out over the 2,000-s interval.
The capacity for each inroad was set to 1,000 with a jam density of 1.
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