
Comparative analysis of
convolutional neural network and
DenseNet121 transfer learning in
agriculture focusing on crop leaf

disease identification
Heru Agus Santoso, Brylian Fandhi Safsalta, Nanang Febrianto and

Galuh Wilujeng Saraswati
Department of Informatics, Dian Nuswantoro University, Semarang, Indonesia, and

Su-Cheng Haw
Multimedia University – Cyberjaya Campus, Cyberjaya, Malaysia

Abstract

Purpose – Plant cultivation holds a pivotal role in agriculture, necessitating precise disease identification for
the overall health of plants. This research conducts a comprehensive comparative analysis between two
prominent deep learning algorithms, convolutional neural network (CNN) and DenseNet121, with the goal of
enhancing disease identification in tomato plant leaves.
Design/methodology/approach – The dataset employed in this investigation is a fusion of primary data
and publicly available data, covering 13 distinct disease labels and a total of 18,815 images for model training.
The data pre-processing workflow prioritized activities such as normalizing pixel dimensions, implementing
data augmentation and achieving dataset balance, which were subsequently followed by the modeling and
testing phases.
Findings – Experimental findings elucidated the superior performance of the DenseNet121 model over the
CNNmodel in disease classification on tomato leaves. The DenseNet121 model attained a training accuracy of
98.27%, a validation accuracy of 87.47% and average recall, precision and F1-score metrics of 87, 88 and 87%,
respectively. The ultimate aim was to implement the optimal classifier for a mobile application, namely
Tanamin.id, and, therefore, DenseNet121 was the preferred choice.
Originality/value – The integration of private and public data significantly contributes to determining the
optimal method. The CNN method achieves a training accuracy of 90.41% and a validation accuracy of 83.33%,
whereas the DenseNet121method excels with a training accuracy of 98.27%and a validation accuracy of 87.47%.
The DenseNet121 architecture, comprising 121 layers, a global average pooling (GAP) layer and a dropout layer,
showcases its effectiveness. Leveraging categorical_crossentropy as the loss function and utilizing the stochastic
gradien descent (SGD) Optimizer with a learning rate of 0.001 guides the course of the training process.
The experimental results unequivocally demonstrate the superior performance of DenseNet121 over CNN.

Keywords Mobile application, Deep learning algorithm, CNN, DenseNet121,

Tomatoes leaf diseases identification

Paper type Full length article

1. Introduction
In agricultural research, recent studies have shown the effectiveness of deep learning in
detecting plant diseases. Examples include successful disease identification in potato leaves

Applied
Computing and

Informatics

© Heru Agus Santoso, Brylian Fandhi Safsalta, Nanang Febrianto, Galuh Wilujeng Saraswati and Su-
Cheng Haw. Published in Applied Computing and Informatics. Published by Emerald Publishing
Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone
may reproduce, distribute, translate and create derivative works of this article (for both commercial and
non-commercial purposes), subject to full attribution to the original publication and authors. The full
terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2634-1964.htm

Received 15 March 2024
Revised 4 May 2024

Accepted 19 May 2024

Applied Computing and
Informatics

Emerald Publishing Limited
e-ISSN: 2210-8327
p-ISSN: 2634-1964

DOI 10.1108/ACI-03-2024-0132

http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/ACI-03-2024-0132


[1], apple leaves [2] and various other crops [3]. These findings highlight the promising
potential of deep learning for addressing agricultural challenges. In 2023, Asia’s crucial
tomato production reached 119,204,602 tons [4], facing challenges from pests and diseases.
Given the changing agricultural landscape and climate impacts, effective pest and disease
management is crucial for sustaining yields in tomato cultivation. Recognizing and
identifying specific diseases, such as bacterial spot, early blight and powdery mildew, are
pivotal steps in optimizing tomato plant health. This identification process involves
observing distinctive characteristics manifesting on the leaves [5].

The integration of artificial intelligence, specifically machine learning for image
recognition, known as computer vision, harnesses deep learning algorithms to identify
objectswithin images. This technological advancement enablesmachines to replicate human-
like recognition and perception of objects. A notable deep learning algorithm used for this
purpose is the convolutional neural network (CNN), characterized by layered filters designed
for object recognition in images [6]. In this study, the CNN algorithm served as a learning tool
to identify diseases in tomato plants, utilizing leaf images affected by these agricultural
concerns. However, CNN presents certain limitations, including high computational
demands, a requirement for substantial labeled data and a considerable memory footprint.
Additionally, interpretability poses challenges, and its effectiveness diminishes when applied
to sequential data. CNNs tend to exhibit slower processing speeds, and the training phase is
characterized by extended time requirements [7, 8]. We aim to demonstrate the efficacy of
CNN in the identification of diseases affecting tomato leaves.

Transfer learning method, including DenseNet121, aims to transfer knowledge that has
been formed in one domain to another but still is related. This method enables the
maximization of previously acquired knowledge, particularly when confronted with limited
datasets, thereby constituting a notable advantage of transfer learning. The application of
transfer learning using DenseNet121 has demonstrated notable successes within the realm of
crop disease detection research [9]. However, the literature review conducted thus far has
provided limited information regarding the comparative performance analysis between CNN
and DenseNet121 for the detection of diseases on tomato leaves in mobile application
development. We conducted a comparative analysis, evaluating the performance of CNN
against DenseNet121, with attention to hyperparameter configurations for both algorithms.
Our primary objective is to determine the most effective algorithm for tomato disease
identification, tailored for seamless integration into the mobile application Tanamin.id [10].
Therefore, the principal contribution of our study lies in the comprehensive comparison,
accompanied by a nuanced analysis of why DenseNet121 outperformed CNN. Given the
inherent complexity of deep learning models, we also delve into the aspect of interpretability,
emphasizing its pivotal role within the domain of agricultural decision-making. The dataset
utilized comprises a combination of publicly accessible image data obtained fromKaggle and
private data collected from fields in Central Java, Indonesia. While Tanamin.id offers
detection for eight types of plant diseases, our focus in this paper is specifically on tomatoes.

2. Related works
This section offers a comprehensive overview of various state-of-the-art methods employed
for tomato disease identification, including hybrid CNN-support vector machine (SVM)
approaches, pure CNNmodels and the utilization of the DenseNet121 algorithm. The research
for tomato disease identification via leaves using hybrid CNN and SVM achieved accuracy
rates of 92.6 %, utilizing 8,000 image data points for each disease type. This study involved
data processing, wherein the red, green and blue (RGB) image was transformed into hue,
saturation, value (HSV) and subsequently converted to grayscale [11]. In a subsequent
investigation, the research for tomato crop disease identification was also conducted using

ACI



CNN, where they employed the Plant Village dataset, encompassing 39 classes of various
plants. From this dataset, 10 disease labels related to tomato plants were extracted. By
employing three convolution layers and two hidden dense layers, with a hyperparameter set
to 0.001, the model achieved maximum accuracy after running 5,000 epochs [7]. Another
study focused on the application of CNN to tomato plants, utilizing data from Kaggle. The
dataset comprised a total of 32.535 instances. They adjusted the pixel size of the images to
224x224 and divided the data into 80% training data and 20% testing data. The data
underwent processing with a CNN model architecture involving four layers of convolution
and three dropouts, along with four max-pooling. The results obtained after training the
model demonstrated an accuracy value of 95% [12]. CNN augmented with residual learning
technique and bolstered by an attention mechanism exhibited promising performance, as
reported by Ref. [13]. Their proposed methodology, validated on the Plant Village dataset,
yielded an overall accuracy of 98%.

On the other hand, the study focused on implementing the DenseNet121 algorithm for the
classification of multiple plant leaf diseases and achieved promising result [14]. The researchers
leveraged data from the open dataset “PlantVillage” available on Kaggle. This dataset
encompassed 35,779 images, categorized into 29 disease labels associated with seven types of
plants. Utilizing DenseNet121, the average accuracy achieved followingmodel training stood at
an impressive 98.23%. Transfer learning has demonstrated its efficacy in disease identification
for plants based on leaf conditions, predominantly relying on publicly available datasets [15].
However, in our investigation, given the intended implementation of the Tanamin.id application
in tomato fields, we augmented our analysis with a dataset meticulously gathered by our team.
This customization ensures greater alignment with the unique plant conditions prevalent in
Indonesia. To attain our objective, we conducted a comparative analysis of the performance
between CNN and DenseNet121 Transfer Learning, utilizing a composite training set
comprising both publicly sourced datasets and those acquired first-hand from the tomato
fields under our research purview. Another variant of DenseNet, namely DenseNet_Xception,
was utilized for the identification of tomato diseases in Chinese cultivation. Following a series of
experiments, the optimal performance was achieved, resulting in an accuracy of 97.10% [16].

The hybrid CNN-SVM and CNN with public datasets demonstrate notable strengths,
including high accuracy achieved with relatively large datasets and ease of replication with
comparison of results, respectively. However, the hybrid CNN-SVM approach requires pre-
processing steps such as transformation to HSV and grayscale, adding computational
overhead. Conversely, CNN models trained on public datasets may lack customization for
specific regional plant varieties, potentially limiting their applicability. There are also several
noteworthy gaps and considerations, such as interpretability and customization approaches
for specific regional conditions. Hence, our work provided a comparative analysis between
CNN and DenseNet121, utilizing a custom dataset tailored to regional tomato fields. By
addressing these gaps and leveraging both publicly sourced and first-hand datasets, we aim
to develop a robust and adaptable model for practical implementation in agricultural
decision-making tools like Tanamin.id.

3. Research methodology
As previously discussed, given the proven effectiveness of CNN and DenseNet121 in
identifying tomato diseases through leaf analysis, this study endeavors to ascertain the
optimal performance of these two deep learning algorithms for integration into Tanmin.id. To
achieve the objectives of this research, a series of methodological steps have been
implemented. The specific order of these methods is illustrated in Figure 1 below.

Figure 1 illustrates the employedmethod, commencing with the collection of data through
two distinct channels, i.e. public data from the Kaggle open dataset and private data sourced

Applied
Computing and

Informatics



directly from the agricultural area. The gathered data undergo initial processing through
pixel normalization of the images. Subsequently, the image dataset undergoes augmentation
and balancing for each label pertaining to pests and diseases. The primary objective of this
study is to identify the optimal model by comparing CNN and transfer learning using
DenseNet121.

3.1 Data merging
During the data acquisition phase, our research involved a comprehensive exploration of
existing online repositories or public dataset and on-site visits to local tomato farms for data
collection. It is imperative that the data used formodel training align closelywith the intended
learning objectives. Therefore, this study utilized two distinct data sources as
elucidated below.

(1) Public data. The Kaggle repository, namely the PlantVillage Dataset [17] was used.
The dataset encompasses ten distinct labels, as detailed in Table 1.

(2) Primary data.On-site visits were conducted at tomato farms situated in Central Java,
Indonesia. Image datawere acquired using two distinct devices: the SonyG7xMark II
pocket camera and a Huawei P30 Pro smartphone equipped with a 20MP wide lens.

No Disease Public data Collected data

1 Bacterial_spot 2127 (86.9%) 320 (13.1%)
2 Early_blight 1000 (77.0%) 298 (23%)
3 Late_blight 1909 (94.8%) 105 (5.2%)
4 Leaf_Mold 952 (77.3%) 279 (22.7)
5 Septoria_leaf_spot 1771 (100%) 0%
6 Spider_mites_Two_spotted_spider_mite 1676 (100%) 0%
7 Target_Spot 1404 (100%) 0%
8 YellowLeaf__Curl_Virus 3209 (91.9%) 282 (8.1%)
9 mosaic_virus 373 (54.9%) 307 (45.1%)
10 Healthy 1591 (82.9%) 329 (17.1%)
11 Powdery Mildew 0% 244 (100%)
12 Magnesium Deficiency 0% 155 (100%)
13 Leaf Miner 0% 205 (100%)

Total 16012 (85%) 2083 (15%)
18,815 (100%)

Source(s): Created by authors

Figure 1.
Research method

Table 1.
The acquired dataset

ACI



Both devices operated in auto-setting mode, with a focus adjustment tailored to
capture a singular leaf afflicted by the disease. The ensuing informationwas gathered
through a comprehensive amalgamation of PlantVillage dataset as mentioned above
and rigorous on-site data collection procedures.

3.2 Data pre-processing
Pre-processing of images is a pivotal stage conducted prior to model training, designed to
optimize the data for subsequent analysis. The aim of image pre-processing is to elevate the
quality of raw images within a given dataset [18]. In this study, we employed pixel
normalization. We prioritized normalizing pixel dimensions for data without a 1:1 ratio. For
images with uneven sizes, padding was applied using a pixel intensity of 0, representing a
dark color. This approach aimed to preserve the shape of the leaf object within each image.
The image normalization process can be elucidated through several steps. For instance,
considering a leaf image with dimensions of 1,600 pixels in width and 2,112 pixels in height,
we then determined the longest pixel dimension to establish a consistent 1:1 ratio. During this
process, the remaining pixels underwent examination and were partitioned into two sections
to maintain balance during pixel addition. Pixel addition was performed on the sides with the
shortest pixel length. The final step involved resizing the image to dimensions of 400 x 400, a
strategic measure designed to optimize computational efficiency.

3.3 Augmentation and dataset balancing
This involved the manipulation of image, facilitating the machine’s understanding of diverse
image variations within the dataset. Data augmentation encompassed the manipulation of
the original labeled leaf dataset through the transformation process. The data augmentation
in this study unfolds in two phases.

(1) Balancing the distribution of data across labels, achieved by subjecting the original
dataset to multiple treatments for augmentation. The subsequent phase finalized the
augmented data, rendering it ready for integration. We employed the
ImageDataGenerator function, a Keras library for data augmentation. Five key input
parameters, i.e. rotation_range, width_shift_range, height_shift_range, horizontal_flip
and vertical_flip, were applied with parameter values 20, 0.15, 0.15, true and true,
respectively. The augmented images were generated with 1,500 images per label.

(2) Validating and partitioning the dataset into training and validation sets. Parameters
were configured to rescale the data and allocate 75% for training and 25% for
validation. Data access was facilitated using the flow_from_directory method,
referencing the folder in the storage results from the initial augmentation.
Additionally, this process standardizes the image size to 224x224 pixels, and
class_mode was specified as categorical.

3.4 Modeling with CNN
The CNN algorithm processes image inputs by conducting convolutional calculations
through filters or kernels to extract distinctive features. These convolution kernels perform
calculations on the original image, resulting in a new pixel with weighted values that unveil
essential characteristics of the image [19]. The CNN method, as depicted in Figure 2, consists
of two integral parts: feature extraction and feature classification. Feature extraction is
executed through convolution and pooling layers, while feature classification employs fully
connected layer computations, ultimately producing the CNN’s final output. In this particular
study, global average pooling (GAP) was employed as an alternative to Flatten layers.

Applied
Computing and

Informatics



3.5 Modeling with DenseNet
The Dense Convolutional Network, or DenseNet, represents a significant advancement in
deep learning algorithms. This method employs a convolutional process that allows for more
profound image analysis and a more efficient calculation process for image recognition.
DenseNet121 incorporates pre-trained models trained with extensive datasets such as
ImageNet and C, positioning itself as a transfer learning model. DenseNet121 operates by
connecting each convolutional layer to the subsequent layer, transmitting the output feature
map from the previous layer to the next input layer, a process referred to as a dense block [9].
The block diagram illustrating the transfer learning process of DenseNet121 for tomato
disease identification is depicted in Figure 3. For DenseNet121, it comprises four dense
blocks, with transition layers incorporating convolution and pooling situated between the
dense blocks.

DenseNet offers diverse architectural versions distinguished by variations in the number
of parameters they encompass. In this study, DenseNet121 was specifically chosen due to its
feature of having the fewest parameters.

3.6 Experimental setup
We outline the experimental setup for developing and evaluating the classification model,
which covers hardware, software and hyperparameters.

Hardware:MacBook ProA2992/EMC 8407M3 Pro Chip, featuring an 11-core CPU, 14-core
GPU and 16-core Neural Engine, with 18 GB LPDDR5 memory and a 512 GB SSD.

Figure 2.
Phase of CNN method
for tomato disease
identification

Figure 3.
DenseNet121 for
tomato disease
classification in detail

ACI



Software: The system operates on MacOS Sonoma 14.4.1, utilizing the Anaconda3
Distribution Package with Python 3.11.7.

Hyperparameters: (1) CNN: number of layers:3 layers, Kernel Size: (3.3), Activation
Function:ReLU, Input Shape: 224,224,3, Pooling Layers:Maxpool (2.2), Global Average
Pooling (GAP), Dropout:0.3, Number of Fully Connected Layers:2, Output Layer: Softmax, (2)
DenseNet12: Model Compilation: include_top:false, weights:imagenet, input_shape:
(224,224,3), GAP, Dropout Layers: 0.2 & 0.4, Dense Layers: 2 with ReLU and softmax
activations, Optimizer: SGD with learning rate of 0.001.

3.7 Performance metrics
Assessing the results of model training is essential to understand the model’s learning
capabilities. The confusion matrix proves instrumental in gauging the performance of a
classification model, especially when dealing with more than two classes or multi-class
classification [20]. This matrix contains true positive (TP), true negative (TN), false positive
(FP) and false negative (FN) to represent the outcomes of the classification process. To
evaluate the model’s performance comprehensively, the confusion matrix values are utilized
to calculate average accuracy, precision, recall and F1-score, as presented below.

4. Result
4.1 Dataset
The presented dataset is detailed in Table 1. The table exhibits 13 labels, encompassing a
total of 18,815 leaves, with 12 labels corresponding to various diseases and 1 label
representing a healthy leaf – 13 labels in total.

Notably, three new disease types, i.e. powdery mildew, magnesium deficiency and leaf
miner, have been introduced, which were not previously documented in PlantVillage
datasets. In terms of data pre-processing perspective, the collected data for the labels of
bacterial spot, early blight, late blight, leaf mold, yellow leaf curl virus (YLCV), mosaic virus
and tomato plant health were enriched, whereas powderymildew, magnesium deficiency and
leaf miner did not receive additional data. The public dataset constitutes 85%, while the
primary dataset comprises 15% of the total dataset. The model training involved 50 epochs.
ModelCheckpoint function was employed to obtain the best model, utilizing the highest val_
accuracy monitor and saving the temporary model [21]. The implementation of CNN and
DenseNet121 is detailed below.

4.2 CNN implementation
The processing of the input images has been explained during the data pre-processing phase,
with dimensions of 224x224x3. In the feature extraction layer, the image underwent
convolution and pooling processes. The results from this layer underwent processing using
GAP before entering the classification stage as the final output of the method. The
convolution layer carried out the computation of an image using a kernel or filter – an array-

Applied
Computing and

Informatics



valued matrix quantity, often referred to as a tensor. The convolution process involved
matrix multiplication via dot product across all sections of the 3x3 kernel image pixel,
resulting in a new image that has undergone filtering.

The pooling layer was essential for downsampling to reduce computational load during
model training. The functioning of pooling closely resembled that of the convolution layer,
employing a kernel with 2x2 size and a stride as a step for the calculation process within the
kernel. Two approaches namely, max-pooling and average pooling were used to pool images.
Max-pooling selects the maximum value from a given kernel, while average pooling
calculates the average number in a kernel. Furthermore, the dropout feature is a parameter
employed to prevent overfitting by reducing the computational load on the fully connected
layer[s]. This feature prevents the model from overly relying on specific inputs, enhancing
overall generalizability.

The GAP layer is a method used in the CNN algorithm to replace the flatten function in.
While its operation is similar to max-pooling and average pooling, GAP gives an input image
a 1x1 pixel size by averaging all pixels in the image. Consequently, the GAP layer yields the
same number of outputs as the size of the output map. This process can be applied before
fully connected calculations or classification layers [22]. The Softmax function determined
the predictive probability that the input image belongs to each category. It was employed in
the last classification layer, or output layer, to normalize the output into a basic probability
distribution within the range of 0 to 1.

The training results of the CNN method, observed after running 50 epochs revealed a
consistent increase throughout the epochs. However, starting from the 38th epoch, the
validation accuracy exhibited instability. This behavior was also mirrored in the model loss.
The highest training accuracy achieved was 90.41%, and the peak validation accuracy
occurred at the 48th epoch, reaching 84.77%. The calculations for training and validation loss
in the 50th epoch yielded a training loss of 0.0432 and a validation loss of 0.0801. The tested
architecture underwent several prior refinements, involving alterations to both the
architecture itself and some of its hyperparameters. In this context, incorporating the GAP
layer exhibited superior performance compared to the conventional CNN architecture
utilizing a flatten layer. This performance disparity was notably evident in the validation
accuracy outcomes. The CNN with flatten function achieved a validation accuracy of 72%
with validation loss result of 2.4. Hence, the GAP layer resulted in an 11% increase of
validation accuracy, along with a substantially reduced validation loss result of 0.0801.
Table 2 presents the outcomes of the training model.

4.3 DenseNet121 implementation
In configuring the DenseNet121 layer, parameters were specified including input_shape with
224x224x3 and weights using ImageNet. Following the processing outcomes from the
DenseNet121 layer, the results then underwent the GAP layer, followed by the application of
the dropout feature. The subsequent step involved the fully connectedDense layer with a 512-
kernel, culminating in the last layer utilizing Dense with Softmax activation. As epoch
progresses, the results indicated a consistent increase in the training accuracy, accompanied

CNN
Training Validation

Best accuracy (at 50th epoch) Best accuracy (at 48th epoch)

Accuracy 90.41% 84.77%
Loss 0.0432 0.0739

Source(s): Created by authors
Table 2.
Performance of CNN

ACI



by a continual decrease in the training loss. Conversely, the validation accuracy and loss
exhibited relatively minor changes post the 15th epoch. Notably, the best training accuracy
reached 98.27% at the 50th epoch, while the training loss recorded a value of 0.0135.
Additionally, the validation accuracy yielded the highest result at the 34th epoch, registering
at 87.8%, with a corresponding validation loss of 0.0558, presented in Table 3. Hence, when
compared to the findings of related studies, where hybrid CNN and SVM [11], CNN with the
Plant Village dataset [7] and DenseNet121 with the Plant Village dataset [14] achieved
accuracies of 92.6%, 98.4% and 98.23%, respectively, our proposed approach yields a
promising and improved outcome of 98.27%.

Prior to finalizing the architecture for the DenseNet121, a thorough tuning process was
conducted. One noteworthy outcome of this tuning effort was the adoption of the Adam
optimizer. The results obtainedwith theAdam optimizer revealed an accuracy rate of 99.14%
during the model training phase. However, a significant divergence in validation accuracy
was observed, standing at 81.78%. Subsequently, the architecture ultimately chosen for this
study exhibited a notable improvement in validation accuracy, surpassing the earlier result.
In addition, the confusionmatrix, an important statistical tool [23] was employed to assess the
performance of DenseNet121. Positive predicted values or precision and sensitivity,
indicating correctly identified relevant instances, demonstrated 88% and 87% presented
in Table 4.

4.4 Discussion
In the final phase of this research, we evaluated the trained models using prepared data to
identify the most effective method for accurately classifying tomato plant diseases based on
leaf images. To gauge the performance of both methods, we analyzed accuracy from the
training and validation sets of DenseNet121 and CNNmodels, presented in Figure 4(a) and (b).
It reveals a visual comparison between DenseNet121 and CNN models in terms of accuracy
and loss. The yellow line representing DenseNet121 consistently outperforms the CNN
method in both training and validation results. DenseNet121 also consistently achieves lower
loss values than the CNN model. A detailed comparison of the percentage accuracy over 50
epochs is provided in Table 4.

DenseNet121 surpassed CNNmodel in both training and validation accuracy. Specifically,
DenseNet121 achieves 7.84%higher training accuracy and 4.14%higher accuracy validation

DenseNet121
Training Validation

Best accuracy (at 50th epoch) Best accuracy (at 34th epoch)

Accuracy 98.27% 87.8%
Loss 0.0135 0.0558

Source(s): Created by authors

Model

Training
accuracy

(%)
Validation
accuracy

Training
loss

Validation
loss

Precision
(%)

Recall
(%)

F-
measure
(%)

CNN 90.41 83.33 0.0432 0.0801 84 83 83
DenseNet121 98.27 87.47 0.0135 0.0662 88 87 87

Source(s): Created by authors

Table 3.
Performance of
DenseNet121

Table 4.
Performance

recapitulation of CNN
and DenseNet121

Applied
Computing and

Informatics



compared to CNN. In addition of the accuracy comparison, precision, recall and F1-score
calculations were employed to discern the optimal method for this study.

The findings presented in Table 4 highlight that, in the comparative analysis between the
two methods, DenseNet-121 demonstrated better performance, exhibiting precision, recall
and F1-score values that are 4%higher than those attained by the CNN in the identification of
tomato plant diseases, incorporating both private and public datasets.

Figure 4 depicts that DenseNet121 outperforms traditional CNN architectures due to
several key factors elucidated in this study. First, its dense connectivity pattern facilitates
direct input from preceding layers, enhancing the optimization of hyperparameters. Second,
the incorporation of a GAP layer allows for a more comprehensive representation of input
data. Third, leveraging pre-trained weights from ImageNet aids in initializing the model’s
feature weights effectively. Fourth, the integration of dropout layers mitigates overfitting
risks. Fifth, DenseNet121 exhibits remarkable robustness when trained on a complex dataset

Figure 4.
(a) Training accuracy
and (b) validation
accuracy of CNN and
DenseNet121

ACI



comprising 13 classes of tomato plant diseases. Its dense connectivity and feature reuse
mechanisms empower the model to learn discriminative features adeptly amidst diverse and
intricate data, thereby contributing to its superior performance compared to
conventional CNN.

DenseNet121’s interpretability stems from its architectural design, regularization
techniques, utilization of pre-trained weights and optimization strategy and ability to
handle complex datasets. By analyzing how these factors interact and influence the model’s
predictions, one can gain valuable insights into how the model processes and interprets input
data. In the context of agricultural decision-making, the interpretability of DenseNet121 plays
a crucial role in understanding and trusting the model’s predictions, which is essential for
informed decision-making in farming practices. For instance, the connectivity pattern and
GAP layer enable it to capture intricate patterns and spatial information within plant images.
By interpreting the model’s predictions, agricultural experts can gain insights into the
specific disease patterns detected by the model. Understanding these patterns can inform
decisions about disease management strategies, such as targeted pesticide application or
crop rotation practices. Moreover, to bolster the validity of the research findings and offer a
more comprehensive evaluation of the proposed model’s effectiveness, an example of visual
identification results is illustrated in Plate 1.

5. Conclusion
Based on the research findings, DenseNet121 demonstrates superior performance compared
to CNN in identifying tomato plant diseases. The training dataset, which encompasses 13
classes, underscores the robustness of DenseNet121. The integration of private and public
data significantly contributes to determining the optimal method for model training.
Specifically, the CNN method achieves a training accuracy of 90.41% and a validation
accuracy of 83.33%, whereas the DenseNet121 method excels with a training accuracy of
98.27% and a validation accuracy of 87.47%. The DenseNet121 architecture, comprising 121
layers, a GAP layer and a dropout layer, showcases its effectiveness. The hidden layers
consist of 512 nodes, and the final layer comprises 12 nodeswith a softmax function for image
classification. Leveraging categorical_crossentropy as the loss function and utilizing the
SGD Optimizer with a learning rate of 0.001 guide the course of the model training process.
The experimental results unequivocally demonstrate the superior performance of

Plate 1.
(a) Late blight disease,
(b) Septoria leaf spot

disease and (c) healthy
leaf and are identified

correctly using the
proposed approach

Applied
Computing and

Informatics



DenseNet121 over CNN. Consequently, the findings from this research have been practically
applied in the Tanamin.id application, accessible on Google Play.

An inherent limitation of our approach is its applicability to other crops, given the study’s
exclusive focus on tomato plant diseases. Generalizing our findings necessitates further
validation and fine-tuning for different plant species and disease types. Collaborative
research and data sharing present promising prospects for developing more adaptable
models and fostering robust solutions to diverse agricultural challenges. Additionally,
exploring hyperparameter optimization provides opportunities to enhance model
performance. These advancements aim to facilitate the development of more accurate and
reliable models for detecting tomato plant diseases, positively impacting agricultural
production.

References

1. Mahum R, Munir H, Mughal ZUN, Awais M, Sher Khan F, Saqlain M, Mahamad S, Tlili I. A novel
framework for potato leaf disease detection using an efficient deep learning model. Hum Ecol Risk
Assess Int J. 2023; 29(2): 303-26. doi: 10.1080/10807039.2022.2064814.

2. Zhong Y, Zhao M. Research on deep learning in apple leaf disease recognition. Comput Electron
Agric. 2020; 168: 105146. doi: 10.1016/j.compag.2019.105146.

3. Li L, Zhang S, Wang B. Plant disease detection and classification by deep learning—a review.
IEEE Access. 2021; 9: 56683-98. doi: 10.1109/ACCESS.2021.3069646.

4. MFK Tomato production by country. [cited 2024 Apr 21]. Available from: https://www.
worldostats.com/post/tomato-production-by-country-2023

5. Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, Liu H, Trivedi P. Climate change
impacts on plant pathogens, food security and paths forward. Nat Rev Microbiol. 2023; 21(10): 640-
56. doi: 10.1038/s41579-023-00900-7.

6. Hassaballah M, Awad AI. (Eds) Deep learning in computer vision: principles and applications.
Boca Raton: CRC Press; 2020. doi: 10.1201/9781351003827.

7. Agarwal M, Gupta SK, Biswas KK. Development of Efficient CNN model for Tomato crop disease
identification. Sustain Comput Inform Syst. 2020; 28: 100407. doi: 10.1016/j.suscom.2020.100407.

8. Li Y, Nie J, Chao X. Do we really need deep CNN for plant diseases identification?. Comput
Electron Agric. 2020; 178: 105803. doi: 10.1016/j.compag.2020.105803.

9. Chen J, Chen J, Zhang D, Sun Y, Nanehkaran YA. Using deep transfer learning for image-based
plant disease identification. Comput Electron Agric. 2020; 173: 105393. doi: 10.1016/j.compag.2020.
105393.

10. Author 2. Tanamin – apps on Google play In: Tanamin – apps on Google play. [cited 2024 Mar 5].
Available from: https://play.google.com/store/apps/details?id5com.app.tanamin&hl5en_GB

11. Garg N, Gupta R, Kaur M, Kukreja V, Jain A, Tiwari RG. Classification of tomato diseases using
hybrid model (CNN-SVM). In: 2022 10th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future Directions) (ICRITO); 2022. p. 1-5. doi: 10.1109/
ICRITO56286.2022.9964708.

12. Paul SG, Biswas AA, Saha A, Zulfiker MS, Ritu NA, Zahan I, Rahman M, Islam MA. A real-time
application-based convolutional neural network approach for tomato leaf disease classification.
Array. 2023; 19: 100313. doi: 10.1016/j.array.2023.100313.

13. Karthik R, Hariharan M, Anand S, Mathikshara P, Johnson A, Menaka R. Attention embedded
residual CNN for disease detection in tomato leaves. Appl Soft Comput. 2020; 86: 105933. doi: 10.
1016/j.asoc.2019.105933.

14. Vellaichamy AS, Swaminathan A, Varun C, Kalaivani S. Multiple plant leaf disease classification
using DENSENET-121 architecture. Int J Electr Eng Technol. 2021; 12(5). doi: 10.34218/IJEET.12.5.
2021.005.

ACI

https://doi.org/10.1080/10807039.2022.2064814
https://doi.org/10.1016/j.compag.2019.105146
https://doi.org/10.1109/ACCESS.2021.3069646
https://www.worldostats.com/post/tomato-production-by-country-2023
https://www.worldostats.com/post/tomato-production-by-country-2023
https://doi.org/10.1038/s41579-023-00900-7
https://doi.org/10.1201/9781351003827
https://doi.org/10.1016/j.suscom.2020.100407
https://doi.org/10.1016/j.compag.2020.105803
https://doi.org/10.1016/j.compag.2020.105393
https://doi.org/10.1016/j.compag.2020.105393
https://play.google.com/store/apps/details?id=com.app.tanamin&hl=en_GB
https://play.google.com/store/apps/details?id=com.app.tanamin&hl=en_GB
https://play.google.com/store/apps/details?id=com.app.tanamin&hl=en_GB
https://doi.org/10.1109/ICRITO56286.2022.9964708
https://doi.org/10.1109/ICRITO56286.2022.9964708
https://doi.org/10.1016/j.array.2023.100313
https://doi.org/10.1016/j.asoc.2019.105933
https://doi.org/10.1016/j.asoc.2019.105933
https://doi.org/10.34218/IJEET.12.5.2021.005
https://doi.org/10.34218/IJEET.12.5.2021.005


15. Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q. A comprehensive survey on transfer
learning. Proc IEEE. 2021; 109(1): 43-76. doi: 10.1109/JPROC.2020.3004555.

16. Hong H, Lin J, Huang F. Tomato disease detection and classification by deep learning. In: 2020
International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering
(ICBAIE); 2020. p. 25-9. doi: 10.1109/ICBAIE49996.2020.00012.

17. Author 3. PlantVillage dataset. Kaggle. Available from: https://www.kaggle.com/datasets/
emmarex/plantdisease

18. Author 4. Deep learning for vision systems. 2020. [cited 2024 Apr 21]. Available from: https://
www.simonandschuster.com/books/Deep-Learning-for-Vision-Systems/Mohamed-Elgendy/
9781617296192

19. Author 5. Deep learning, MIT Press. [cited 2024 Apr 21]. Available from: https://mitpress.mit.edu/
9780262035613/deep-learning/

20. Grandini M, Bagli E, Visani G. Metrics for multi-class classification: an overview. arXiv.org. [cited
2024 Apr 21]. Available from: https://arxiv.org/abs/2008.05756v1

21. Zhuang S, Zuccon G. Asyncval: a toolkit for asynchronously validating dense retriever
checkpoints during training. In: Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval. Madrid Spain: ACM; 2022. p. 3235-9. doi: 10.
1145/3477495.3531658.

22. Author 6. Electronics j free full-text j CNN variants for computer vision: history, architecture,
application, challenges and future scope. [cited 2024 Apr 21]. Available from: https://www.mdpi.
com/2079-9292/10/20/2470

23. Zeng G. On the confusion matrix in credit scoring and its analytical properties. Commun Stat -
Theor Methods. 2020; 49(9): 2080-93. doi: 10.1080/03610926.2019.1568485.

Corresponding author
Heru Agus Santoso can be contacted at: heru.agus.santoso@dsn.dinus.ac.id

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Applied
Computing and

Informatics

https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/ICBAIE49996.2020.00012
https://www.kaggle.com/datasets/emmarex/plantdisease
https://www.kaggle.com/datasets/emmarex/plantdisease
https://www.simonandschuster.com/books/Deep-Learning-for-Vision-Systems/Mohamed-Elgendy/9781617296192
https://www.simonandschuster.com/books/Deep-Learning-for-Vision-Systems/Mohamed-Elgendy/9781617296192
https://www.simonandschuster.com/books/Deep-Learning-for-Vision-Systems/Mohamed-Elgendy/9781617296192
https://mitpress.mit.edu/9780262035613/deep-learning/
https://mitpress.mit.edu/9780262035613/deep-learning/
https://arxiv.org/abs/2008.05756v1
https://doi.org/10.1145/3477495.3531658
https://doi.org/10.1145/3477495.3531658
https://www.mdpi.com/2079-9292/10/20/2470
https://www.mdpi.com/2079-9292/10/20/2470
https://doi.org/10.1080/03610926.2019.1568485
mailto:heru.agus.santoso@dsn.dinus.ac.id

	Comparative analysis of convolutional neural network and DenseNet121 transfer learning in agriculture focusing on crop leaf ...
	Introduction
	Related works
	Research methodology
	Data merging
	Data pre-processing
	Augmentation and dataset balancing
	Modeling with CNN
	Modeling with DenseNet
	Experimental setup
	Performance metrics

	Result
	Dataset
	CNN implementation
	DenseNet121 implementation
	Discussion

	Conclusion
	References


