The current issue and full text archive of this journal is available on Emerald Insight at:
https://www.emerald.com/insight/2210-8327.htm

A novel independent job
rescheduling strategy for cloud
resilience in the cloud environment

Fei Xie, Jun Yan and Jun Shen

School of Computing and Information Technology, University of Wollongong,
Wollongong, Australia

Abstract

Purpose — Although proactive fault handling plans are widely spread, many unexpected data center outages
still occurred. To rescue the jobs from faulty data centers, the authors propose a novel independent job
rescheduling strategy for cloud resilience to reschedule the task from the faulty data center to other working-
proper cloud data centers, by jointly considering job nature, timeline scenario and overall cloud performance.
Design/methodology/approach — A job parsing system and a priority assignment system are developed to
identify the eligible time slots for the jobs and prioritize the jobs, respectively. A dynamic job rescheduling
algorithm is proposed.

Findings — The simulation results show that our proposed approach has better cloud resiliency and load
balancing performance than the HEFT series approaches.

Originality/value — This paper contributes to the cloud resilience by developing a novel job prioritizing, task
rescheduling and timeline allocation method when facing faults.

Keywords Fault tolerance, Independent job rescheduling, Priority assignment system, Timeline allocation,
Cloud resiliency, Load balancing performance
Paper type Research paper

1. Introduction

Although a cloud data center often has its own proactive fault handling plan, the threat of
unplanned outages still exists [1-4]. Therefore, cloud resiliency is an important issue to
successfully keep a stable cloud computing environment under fault scenarios [5]. To rescue a
series of operations from a fault event, a variety of fault handling approaches have been
proposed [6, 7]. Several parameters such as CPU temperature [6], cloud performance [8] and
job importance [9], have been considered in these fault handling approaches. Job execution
duration and job deadline, as two of the most significant job attributes, has also been
considered when performing job scheduling, job rescheduling and resource allocation.
Completing the job beyond its deadline is meaningless [10, 11]. From the point in time when a
fault occurs, uncompleted jobs with the deadline requirements are particularly at risk of
failing to meet their deadline requirements [12, 13].

Many deadline-constrained job scheduling strategies have been proposed. The HEFT
series approaches are one of the most significant series of job scheduling strategies published
from 2002 to date [14-23]. Although HEFT series approaches were proposed over past
decade, selecting the first available server to enable job to finish early might not be the
optimal solution when handling faults [15, 21, 24]. It may cause unnecessary deadline or
resource competition between the job with high priority and the job with low priority. As a

© Fei Xie, Jun Yan and Jun Shen. Published in Applied Computing and Informatics. Published by
Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY
4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for
both commercial and non-commercial purposes), subject to full attribution to the original publication
and authors. The full terms of this license may be seen at http://creativecommons.org/licences/by/4.0/
legalcode

Cloud
resilience in the
cloud
environment

Received 29 June 2021
Revised 3 January 2022
24 January 2022

Accepted 24 January 2022

C

Applied Computing and
Informatics

Emerald Publishing Limited
eISSN: 2210-8327

P-ISSN: 2634-1964

DOI 10.1108/ACI-06-2021-0172

http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/ACI-06-2021-0172

ACI

result, the cloud resiliency may not be optimized with many low priority jobs unsaved.
Besides, selecting the first available server may cause a temporary dramatic load increase at
some specific time points, which leads to performance bottleneck.

Therefore, in this paper, we propose a novel independent job rescheduling strategy for
better cloud resiliency and load balancing performance. Our approach concentrates on
independent job rescheduling based on job nature, timeline scenario and overall cloud
performance. A job parsing system is deployed to identify the eligible time slots for the jobs.
Then a priority assignment system is developed to prioritize the jobs in the cloud
environment. To handle different cases, two sub-algorithms are applied in the proposed
dynamic job rescheduling algorithm. The simulation results show that our proposed dynamic
job rescheduling strategy has better cloud resiliency and load balancing performance than
the HEFT series approaches. Besides, our approach can fit both the single-fault scenario and
multi-faults scenario when handling faults.

2. Related work and problem statement

The cloud environment is subject to many types of faults, which might lead to a data center
being unstable or even unavailable. These faults will disrupt uncompleted jobs [12]
Therefore, it is crucial for a data center to handle faults and rescue uncompleted jobs when
faults occur [25, 26]. Fault tolerance can be approached from two different perspectives,
proactive fault tolerance and reactive fault tolerance [27]. The main objective of fault
tolerance techniques is to rescue the jobs from the faulty data center to working-proper
replica-ready data centers [28, 29].

The deadline is one of the most significant parameter to be considered in some
contemporary fault handling approaches. The HEFT series approaches are one of the most
significant series of deadline-constrained job scheduling strategies, which are published from
2002 to date [14-23]. In 2002, a Heterogeneous Earliest Finish Time (HEFT) algorithm was
proposed to minimize its earliest finish time with an inserted-based policy [14]. It firstly
assigns the priority to each job in the scheduling list and then assigns each task to the first
available server which can enable the job to finish the earliest. In 2013, a Budget and Deadline
Constrained scheduling algorithm named BEFT was proposed to find the optimal workflow
scheduling solution to satisfy both deadline and budget constraints for avoiding SLA
violations [16]. Specifically, the BEFT algorithm only works by reserving and billing a fixed
number of resources in heterogeneous grid computing systems. Same year in 2013, another
novel list-based task scheduling algorithm called Predict Earliest Finish Time (PHEFT) was
proposed to improve the makespan and efficiency to compare with the HEFT, LDCP and
LHEFT approach. At the same time, this algorithm keeps the same time complexity to HEFT
approach. In 2015, a Budget and Deadline Constrained Heterogeneous Earliest Finish Time
(BDHEFT) algorithm was proposed by extending the classic HEFT approach and the BHEFT
approach [18]. The BDHEF T approach considers six major variables, such as Spare Workflow
Budget, Spare Workflow Deadline, Current Task Budget, Current Task Deadline, Budget
Adjustment Factor and Deadline Adjustment Factor, to generate a Budget and Deadline
Constrained scheduling plan. In 2016, an Enriched-Look ahead HEFT (E-LHEFT) algorithm
was proposed to optimize both QoS and load balancing without considering any constraints
[19]. E-LHEFT algorithm updates the processor selection phase of LHEFT algorithm by
applying task grouping and Pareto theory for effective load balancing performance. In 2018,
jobs with both unconstrained and time deadline constrained cases were taken into account by
applying a HEFT technique for order preference called HEFT-T algorithm [20]. A three-stage
non-dominated sorting approach is applied to identify the optimal solutions for the
unconstrained case, and an adaptive weight adjustment strategy is proposed to adjust weight
value for time for the deadline-constrained case. In 2019, a workflow scheduling algorithm

named Greedy Resource Prov151on1ng and Modified HEFT (GRP- HEFT) was proposed by
developing a resource provisioning mechanism [22]. The resource provisioning mechanism
generates the instance type list based on the efficiency ratio of different instance types and
selects the most efficient instances constrained by pre-defined budget. The modified HEFT
algorithm employs the optimal configuration of instance types with their number of
created VMs to obtain the job scheduling plan. Same year in 2019, a Dynamic Variant
Rank HEFT (DVR-HEFT) algorithm was also proposed to reduce the scheduler’s makespan
without increasing the algorithm’s time complicity to compare with the classic HEFT
approach [23].

The HEFT series approaches tend to select the first available server to enable the earliest
finish time. Although HEFT series approaches were developed over a long time period, selecting
the first available server might not be the optimal configuration when handling faults[15, 21, 24].
It may cause anabatic deadline or resource competition problems in which the job rescue with
the high priority may unnecessarily impact the job rescue with the low priority. Therefore, the
cloud resiliency may be degraded. Besides, selecting the first available server may cause a
temporary dramatic load increase at some specific time points. Therefore, the timeline
processing should be further considered because of the time-varying characteristic of the entire
timeline. Firstly, different time-varying resource situations at different cloud data centers should
be taken into account. Secondly, the job deadline competition should be addressed when
allocating the jobs. Furthermore, the load should be more balanced to avoid traffic spikes and
degraded cloud performance.

3. General modeling

In general, a cloud environment contains multiple components such as data centers, servers,
data and jobs. In this research, the proposed independent job rescheduling strategy is
developed to globally control the job allocation over the cloud environment. We recognize a
data center as an independent scheduling entity when doing job allocation. The job
scheduling and rescheduling is conducted among a set of data centers. How the jobs are
allocated into servers or virtual machines in a specific data center, is not the focus of this
research. Instead, we study a cloud environment £ = (DC,J) with multiple data centers
DC {dci, dco, ..., dcy} and asetof jobs /] {j1, 72, ..., Ja}

Each job j €/ is associated with R(j), DEAD(j) and PRO(j), which present resource
requirement, job deadline and job operation profit, respectively. Each job j has a fixed
job execution duration Len(7). The job urgency value of the job j, p(y), refers to the time
buffer between current time point and its deadline DEAD()). In this research, we define
the job deadline as a specific point in time without the consideration of the job with
infinite deadline. Completing a job beyond its deadline is meaningless. All jobs in this
research are independent, which means there is no dependency among the jobs.
Besides, we assume all jobs require restarting of the entire job as the traditional job
rescheduling approach did [30]. This is because the major concern of this paper is not
the way how the job is resumed. The main objective is on how to maximize the overall
cloud resiliency and balance the resource load by analyzing the job priority. The
traditional restart approach is also the most general approach that is supported by any
cloud for any task.

In this research, we focus on the improvement of the cloud resiliency. The cloud resiliency
for a faulty data center can be calculated using the formula in Eqn (1).

Total number of rescued jobs
Total number of jobs to be rescued

Cloud Resiliency = @)

Cloud
resilience in the
cloud
environment

ACI

Figure 1.
The example of eligible
time slot identification

4. Job parsing system

We develop a job parsing system to find the eligible time slots for jobs. A timeline exists at
each data center. In this research, we do not consider the job with an infinite deadline.
Therefore, the timeline range refers to [70, T1atest), where T denotes the fault-occurred time
point and 77 st denotes the latest deadline time point of the jobs in /.

We define the time slot as a series of continuous time points. The available resource at each
time point is the most significant factor for the further reception of the rescheduled jobs from
the faulty data center. Therefore, we parse the timeline at each data center site in a two
dimensional vector space. The x axis is the discrete time points ranged from [T}, T1atest] and
the y axis is the available resource. Thus, the line in this space represents the available
resource over time. We call it a resource line. Each job can be parsed into this two dimensional
vector space as a rectangle. The height of the rectangle represents the resource requirement of
the job and the length of the rectangle corresponds to the job execution duration. The
rectangle will horizontally move from T to 77 atest- An eligible time slot for a job starts from a
time point when the rectangle starts to stand completely below the resource line and ends at a
time point when the rectangle starts to stand above the resource line. A function

Count(S(y)dc) is deployed to count the number of eligible time slots of the job jata data center
dc. An example of our proposed job parsing system is shown in Figure 1. The final range of
the eligible time slot can be recognized when the job rectangle completely stands under the
resource line (red line).

5. Job rescheduling strategy

Our job scheduling strategy has three phases, replica selection phase, job prioritizing phase
and eligible time slot selection phase. Our strategy is an independent job rescheduling
strategy for a bounded number of data centers when faults occur. In the case of single-fault
scenario, our strategy can be applied by the faulty data center in one time to rescue the faulty
jobs. While in the case of multi-faults scenarios, our strategy should be separately applied in
each faulty data center. The main objective of our job rescheduling strategy is to maximize
the cloud resiliency and balance the resource load at the same time by applying a priority-
based job rescheduling method. Therefore, the starvation of the less privileged jobs may be
sacrificed to some extent as our proposed job prioritizing method aims to obtain the job
importance by analyzing the job urgency, the job operation profit and the number of eligible

= N

N

 The job rectangle) (An eligible time slot can be identified ™
f/horizontally moves from | ' by collecting a series of continuous N\
400 axis zero).~ - time points which the job rectangle~. P
= yroe S __completely stands under the resource /-
NS o ~_ line -~
350 - -
>
5 300
o
Z f——————————teeeeereerdassasannssmananarsaasersonnonanad. o e eeeeeees
®© 250 H :
z : :
@ Job i
g 200 : :
3 Rectangle :
@ . . Eli H & : move
150 gible Time slot :
Range :
100
0
T, T, T, T, T, T, Ts T,

Time point

time slots of the job. The job urgency describes the urgency degree of the job. The job

Cloud

operation profit demonstrates the economic value of the job completion. The number of resilience in the

eligible time slots of the job denotes the job allocation difficulty. Therefore, the job with higher
priority means the job has higher urgency degree, higher economic value and higher job
allocation difficulty. In other words, the job with lower priority means the job has lower
urgency degree, lower economic value and lower job allocation difficulty. Therefore, from the
relation among urgency degree, economic value and job allocation difficulty, the less
privileged jobs are less important to be saved. Therefore, the resource will be firstly available
to the jobs with higher priority and then the starvation of the jobs is sacrificed to some extent.

5.1 Replica selection phase

Our approach has a performance-oriented replica selection policy which selects the replica-
ready data center which has the most available resource as the optimal rescheduling
destination. Tie-breaking is done randomly.

5.2 Job priovitizing phase

This phase distributes the job allocation priority to each job. The job allocation priority list
will preserve a descending processing order based on the job priority until no more jobs can
be allocated. Tie-breaking is done randomly.

We develop a priority assignment system to assign the job allocation priority by jointly
taking job urgency, job operation profit and the number of eligible time slots of the job into
account. Each job can be parsed to a cuboid in a three dimensional vector space, where the
cuboid length @ denotes the job urgency value p(7) on the y axis, the cuboid height crepresents
the reciprocal of the job operation profit, ﬁo@’ on the zaxis and the cuboid width b denotes the

number of eligible time slots of the job j on the x axis. According to the parsing method above,
the volumes among cuboids will be compared. The smaller volume the cuboid has, the more
urgent, the more profitable and the more processing difficulty the job has. Hence, the cuboid
with the smaller volume has higher priority. The job allocation priority list is created based on
the volume value of each job cuboid.

5.3 Eligible time slot selection phase
Our eligible time slot selection method aims to select the optimal eligible time slot for the
received jobs at each working-proper data center. Scenario-based allocation are applied for
both normal cases (Algorithm 2) and limited resource or insufficient time slot length cases
(Algorithm 3). Tie-breaking is done randomly.

We consider both the time slot length similarity and the corresponding time slot resource
situations to accommodate the job at its optimal eligible time slot. The eligible time slot with
the more similar time slot length similarity to the job execution duration is more suitable to
accommodate the job for less the time slot space wastefulness. The higher minimum available
resource in the eligible time slot achieves the less possibility of load spike.

Let S(7)™ denotes a set of eligible time slots of the job j at a data center dc, then s(j)f

denotes the g th eligible time slot in S (j)d”. 5(s (j)f]lc) denotes the time slot length similarity of
s(j)ZC to the rescheduled job execution duration and o (s (j)ZC) denotes the minimum available
resource value of s(j)Zf. Then the credit of the s(y) Z‘, C(s(j)gc),is formulated as follows in Eqn (2).
W is the weight of the ranking value of 5(s(j)ZC) and W, is the weight of the ranking value of
a(s(j)g‘). The sum of Wsand W is 1. rank(5(s(7) ZC)) denotes the ranking value of the time slot
length similarity of s(j)ZC and rank(o(s(j)Z‘)) denotes the ranking value of the minimum
resource of s(j)Zf.

cloud
environment

ACI

o(s0);) = Len(s(3)y) ~ Lent)

rank(5(9)) = mm((s((;éfo))))2 ng?@)))
(s) - min(o(S6))

D) o 50)) —mnlo(50P))
C(SU)ZC) = W,* rank(é(s(j)?)) +W, *rank(a(s(f)?))

Then the eligible time slot of the job 7 with the maximum credit will be recognized as the
optimal eligible time slot O(y) for the job J.

To implement three phases mentioned above, a dynamic job rescheduling algorithm is
proposed in Algorithm 1. The time complexity of Algorithm 11is O (%?). The algorithm firstly
initializes job parsing vector space and makes the job collection at the faulty data center from
Line 1 to Line 4. Then we select the optimal replica-ready data center for each job at the faulty
data center from Line 5 to Line 7. We prioritize the received jobs at each working-proper data
center site from Line 10 to Line 12. Each data center will try to find an eligible time slot for
their received jobs from Line 13 to Line 25. Two different scenarios can be treated during this
process. Algorithm 2 is normally applied between Line 13 to Line 18 if the eligible time slots
can be founded. Otherwise, Algorithm 3 is applied between Line 19 and Line 23 for the
insufficient time slot length cases.

@

Algorithm 1: Job Rescheduling Algorithm

1. |Initialization {

2. Settimeline

3. Create job parsing vector spaces

4. Load the jobs at the faulty data center into faulty job list F/[] }
5. Remove the faulty data center from DC

6. foreach jobin FJ[] do

7. Select the optimal replica-ready data center
8. end for

9. foreachdcinDC do

10. Parse the jobs and the timeline

11. Prioritize the jobs

12. Create priority list AP[] in an ascending order

13. for AP[0] to AP[Sizeof(AP[]) — 1] do

14. Count(S(AP[D)

15. if Count(S(AP[)%) > 0

16. Do Algorithm 2

17. Move AP[] - 0(AP[])

18. else

19. Do Algorithm 3

20. Load “Optimal Migratable Job” and “Alternative Migration Destination”
21. Migrate “Optimal Migratable Job” — T, of “Alternative Migration Destination”
22. Record the original location of “Optimal Migratable Job” as O(AP[])
23. Move AP[] - O(AP[])

24. end if

25. end for

26. end for

Algorithm 2 is used to generate the optimal eligible time slot O(;) for job j, which assists our
proposed Algorithm 1. The time complexity of Algorithm 2 is O(1). In our Algorithm 2, we firstly
insert the job from AP[]at Line 1. Then we find the optimal eligible time slot for the inserted job
from Line 2 to Line 7. The credits for the eligible time slots will be calculated for the inserted job
at Line 2 under Eqn (2). After that, the optimal eligible time slot for the inserted job will be
generated at Line 3. The optimal eligible time slot will be loaded to find its beginning time point
TBegin at Line 4[]. The inserted job should be allocated to the beginning time point 7gegi, 0f the
optimal eligible time slot at Line 5. The resource consumption of the inserted job should be
updated to resource line in the vector space at Line 6. Finally, the priority assignment system will
be updated for further cloud resilience at Line 7. In our approach, we commonly allocate the
rescheduled job at the first time point (the beginning time point) in the optimal eligible time slot
because we insist “as early as possible” principle for all job completeness. For tie-breaking
eligible time slots, we place the job at the earliest available time slot as well.

Algorithm 2: Optimal Eligible Time Slot Selection

Input: AP[k], k € {0,1, ..., Sizeof (AP[]) — 1}
Output: 0(AP[k])

1. Insert the job AP[k] at Line 16 in Algorithm 1
2. Calculate C(S(AP[k])%) under Eq. 2

3. Generate O(AP[k])

4. Load Tpegiy of O(AP[k])

5. Allocate AP[k] at Tgegin

6. Update resource line for O(AP[k])

7. Update priority assignment system and generate new allocation priority list

Cloud
resilience in the
cloud
environment

ACI

By applying Algorithm 2, our approach can rescue the jobs that already has eligible time slots. The
jobs that are left unsaved are known as residual jobs because of unsuccessful rescue due to
insufficient resource or insufficient number of eligible time slots. We apply a residual job allocation
in Algorithm 3 by using job migration methods. The time complexity of Algorithm 3 is O(#).

In Algorithm 3, we firstly transform FJ[] to “Residual Job List” R/[] and then load current
running jobs in the environment into a new job list called “Current Running List” CR[]from Line 1
to Line 2. Then we try to find the probable eligible time slots for each residual job by following the
order of RJ[] from Line 3 to Line 15. If the bottom of RJ[] is reached, then we will end the
Algorithm 3 at Line 65. Otherwise, the current rest time slots which meets R(R/[i]) will be
identified and then add into “Pro bable Eligible Time Slot List” PRE][] from Line 7 to Line 8.

If the current rest time slots which meets R(R/[i]) cannot be founded, then the next
residual job will be processed at Line 10. Otherwise, the probable released jobs will be
founded from Line 16 to Line 40. We firstly compare the resource requirement between R/ [;]
and CR[m] at Line 17. According to the resource requirement comparison, the probable
released job list PR/[] can be identified from Line 18 to Line 23.

Then the capacity of PRJ[] will be checked. If PR/[]is empty, the next residual job will be
processed at Line 25. Otherwise, the probable released job list PR/[] will be filtered from Line
27 to Line 38. The current running jobs will be removed from PRJ[] if they are discrete to
PRET] from Line 28 to Line 29.

After the remove operations, the capacity of PR/ []will be checked once again. If PR/[]is empty,
the next residual job will be processed at Line 32. Otherwise, a new job list called “Ready-to-Release
List” RTR[] will be created at Line 37. Then we try to find an alternative eligible time slot for the
jobs in RTR[] to continuously ensure the released job completeness from Line 41 to Line 50. By
filtering the RTR[], a new job list called “Migratable List” MIG[] will be created at Line 46.

Then we try to determine the released job from MIG[] from Line 51 to Line 64. The
“Migratable List” MIG[] will be firstly ordered based on job execution duration in an ascending
order at Line 51. By following the order in MIGT], an alternative eligible time slot will be tried to
identify for the migratable job in MIG[] at Line 53. If the alternative eligible time slot can be
founded, the migratable job in MIG[] will be labeled as “Optimal Migratable Job” and the
alternative eligible time slot will be labeled as “Alternative Migration Destination”. Otherwise,
the next job in MIG[] will be tried until “Optimal Migratable Job” is founded. If “Optimal
Migratable Job” cannot be founded, then the next residual job will be processed at Line 61.

Algorithm 3: Residual Job Allocation

Input: FJ[], dc
Output: Residue job allocation solution
1. Transform FJ[] to residual job list RJ[]
. Load current running jobs into current running list CR[]
. foreach Rj[i]in RJ[],i=0, i <Sizeof (RJ[]) — 1] do
if the bottom of R/[] is reached

2

3

4

5. GotoLine 65
6. else

7. Identify current rest time slots which meets R(RJ[i])
8. Add into probable eligible time slot list PRE|]

9 if PRE[]=NULL

10. Back to Line 3 and i + +

11.

12.
13.

14.

15
16

17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.

33.
34.

35.
36.
37.
38.
39.

40
41

43.

44.
45.

46.

else

Go to Line 16
end if

end if

. end for

.for each CR[m] in CR[], m =0, m < Sizeof (CR[]) — 1] do
Compare R(RJ[i]) and R(CR[m])

if R(CR[m]) > R(RJ[i])
Add CR[m] into probable released job list PRJ[]
Go to Line 24
else
m+ +
end if
if PRJ[]= NULL
Back toLine3and i+ +
else
Filter PRJ[]
if CR[m] is discrete to PRE]]
Remove CR[m] from PRJ[]
Check PRJ[]
if PRJ[] = NULL
Back to Line3and i + +

else
Go to Line 37

end if
else
Add CR[m] into ready-to-release list RTR[]
end if
end if

. end for

.for each RTR[n]in RTR[],n=0, n < Sizeof (RTR[]) — 1] do

Try to release RTR[n]
Evaluate after-release time slot length

Test the feasibility of after-release time slot length to accommodate RJ[i]
if Line 44 = TRUE

Add RTR[n] into migratable list MIG([]

Cloud
resilience in the
cloud
environment

ACI

47. else

48. Back toLine3andi + +
49. end if

50. end for

51. Order MIG[] based on job execution duration in an ascending order
52. for MIG[0] to MIG[Sizeof (MIG[]) — 1] do
53. Find an alternative eligible time slot

54, If Line 53 = TRUE

55. Label MIG[] as “Optimal Migratable Job”

56. Label the alternative eligible time slot as “Alternative Migration Destination”
57. Back to Line3and i + +

58. else

59. Move to the next job in MIG[]

60. if the bottom of MIG[] is reached

61. Back to Line3and i + +

62. end if

63. end if

64. end for

65. End Algorithm 3

6. Simulation results
To evaluate our proposed approach, we performed three simulations on OMNeT++ 5.4.1. We
make the following assumptions in our simulations:

(1) Traditional three-replicas strategy is deployed.

(2) The latency among data centers is insignificant.

(3) All data centers are inter-connected.

(4) Bandwidth is set as consumed resource.

(5) Wsand W, is set to be 0.5 each to simplify the problem.

We implemented three types of workflows, Montage scientific workflow, LIGO Inspiral
Analysis workflow and SIPHT program. Each workflow is seen as an independent job
instance. The details of these workflows are adjusted and referenced from[31]. We measure
the cloud resiliency in all three simulations and the load situations specifically in
Simulation 2 to compare with the job scheduling method of the HEFT series approaches.
We compare the performance of our approach to the average performance of HEFT series
approaches.

6.1 Simulation 1 — multiple types of jobs with different deadlines
A cloud environment of 4 data centers with 6 circuits of 100 Gbps optical-fiber network
integrated at each data center is set up in Simulation 1. The fault occurs at 7y in data center dc;.

In Simulation 1, the job input rule is set as follows. We input 200 jobs per input round.

Cloud

(1) We input a random number of two types of jobs out of total 200 jobs per input round resilience in the

when resource is sufficient.

(2) We only input feasible input combinations per input round to the environment when
resource is insufficient.

The simulation result is shown in Figure 2. It is obvious that our proposed approach has
better cloud resiliency than the HEFT series approaches. As the number of jobs increased
from 400 to 1400, our approach continued to rescue 100% of the faulty jobs. The HEFT series
failed to rescue 100% faulty jobs when the number of jobs exceeds 600. The cloud resiliency
of our approach dropped to 74.67% at 1600 jobs due to resource limitations and insufficient
eligible time slots. However, our approach still keeps greater cloud resiliency than that of
HEFT series approaches at 1600 jobs.

6.2 Simulation 2 — expanded cloud scale and load testing
In Simulation 2, we not only evaluate our cloud resiliency but also our load balancing
performance from expanded cloud scale. The better load balancing performance helps cloud
service providers avoid the traffic spikes and degraded performance. A cloud environment of
4 data centers with 60 circuits of 100 Gbps optical-fiber network integrated at each data center
was developed. The fault occurs at 7y in the data center dc;.

In Simulation 2, the job input rule is set as follows. We input 1000 jobs per input round.

(1) We input a random number of random types of jobs out of total 1000 jobs per input
round when resource is sufficient.

(2) We only input feasible input combinations per input round to the environment when
resource is insufficient.

The simulation result is shown in Figure 2. It is also obvious that our proposed approach still
has better cloud resiliency than the HEFT series approaches when the cloud scale expands.
As the number of jobs increased from 9000 to 14000, our approach continued to keep 100%
cloud resiliency. The HEFT series approaches fail to rescue all jobs when the number of jobs
exceeds 9000. The cloud resiliency of our approach dropped to 51.03% at 15000 jobs because
of the same reason in Simulation 1. However, our approach still keeps higher cloud resiliency
than that of HEFT series approaches at 15000 jobs.

In this simulation, we also test the load situations at each time point for all working-proper data
centers. The resource load situations are shown in Figure 3. The HEF T series approaches remain
a peak load between T and o5 in dco and dey, and then has a sharp load decrease. It leaves a
long-time idle load after 795y in dco and dcy and makes a crowd load before that time point.
However, our approach significantly reduces the load before 75 in dco and dc4, and balances the
load to the suitable time points at all three working-proper data centers. Although we still have
some short-time peak load, our approach is obviously better than the HEFT series approaches in
terms of load balancing. It means we achieve more balanced load to avoid load spikes.

7. Conclusions and future work

To conclude, the HEFT series approach is one of the most significant deadline-constrained job
scheduling approaches. But selecting the first available server might not the optimal
configuration when handling faults. In this paper, we propose a novel job rescheduling
strategy for better cloud resiliency and Load balancing performance. This approach
concentrates on independent job rescheduling based on job nature, timeline scenario and
overall cloud performance to handle the job rescue from the faulty data center. A job parsing

cloud
environment

ACI

(sa13s 143H) Aoual|isal pnoj) -+

sqof jo J2aquinuayy

000ST 000vT 000€T 000z1 0001T 0000t 0006
WLL BT
T'ZS
=X
%EO'TS _es’
- %ES'8L %ES'SL
éo.ooa
%00°00T %00°00T %00°00T %00°00T %00°00T %00°00T

Z3nsay uone|nwis

(Poy3aw unp) Aousyjisas pnod—»—

%00°0

%00°02

%00°0t

%00°09

%0008

%00°00T

%00°02T

fouayyisay pnopd

(sauss 143H) Aoual||isa1 pnojD—-

sqof Jo saquinu ayy

00t oorr oozr ooor oos 009 oot
%00'TL %O0'TL
%L9'bL
%L9'bL
EE'S8
//Emﬁm
/odﬁ 900°00T
%00°00T %00°00T %00°00T %00°00T %00°00T %00°00T

T 3iinsay uonejnwis

(Poyiaw unQ) Aual|jisas pnojy—v—

%00°09
%00°59
%00°0L
%00°SL
%00'08
%00°S8
%00°06
%00°S6
%00°00T
%00°S0T

foual|isas pnod

Simulation result 1

Figure 2.
and 2

[P} ~
S22 E
o= o &
Q.mdm

o

g .5

=) .V

= g

7 [«D]

<]

—

(seu1@s 143H sqol 000ST) uondwnsuo) adinosay——
(seu@s 143H sqol 000+ T) uondwnsuo) adinosay—e—
(se119s 143H sqof 000€T) uondwnsuo) a2nosay——
(sau19s 143H sqof 0002ZT) uondwnsuo) adinosey——
{seu1es 143H sqol 000TT) uondwnsuo) adinosay——
(seu1es 143H sqofl 0000T) uondwnsuo) adinosay——
{poy3a A1 1nO sqol 000ST) uondwinsuo) 32INOSAIY —o—
{poyia n1 1nO sqol 000+ T) uondwnsuo) 3dinosay——
{poyia i 1nO sqol 000<T) uondwnsuo) 3zinosay
(pPoy3e N 1nO sqol 0002 T) uondwnsuo) 32INOSAY —o—
(poy3a I\l 1nO sqol 000TT) uondwnsuo) 3dINOsaYy——
{poyre i 41nO sqol 0000T) uonndwnsuo) adinosay——

wod awyl

0006 00S8 0008 00S. 000L 00S9 0009 00SS 000S 00SY 00Oy OOSE OOOE 00SZ 000Z 0OST 00OT 00S O

£9p uj uopdwnsuo) arnosay

§ 8 8 8 &8 &8 °

R

uopdwnsuo) 321nosay

1ujod awy
0006 D0S8 0008 00SZ 00OL 00S9 0009 0OSS D00S 0OSY 0OOP OOSE OOCE 00SZ DOOZ OOST 00OT 00S

$ap u} uopdwnsuo) axnosay

wujod awijl
0006 0SS 0008 00SZ 000 00S9 0009 00SS 000S 0OSY 00OY 0OSE 0OOE 00SZ 000Z 0OST 00OT 00S

29p uj uopdwinsuo) 21nosay

Figure 3.
Resource load in
different data centers

ggg-°
g & 3

888
uopdwinsuo) @21nosay

R
uopdwnsuo) 321n0say

o

ACI

system and a priority assignment system are developed to identify the eligible time slots for the
jobs and prioritize the jobs, respectively. Two algorithms (Algorithm 2 and 3) are proposed to
support the proposed dynamic job rescheduling algorithm (Algorithm 1). The simulation results
show that our proposed strategy has better cloud resiliency and load balancing performance
than the HEFT series approaches. Besides, both single-fault scenario and multi-faults scenario
can adopt our strategy. In the future work, we propose to further develop a fault handling
approach for dependent jobs. Apart from that, the check pointing method will be considered
instead of the restart method for tasks in this approach.

References

1.

10.

11.

12.

13.

14.

Sampaio AM, Barbosa JG. A comparative cost analysis of fault-tolerance mechanisms for availability
on the cloud. Sustai Comput Inform Syst. 2018; 19: 315-23. doi: 10.1016/j.suscom.2017.11.006.

. Sivagami VM, Easwarakumar KS. An improved dynamic fault tolerant management algorithm

during VM migration in cloud data center. Future Generat Comput Syst. 2019; 98: 35-43. doi: 10.
1016/j.future.2018.11.002.

. Ray B, Saha A, Khatua S, Roy S. Proactive fault-tolerance technique to enhance reliability of cloud

service in cloud federation environment. [IEEE Trans Cloud Comput. 2020. doi: 10.1109/TCC.2020.
2968522.

. Tomés L, Kokkinos P, Anagnostopoulos V, Feder O, Kyriazis D, Meth K, Varvarigos E,

Varvarigou T. Disaster recovery layer for distributed OpenStack deployments. IEEE Trans Cloud
Comput. 2017; 8(1): 112-23. doi: 10.1109/TCC.2017.2745560.

. Shetty J, Babu BS, Shobha G. Proactive cloud service assurance framework for fault remediation in

cloud environment. Int] Electr Computer Eng. 2020; 10(1): 987-96. doi: 10.11591/ijece.v10i1.pp987-996.

. Liu J, Wang S, Zhou A, Kumar S, Yang F, Buyya R. Using proactive fault-tolerance approach to

enhance cloud service reliability. IEEE Trans Cloud Comput. 2016; 6(4): 1191-202. doi: 10.1109/
TCC.2016.2567392.

. Zhou A, Wang S, Cheng B, Zheng Z, Yang F, Chang RN, Lyu MR, Buyya R. Cloud service

reliability enhancement via virtual machine placement optimization. IEEE Trans Serv Comput.
2017; 10(6): 902-13. doi: 10.1109/TSC.2016.2519898.

. Deng S, Huang L, Taheri], Zomaya AY. Computation offloading for service workflow in mobile

cloud computing. IEEE Trans Parallel Distributed Syst. 2014; 26(12): 3317-29. doi: 10.1109/TPDS.
2014.2381640.

. Vardhan M, Goel A, Verma A, Kushwaha DS. A dynamic fault tolerant threshold based

replication mechanism in distributed environment. Proc Technol. 2012; 6: 188-95. doi: 10.1016/].
protcy.2012.10.023.

Zhu X, Wang J, Guo H, Zhu D, Yang LT, Liu L. Fault-tolerant scheduling for real-time scientific
workflows with elastic resource provisioning in virtualized clouds. IEEE Trans Parallel
Distributed Syst. 2016; 27(12): 3501-17. doi: 10.1109/TPDS.2016.2543731.

Marahatta A, Wang Y, Zhang F, Sangaiah AK, Tyagi SKS, Liu Z. Energy-aware fault-tolerant
dynamic task scheduling scheme for virtualized cloud data centers. Mobile Netw Appl. 2019;
24(3): 1063-77. doi: 10.1007/s11036-018-1062-7.

Poola D, Garg SK, Buyya R, Yang Y, Ramamohanarao K. Robust scheduling of scientific workflows
with deadline and budget constraints in clouds. In: IEEE 28th International Conference on Advanced
Information Networking and Applications; 2014. p. 858-65. doi: 10.1109/AINA.2014.105.

Yao G, Ding Y, Hao K. Using imbalance characteristic for fault-tolerant workflow scheduling in
cloud systems. IEEE Trans Parallel Distributed Syst. 2017; 28(12): 3671-83. doi: 10.1109/TPDS.
2017.2687923.

Topcuoglu H, Hariri S, Wu MY. Performance-effective and low-complexity task scheduling for
heterogeneous computing. IEEE Trans Parallel Distributed Syst. 2002; 13(3): 260-74. doi: 10.1109/
71.993206.

https://doi.org/10.1016/j.suscom.2017.11.006
https://doi.org/10.1016/j.future.2018.11.002
https://doi.org/10.1016/j.future.2018.11.002
https://doi.org/10.1109/TCC.2020.2968522
https://doi.org/10.1109/TCC.2020.2968522
https://doi.org/10.1109/TCC.2017.2745560
https://doi.org/10.11591/ijece.v10i1.pp987-996
https://doi.org/10.1109/TCC.2016.2567392
https://doi.org/10.1109/TCC.2016.2567392
https://doi.org/10.1109/TSC.2016.2519898
https://doi.org/10.1109/TPDS.2014.2381640
https://doi.org/10.1109/TPDS.2014.2381640
https://doi.org/10.1016/j.protcy.2012.10.023
https://doi.org/10.1016/j.protcy.2012.10.023
https://doi.org/10.1109/TPDS.2016.2543731
https://doi.org/10.1007/s11036-018-1062-7
https://doi.org/10.1109/AINA.2014.105
https://doi.org/10.1109/TPDS.2017.2687923
https://doi.org/10.1109/TPDS.2017.2687923
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/71.993206

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

Bittencourt LF, Sakellariou R, Madeira ER. Dag scheduling using a lookahead variant of the
heterogeneous earliest finish time algorithm. In: 18th Euromicro Conference on Parallel.
Distributed and Network-based Processing; 2010. p. 27-34. doi: 10.1109/PDP.2010.56.

Zheng W, Sakellariou R. Budget-deadline constrained workflow planning for admission control.
J Grid Comput. 2013; 11(4): 633-51. doi: 10.1007/s10723-013-9257-4.

Arabnejad H, Barbosa JG. List scheduling algorithm for heterogeneous systems by an optimistic
cost table. IEEE Trans Parallel Distributed Syst. 2013; 25(3): 682-94. doi: 10.1109/TPDS.2013.57.

Verma A, Kaushal S. Cost-time efficient scheduling plan for executing workflows in the cloud.
J Grid Comput. 2015; 13(4): 495-506. doi: 10.1007/s10723-015-9344-9.

Shakkeera L, Tamilselvan L. QoS and load balancing aware task scheduling framework for
mobile cloud computing environment. Int] Wireless Mobile Comput. 2016; 10(4): 309-16. doi: 10.
1504/IJWMC.2016.078201.

Liu L, Fan Q, Buyya R. A deadline-constrained multi-objective task scheduling algorithm in
mobile cloud environments. IEEE Access. 2018; 6: 52982-96. doi: 10.1109/ACCESS.2018.2870915.

Samadi Y, Zbakh M, Tadonki C. E-HEFT: enhancement heterogeneous earliest finish time
algorithm for task scheduling based on load balancing in cloud computing. In: International
Conference on High Performance Computing & Simulation (HPCS); 2018. p. 601-9. doi: 10.1109/
HPCS.2018.00100.

Faragardi HR, Sedghpour MRS, Fazliahmadi S, Fahringer T, Rasouli N. GRP-HEFT: a budget-

constrained resource provisioning scheme for workflow scheduling in IaaS clouds. IEEE Trans
Parallel Distributed Syst. 2019; 31(6): 1239-54. doi: 10.1109/TPDS.2019.2961098.

Sandokji S, Eassa F. Dynamic variant rank HEFT task scheduling algorithm toward exascle
computing. Proc Comp Sci. 2019; 163: 482-93. doi: 10.1016/j.procs.2019.12.131.

Setlur AR, Nirmala SJ, Singh HS, Khoriya S. An efficient fault tolerant workflow scheduling
approach using replication heuristics and checkpointing in the cloud. J Parallel Distributed
Comput. 2020; 136: 14-28. doi: 10.1016/;.jpdc.2019.09.004.

Cheraghlou MN, Khadem-Zadeh A, Haghparast M. A survey of fault tolerance architecture in
cloud computing.] Netw Computer Appl. 2016; 61: 81-92. doi: 10.1016/j.jnca.2015.10.004.

Yu CY, Lee CR, Tsao PJ, Lin YS, Chiueh TC. Efficient group fault tolerance for multi-tier services
in cloud environments. In: IEEE International Conference on Communications (ICC); 2020; p. 1-7.
doi: 10.1109/1CC40277.2020.9149253.

Mukwevho MA, Celik T. Toward a smart cloud: a review of fault-tolerance methods in cloud
systems. IEEE Trans Serv Comput. 2018. doi: 10.1109/TSC.2018.2816644.

Hasan M, Goraya MS. Fault tolerance in cloud computing environment: a systematic survey.
Comput Industry. 2018; 99: 156-72. doi: 10.1016/j.compind.2018.03.027.

Ragmani A, Elomri A, Abghour N, Moussaid K, Rida M, Badidi E. Adaptive fault-tolerant model
for improving cloud computing performance using artificial neural network. In: Procedia
computer science. 2020: 170: 929-34. doi: 10.1016/j.procs.2020.03.106.

Chen G, Guan N, Huang K, Yi W. Fault-tolerant real-time tasks scheduling with dynamic fault
handling. J Syst Architecture. 2020; 102: 101688. doi: 10.1016/j.sysarc.2019.101688.
Bharathi S, Chervenak A, Deelman E, Mehta G, Su MH, Vahi K. Characterization of scientific

workflows. In: Third workshop on workflows in support of large-scale science. 2008: 1-10. doi: 10.
1109/WORKS.2008.4723958.

Corresponding author
Fei Xie can be contacted at: fx439@uowmail.edu.au

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Cloud
resilience in the
cloud
environment

https://doi.org/10.1109/PDP.2010.56
https://doi.org/10.1007/s10723-013-9257-4
https://doi.org/10.1109/TPDS.2013.57
https://doi.org/10.1007/s10723-015-9344-9
https://doi.org/10.1504/IJWMC.2016.078201
https://doi.org/10.1504/IJWMC.2016.078201
https://doi.org/10.1109/ACCESS.2018.2870915
https://doi.org/10.1109/HPCS.2018.00100
https://doi.org/10.1109/HPCS.2018.00100
https://doi.org/10.1109/TPDS.2019.2961098
https://doi.org/10.1016/j.procs.2019.12.131
https://doi.org/10.1016/j.jpdc.2019.09.004
https://doi.org/10.1016/j.jnca.2015.10.004
https://doi.org/10.1109/ICC40277.2020.9149253
https://doi.org/10.1109/TSC.2018.2816644
https://doi.org/10.1016/j.compind.2018.03.027
https://doi.org/10.1016/j.procs.2020.03.106
https://doi.org/10.1016/j.sysarc.2019.101688
https://doi.org/10.1109/WORKS.2008.4723958
https://doi.org/10.1109/WORKS.2008.4723958
mailto:fx439@uowmail.edu.au

	A novel independent job rescheduling strategy for cloud resilience in the cloud environment
	Introduction
	Related work and problem statement
	General modeling
	Job parsing system
	Job rescheduling strategy
	Replica selection phase
	Job prioritizing phase
	Eligible time slot selection phase

	Simulation results
	Simulation 1 – multiple types of jobs with different deadlines
	Simulation 2 – expanded cloud scale and load testing

	Conclusions and future work
	References

